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ABSTRACT

This dissertation is composed of two separate projects. The first chapter proves two
additivity results for factorization algebras. These provide a way to understand factorization
algebras on the product of two spaces. Our results can be thought of as a generalization
of Dunn’s additivity for E,-algebras. In particular, our methods provide a new proof of
Dunn’s additivity. The second chapter is an examination of the Schubert stratification of real
Grassmann manifolds. We use this extra structure to identify the quasi-isomorphism type of
the Schubert CW chain complex for real Grassmannians. We provide explicit computations
using our methods.
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INTRODUCTION

This dissertation is composed of two separate bodies of work. Chapter 2 proves two
additivity theorems for factorization algebras. Somewhere along the way in proving the
results in Chapter 2, we got distracted by some shiny new objects, not too dissimilar to a
raccoon. Chapter 3 is a result of this distraction. In Chapter 3, we compute the cohomology

of real Grassmannian manifolds via their Schubert stratifications.

Additivity of factorization algebras

Factorization algebras were developed by Costello and Gwilliam in [11] to understand
the algebraic structure of observables in perturbative quantum field theory. They are related
to chiral algebras which were developed by Beilinson and Drinfeld in [6] to understand vertex
algebras in conformal field theory.

A typical source of examples of factorization algebras comes from perturbative o-
models. One such example is the Poisson g-model. The classical Poisson o-model aims to
understand the mapping space Map(%, X') where X is a Poisson manifold and ¥ is a compact
oriented surface. In general, this mapping space is quite complicated. A first approximation
to understanding Map(3, X) is to fix a map ¢ € Map(%, X), such as a constant map, and
consider an infinitesimal neighborhood of . This is known as the perturbative Poisson o-
model. In [11] Costello and Gwilliam laid the foundation for understanding field theories in
ths way. Using their framework, the classical observables in perturbative o-models possess
the structure of a factorization algebra.

For example, in the classical Poisson o-model, for X a target Poisson manifold, the

space of fields on an open U C ¥ can be taken to be the smooth stack Map(Uyg, X). Here,
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Uyr is the de Rham stack of U, whose global functions is the de Rham complex of U.
Notice the embedding X S Map(Ugr, X) of constant maps. For perturbative o-models,
one is interested in the infinitesimal neighborhood of this embedding. For open U C ¥,
the fields for this perturbative o-model can be taken to be the dg Lie algebra Q*(U) ® gx,
where gy is a curved L.-algebra defined from the Poisson structure on X. Therefore, the

classical observables for this perturbative o-model can be taken to be CH(Q(U)®gx). This

expression is functorial in U

Obs® : U — CH(Q(U) ® gx) . (1.1)

Further, this functor is a factorization algebra. We refer the reader to [? | for more details.

Similarly, given a based space * € Z and a manifold M, consider the functor

Map.(—, Z) : open(M) — Spaces , U — Map (U, Z) . (1.2)

As shown in [2], if Z is (n — 1)-connected, and dim(M) < n, then Map_(—, Z) is a locally
constant factorization algebra.

Heuristically, a factorization algebra on a topological space X valued in a symmetric
monoidal category (V,®) is a functor F : open(X) — V that possesses a local-to-global
property and that takes disjoint unions of open sets to tensor products in V. Here, open(X)
denotes the poset of open subsets of X. Note that disjoint union is only a partially
defined operation on open(X), so we cannot simply require that F is a symmetric monoidal
functor. There are algebraic gadgets called operads that capture this notion of a partial
operation. We use this formalism to give a more precise description of factorization algebras
later. There is a special class of factorization algebras called locally constant factorization
algebras. A factorization algebra F is called locally constant if each isotopy equivalence

U < V in open(X) is carried to an equivalence F(U) = F(V) in V. For example, the
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classical observables of the Poisson o-model as given in equation (1.1) form a locally constant
factorization algebra.

Factorization algebras also provide an approach to understanding (higher) algebraic
structures. For instance, we will now show how a locally constant factorization algebra on

R gives rise to an associative algebra. Consider a locally constant factorization algebra on R

F : open(R) — Vectg

valued in the category of real vector spaces equipped with the symmetric monoidal structure
provided by ®g. Recall that the open subsets of R are generated by intervals. Consider
the inclusion of two disjoint intervals I I I <% R. Since F takes disjoint unions to tensor

products in V, the map m gets carried to a linear map of vector spaces as depicted below.

b [z FL) @ F(b)
F
‘ - ' F(®)

Let A denote the vector space F(R). Since F is assumed to be locally constant, given
any open interval I < R, the induced map F(I) — F(R) =: A is an equivalence. Thus,
F(I) = A for each interval I € open(X). Therefore, the map m gets carried to a linear map
A®r A U, A. One can check this endows A with the structure of an associative algebra
over R.

As shown in [11], there is an equivalence of categories

Facty® (Vecty,) ~ AssocAlg,, |,
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between the category of locally constant factorization algebras on R valued in the symmetric
monoidal (with respect to ®y) category of vector spaces over a field, k, and the category of
associative algebras over k. More generally, for a symmetric monoidal co-category V%, in

[21] Lurie proves that there is an equivalence of oco-categories

Factys (V) ~ Alge, (V%) (1.3)

between the oco-category of locally constant factorization algebras on R™ valued in V® and
the oo-category of E,-algebras in V.

In [12] Dunn proved a celebrated theorem about the E,-operads that is referred to
as Dunn’s additivity. Lurie generalized Dunn’s additivity to the setting of co-operads in
[21]. Dunn’s additivity asserts that for nonnegative integers n,m > 0, the E,,,-operad
is a tensor product of the E,-operad with the E,,-operad. In particular, for a symmetric

monoidal co-category V®, there is an equivlence of co-categories

A'%EHW (V) ~ Alge, (AIgEm(V®)) (1.4)

between the oo-category of E,  ,,-algebras in V® and the oco-category of E,-algebras in the oo-
category of E,,-algebras in V. Note that the co-category Algg (V®) is a symmetric monoidal
oo-category via pointwise tensor product in V¥, thus the right-hand side of equation (1.4)
makes sense.

Using equation (1.3), we can reformulate the statement of Dunn’s additivity as an

equivalence of co-categories
Factpsiim (V®) ~ Factys (Factis, (V) . (1.5)

There are several natural generalizations of this statement that we contemplate in this



dissertation:

Question 1.0.1. Is there an analog of equation (1.5) for factorization algebras that are not

necessarily locally constant?

Question 1.0.2. Is there an analog of equation (1.5) when one considers factorization

algebras over topological spaces other than Euclidean space?

In Chapter 2, we provide solutions to both Question 1.0.1 and Question 1.0.2. A novelty
of our approach is that we recover Dunn’s additivity as a corollary. Lurie provides a highly
non-trivial proof of Dunn’s additivity in [21]. In particular, our methods provide a new
proof.

We reformulate factorization algebras within the context of co-operads as developed by
Lurie in [21]. The poset open(X) can be regarded as a multicategory, which captures the
notion that disjoint union is only a partially defined operation. There is a standard way
of regarding a multicategory as an oco-operad, and we will denote the oo-operad associated
to open(X) by open(X)®. An element of open(X)® can be thought of as a pair (I, (U;))
consisting of a based fintie set I, and an I-indexed list (U;) of open sets in X. Symmetric
monoidal oo-categories are also defined using the framework of oo-operads. Using this
language, a factorization algebra is then a functor of occ-operads F : open(X)® — V¥,
again satisfying a local-to-global principle and the condition that disjoint unions map to
tensor products.

This operadic formulation of factorization algebras provides us with a natural approach

to answering Question 1.0.1 and Question 1.0.2.

General additivity

We first provide the following answer to Question 1.0.1:
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Theorem 1.0.3. Let X and Y be topological spaces, and let V® be a ®-presentable oo-

category. There is an equivalence of co-categories

Factx,y(V®) = Factx(Facty (V?)) .

Key ideas The oo-category of factorization algebras is an co-subcategory

Factx (V%) < Fungpq(open(X)®, V%)

of the functors of oo-operads between the open(X)® and V¥®. Thus, the statement of
additivity is making a comparison between an oo-subcategory of Fungpg(open(X x Y)® V®)
and an oo-subcategory of Fungpd(open(X)®, Fungpd(open(Y)®,V®)). The category of oo-

operads possesses a tensor product with the property that

Funopa(open(X)®, Fungpa(open(Y)®, V¥)) ~ Funepd(open(X)® @ open(Y)®, V¥) .

The defining feature of the tensor product of co-operads is such that there is an equivalence

of co-categories

Funopq(open(X)® @ open(Y)®, V®) ~ BiFun(open(X)®, open(Y)®; V) |

where the righthand side is the co-category of bifunctors of co-operads. A bifunctor is a

special type of functor out of open(X)® x open(Y)®. There is a natural bifunctor

p : open(X)® x open(Y)® — open(X x Y)®
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given by taking the product of open sets in X with open sets in Y to produce an open set

in X x Y. Restriction along p provides a comparison

p* : Fungpa(open(X x Y)® V¥) — BiFun(open(X)®, open(Y)%; V%) .

There is a left adjoint to p* given by left Kan extension. The strategy for proving Theorem
1.0.3 is to show that this adjunction restricts to an equivalence between the oo-subcategories

of factorization algebras.

Locally constant additivity

Next, we provide an affirmative answer to Question 1.0.2 with the caveat that we now

require the topological spaces X and Y to be topological manifolds:

Theorem 1.0.4. Let X and Y be topological manifolds and let V® be a ®-presentable oo-

category. There is an equivalence of co-categories

Factss, ,(V®) = Facti& (Factis (V) .

Before discussing the key ideas of the proof, we first mention an immediate implication
of this theorem. Let Ch} denote the symmetric monoidal co-category of chain complexes
over a fixed field. Theorem 1.0.4 implies that an algebra in Alg(Ch?’) does not simply possess
two multiplication rules. Rather, there is a space of multiplication rules. We now describe
how to see this space has an interesting topology to it. Namely, we can see a nontrivial loop

of multiplications. Using equation (1.3), there is an equivalence

Alg(Alg(Ch?)) ~ Facty™ (Facty™ (ChY)) .



Theorem 1.0.4 further asserts an equivalence
Alg(Alg(Ch?)) ~ Facty® (Facty™ (ChY)) ~ Factys (ChY) .

Now take F € Alg(Alg(ChY)) =~ Factps(Ch?). Consider two disjoint disks U; IT Uy 4
Z C R? including into a larger disk, as depicted below. Note that each inclusion of a
disk into R? is an isotopy equivalence. Since F is assumed to be locally constant, this
implies that F(U,) ~ F(U,) ~ F(Z) ~ F(R?). Therefore, F carries ¢ to a morphism
F(p) : F(U,) @ F(Uy) — F(Z) in ChY. We now illustrate a zig-zag of inclusions that

produces an example of a loop in the space of multiplications.




Key ideas Recall that a factorization algebra F is called locally constant if it carries

an isotopy equivalence of open sets in X to an equivalence in V. We now place the locally
constant condition within the operadic formulation of factorization algebras. Note that there
is an oo-subcategory Z(X)® < open(X)® consiting of the same objects as open(X)®, but
only those morphisms (I, (U;)) = (J4, (V;)) for which the map of based finite sets I ER Ji
is a bijection such that for all i € I, the inclusion U; < Vy(; is an isotopy equivalence.
The condition for a factorization algebra F : open(X)® — V® to be locally constant can be

phrased as the condition that F factors

open(X)® ;; Ve
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through the localization of open(X)® at the isotopy equivalences Z(X)®. The localization
open(X)®[Z(X)® ' is a little intractable. This is precisely where we employ the additional
requirement that X and Y are topological manifolds. As such, we can reduce the situation
to analyzing functors out of disk(X)®, the full oo-sub-operad consisting of those open
sets that are homeomorphic to a finite disjoint union of disks. Let J(X)® denote the
full co-subcategory of Z(X)® consisting of those objects that lie in disk(X)®. The locally
constant condition can then be reduced to analyzing the localization disk(X)®[7(X)®~']. By
evaluating disks at their centers, we can understand this localization in terms of configuration

spaces.

An application

Consider the moduli space

Muye (R x (SHH7)

of U(1)-bundles on the space R x (SY)1” that are trivialized outside of a compact set. We
can use Theorem 1.0.4 to identify the algebra of chains on this moduli space. There is a

homotopy equivalence

My (R x (SH"7) ~ Map (R x (S1)"'",BU(1))

between the moduli space of U(1)-bundles and the space of compactly supported maps into
BU(1). Note that BU(1) is 1-connected, since U(1) is 0-connected, and R x (S1)I" is 2-

dimensional. Consider the functor

C. (Map(—,BU(1))) : open (R x (S")"") — Ch{



11

where Chy denotes the oo-category of chain complexes over a field k. This defines a locally

constant factorization algebra, per the discussion surrounding equation (1.2). That is,
C, (Map.(—,BU(1))) € Fact]']'{x'(sl)u,«(Ch,?) : (1.6)
By Theorem 1.0.4, we know
Facty, g1yu+(ChyY) ~ Facty® (Facti§iyu. (ChyY)) ~ Alg(Fact;Giyu(Chy)) .

Therefore, if we evaluate the factorization algebra in equation (1.6) on the total space R x

(SHUT we then obtain an object in Alg(Ch}). Further, this algebra is
C. (Muqye (Rx (S1)7)) -

In this case, we can explicitly identify this algebra by other means. Namely, note that for

any space Y and pointed space Z

Map, (R x Y, Z) := Map, (R x Y)*, Z)
~ Map,(R*AY T, Z)
= Map, (R™, Map, (Y, Z))
= OMap (Y, Z)

>~ Map,(Y,Q7) .

Here, Map, (—, —) denotes the space of based maps, Y denotes the one-point compactifica-

tion, and 27 denotes the based loop space. There, if we take Y = (S1)1" and Z = BU(1),
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we have
Muye (R x (1)) = Map (R x (S1)"", BU(1)) = Map((S")"", U(1)) -
By the universal property of coproducts,
Map,((S")"", U(1)) 2= Map(S", U(1))*" .
Further, there is a homeomorphism
Map,(S*, U (1))*" = (Map,(S*,U(1)) x U(1))™"

given factorwise by

(§$WWH<§ELLWMﬂ®.

Noting that Map,(S*,U(1)) ~ Z, we see
Muye (R x (SHU7) = (Z x U1))" .
Al told,
O, (Myye (R x (SHU7) 3 k) = kx5 @ (Kle] ) ®r = (k[ e]ye0) ™",

where deg(e) = 1. Therefore, we have identified the algebra of global sections of the locally

xil

constant factorization algebra given in equation (1.6) with the algebra (k[ €] /(52))@.
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Future

Recently, the theory of stratified spaces has been given a solid foundation in the context
of oo-categories by Ayala-Francis-Tanaka in [5]. There is a class of factorization algebras
on stratified spaces called constructible factorization algebras. A constructible factorization
algebra JF on a stratified space X — P is a factorization algebra on X such that it is locally
constant when restricted to each stratum. We believe that our methods can be used to
provide an additivity statement for constructible factorization algebras on stratified spaces.

Namely, we conjecture:

Conjecture 1.0.5. For nice stratified spaces X andY , and V® a ®@-presentable co-category,

there is an equivalence of co-categories

Fact%”xy(V‘@) — FactEf—”(Factgf’l(V(@)) .

The cohomology of real Grassmannians

As the moduli space of k-dimensional subvector spaces of R", the real Grassmannians,
Gri(R™), play an important role in the study of manifolds. Namely, we can interpret
H*(Gri(R™)) as measuring obstructions to natural geometric questions about manifolds.

For instance, let M C R"™ be a k-dimensional submanifold of R". Consider the Gauss map

v 2 M — Gr(R™) x— T, M,

that sends a point x € M to the tangent space of M at z. This induces a map on the level
of cohomology

T - H (Gre(R™)) — H*(M) .
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For M a compact, orientable submanifold, there exists an element ¢ € H*(Gr,(R")) such
that 7p/(e) = 0 if and only if M admits a non-vanishing vector field [24].

To aid in the computation of the cohomology of Gry(R"), there is a natural CW
structure that one can place on the Grassmannian called the Schubert CW structure [24].
The complex Grassmannian, Gri(C"), can also be endowed with this structure. Since each
cell in the Schubert CW strucutre of Gr,(C") is even dimensional, the boundary maps in
the corresponding chain complex are zero. Thus, H*(Gry(C")) is freely generated by the
Schubert cells of dimension 7 [13]. A similar situation occurs in the cohomology of Grg(R™)
with Z/27 coefficients. Namely, all the boundary maps in the chain complex are zero.
So again, H'(Gr,(R"™);Z/27Z) is freely generated by the Schubert cells of dimension i [24].
Borel computed the rational cohomology algebra of the odd dimensional real Grassmannians
[7], and Takeuchi computed the rational cohomology algebra of the even dimensional real
Grassmannians [28]. More recently, equivariant versions of the rational cohomology have
been considered in [8], [16], [27].

The difficulty in computing the integral cohomology of real Grassmannians lies in the
computation of the attaching maps in the Schubert CW structure. Using Z/2Z coefficients,
one is able to bypass this difficulty, but to understand the integral cohomology, we must
have a clear understanding of the attaching maps. In [9], the authors apply a combinatorial
approach via Young diagrams, and in [18], Jungkind provides a closed formula for the
differentials in the CW chain complex of Grg(n) with integer coefficients. Using our
framework, we recover this formula as Lemma 1.0.6 below. We now outline our approach

and contributions.
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Approach
In Chapter 3, we provide a complete description of the additive structure of the R-

cohomology of Gri(R™). Fix 0 < k < n, and consider the poset
" =FunW({l< - <kh{l< - <n})

of injective functors. For each 0 < r < k, consider the map

{51<"'<sk}'_>2r§i§k S8;i—1
} > La>0 -

dr:{z

First, we prove the following lemma.

Lemma 1.0.6. Let R be a commutative ring. The R-valued cohomology H*(Grk(n); R) 15
tsomorphic with the cohomology of the chain complex (R <{Z}> ,5) over R whose underlying

graded R-module is free on the graded set {Z} LN Z>o and whose differential evaluates as

§:5={s;<---<s} — > (-1 2.5 (1.7)

re{1<r<k | sy+1—sr>1 and k—s, is odd}

where S, 1= {51<~--<sr,1<sr+1<sr+1<~-~<sk}€{Z}.

Then, we use Lemma 1.0.6 to provide the following remarkable decomposition of the

Schubert CW chain complex C"(Gry(n); Z):

Theorem 1.0.7. Let R be a commutative ring. There is an isomorphism of chain complexes

C5NGn(n);Z)= @) Cone(Z 2 2)*")[dy(S) — card(In(S))]

se {Z}Out

I

P Zldi(S) | @ | B Cone(Z > Z)[di(S) — 1]
se {itoue \ {0} se {3} win
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where (g (0 (2 © 113, and n(S) € {1},
A consequence of Theorem 1.0.7 is the following closed formula for the R-cohomology

of Grg(n):

Corollary 1.0.8. There is an isomorphism of graded R-modules

H*(Gr(n);R) = €D Vsldi(S)] |

se {1}

where )

R, if In(S) = 0 = Out(S)

Vs:=q ker(R 2 R),  if Min(In(S) U Out(S)) € Out(S) -

coker(R 2 R), if Min(In(S) U Out(S)) € In(S)
\

for In(S), Out(S) C {1,...,k}.
We now provide some immedaite consequences of Corollary 1.0.8:

Corollary 1.0.9. Let R be a ring in which 2 is not a zero-divisor, for example R = Z or

R =75, the 2-adics. Then

12

H*(Grg(n); R)

P =r|e . R/2R

se {3} ose{y)
In(S)=p=0ut(S) Min(In(S)UOut(S))€ln(S)

Corollary 1.0.10. Let R be a ring in which 2 is invertible, for ezample R = Q, R = R,

R=1Z/qZ, or R =F,, for some q relatively prime to 2. Then

I

H*(Gry(n); R)

b =R

n

se {3}
In(S)=0=0ut(S)
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Corollary 1.0.11. Let R be a commutative ring such that R = Z/2°Z then

H*(Gri(n); R) = b z|e & 7,207
se {1} s {y)
In(S)=0=0ut(S) Min(In(S)UOut(S))€ Out(S)

@ D 7,27,

se {1}

Min(In(S)UOut(S))€In(S)
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ADDITIVITY OF FACTORIZATION ALGEBRAS
In this chapter, we prove the additivity results of Theorem 1.0.3 and Theorem 1.0.4.
Background

In this section we establish preliminary conventions, notation, and definitions. Through-
out this chapter we use the theory of oco-categories. There are various models for the
foundations of oco-category theory, for example quasicategories as developed by Joyal in
[17] and complete Segal spaces as developed by Rezk in [25]. In this chapter we work model
independently, with the notable exception being our explicit use of complete Segal spaces in
the proof of Theorem 2.0.36.

As indicated in the introduction, a factorization algebra on a topological space X is a
functor that assigns data to each open subset U C X. Furthermore, a factorization algebra
satisfies a particular local-to-global property and behaves nicely with respect to disjoint

unions of open sets. A good example to keep in mind is the following:

Example 2.0.1. There is an interesting class of factorization algebras that one can associate
to a Lie algebra called the universal enveloping E,-algebras. Let n > 1 be an integer and g

be a Lie algebra over a field k. Consider the functor

U,g : open(R") — Chg

from the poset of open sets in R™ to the category of chain complexes over a field k given by
sending U € open(R") to
U CHRU) @)

the Lie algebra chains on the dgla of compactly supported de Rham forms on U with values

in g. This defines a locally constant factorization algebra on R".
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We formulate factorization algebras within the framework of co-operads, and freely use
this theory. The data of an co-operad is an oco-category O% and a functor O% — Fin, to
the oo-category of based finite sets. As oo-operads form the base of this chapter, we have
recalled the basic definitions in the appendix. The appendix also contains other foundational

definitions and results that we do our best to cite as we use them.

Conventions
Here we compile a list of basic notation and conventions that we use throughout this
chapter. Note that many of these items are discussed in more detail in the appendix, so we

recommend looking there if more information is desired.
e Fin, denotes the category of based finite sets and based maps between them.
e [p] dentotes the poset {0 <1< -+ < p}.
e For C & D a functor between categories and d € D, we let

— C/, denote the overcategory consisting of objects ¢ € C equipped with a morphism

F(¢) = d in D. See Definition A.0.1.

— (), denote the fiber of C over d. This consists of objects ¢ € C for which F(c) = d.

See Definition A.0.2.

Preliminary definitions

Throughout the remainder of this chapter, unless otherwise specified, we will let V®
denote a ®-presentable symmetric monoidal oco-category. See Definition A.0.12 for a precise
definition of what ®-presentable means. Note that this is not too restrictive of a condition
though, and encompasses the prototypical codomains of factorization algebras. In particular,

the oo-category of chain complexes over a fixed ring is ®-presentable.
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Definition 2.0.2. For X a topological space, let open(X) denote the poset of open sets in

X with partial order given by inclusion.

As we recall in Example A.0.42, the poset open(X) gives rise to an oc-operad in a
standard way. We denote the resulting oo-operad by open(X)®. An object in open(X)® is
a pair (I, (U;)) consisting of a based finite set I and an [-indexed list of open sets in X.
A morphism (I, (U;)) ERN (J4, (V;)) in open(X)® is a map of based finte sets f : I, — Jy
such that for each j € J, the set {U; | i € f~'(j)} is a collection of pairwise disjoint open
subsets of V;. Below is an example of a morphism in open(R?)® given by the map of based

finite sets {1,2,3,4}, — {1,2}, that sends 2,3+ 1, 1 +— 2, and 4 — +.

a&s _ (&
Y @

Remark 2.0.3. We emphasize the fact that open(X)® is an ordinary category. Additionally,
so is the full co-sub-operad disk(X)® consisting of open sets that are homeomorphic to a
disjoint union of open disks, as defined in Defininition 2.0.37. Throughout the remainder
of this section, we will use a number of variations on open(X)® and disk(X)®. Note that
these are also ordinary categories. This is an important fact that enables us to do explicit

constructions.

We now make precise the idea that factorization algebras behave nicely with respect
to disjoint unions. First, note that disjoint union is only a partially defined operation on
open(X). Indeed, if U,V € open(X) such that UNV # (), then UIIV ¢ open(X). The next

observation characterizes disjoint unions as a particular class of morphisms in open(X)®.
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Observation 2.0.4. Note that coCartesian morphisms in open(X)® are of the form

AR A A I || 7

i€f1()
Further, these coCartesian morphisms exist precisely when for each j € J, the collection

(Us)ics-1(;) is a pairwise disjoint collection of open subsets.

Definition 2.0.5. We say that a functor of oc-operads F : open(X)® — V¥ is multiplicative
if F carries all coCartesian morphisms in open(X)® to coCartesian morphisms in V®. Define
the oo-category Funl (open(X)® V) C Fun(open(X)®, V?) to be the full co-subcategory

opd

consisting of the multiplicative functors of oo-operads.

Observation 2.0.6. Recall that V® is a symmetric monoidal oco-category (see Definition
A.0.44). In particular, this means that V® — Fin, is a coCartesian fibration. Analogous to

Observation 2.0.4, a coCartesian morphism in V? is of the form

f
(L, (Vi) = | T+, ® Vi
icf=1)

In other words, coCartesian morphisms in V® are given by tensor products.

In light of Observations 2.0.4 and 2.0.6, the condition for a functor of co-operads
F :open(X)® — V¥

to be multiplicative is an articulation of the idea that disjoint unions of open sets get carried
to tensor products in V.
Next, we describe the type of local-to-global condition that factorization algebras satisty.

There is the standard Grothendieck topology on open(X) where a cover corresponds to an
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ordinary open cover. However, this is not the correct form of descent for factorization
algebras. As discussed in the introduction, a prototypical example of a factorization algebra

on a topological space X looks like the functor
Map.(—, Z) : open(X) — Spaces , U — Map (U, Z)

that sends an open set U to the space of compactly supported maps valued in a pointed
space Z. Observe that this is not an ordinary cosheaf. However, this functor does enjoy a
different type of local-to-global property, namely that of a J,.-cosheaf. We note that it is not
obvious that Map_(—, Z) is a J.-cosheaf. This can be seen as a consequence of non-abelian

Poincare duality as proven in [2], for instance.

Definition 2.0.7. Let U C X be an open subset of a manifold. We declare a subset
U C open(X),, = open(U) to be a naive Joo-cover of U if for all finite subsets S C U, there
exists some Ug € U such that S C Ug. A naive J-cover U is a J,,-cover if for any finite
subset {Uy,...,U,} C U, the subset Uy, C open(Uy N---NU,) is a naive Jy-cover of

UyN---NU,. We call the induced topology on open(X) the J, (or Weiss) topology.

Remark 2.0.8. A naive J,-cover determines a J-cover. Indeed, for U a naive J.-cover,

the subset consisting of all finite fold intersections of members of U is a J,.-cover.

Example 2.0.9. For M a d-manifold, consider disk.(M) C open(M) the subposet consisting
of those open subsets U C M for which U = R?. While disk. (M) is an ordinary cover of M,

it is not a J-cover of M. In fact, it is not even a naive J;n fty-cover.

Recall that the right cone of an co-category U is defined by

u=ux{0,1} I *.

Ux{1}
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Thus, the objects of U” consist of the same objects as U together with an additional object

* that recieves a unique morphism from every other object in U.

Definition 2.0.10. We call a functor F' : open(X) — V a J-cosheaf if for all O € open(X)

and J-covers U of O, the composite functor
> fgt F
U” — open(X),, — open(X) — V

is a colimit diagram. We let Fun’>(open(X),V) < Fun(open(X),V) denote the full oo-

subcategory consisting of those functors that are J,.-cosheaves.

Definition 2.0.11. We let Fun’> (open(X)®, V®) < Fungq(open(X)®, V®) denote the full

opd
oo-subcategory consisting of those functors of co-operads F : open(X)® — V® for which the

restriction Fj,, : open(X)(ff+ — Vﬁi is a Jo.-cosheatf.

We now define the co-category of factorization algebras on a topological space X.

Definition 2.0.12. The oco-category of factorization algebras on X is defined as the pullback

Factx(V®) ————— Fung,4(open(X)®, V¥)

L !

Fun’>(open(X),V) «——— Fun(open(X), V)

That is, a factorization algebra on X is a functor of oo-operads
F :open(X)® — V¥

that restricts to a J.-cosheaf and that takes coCartesian morphisms in open(X)® to
coCartesian morphisms in V®.
There is a special class of factorization algebras that will be of interest in the second

half of this chapter. These are the locally constant factorization algebras.
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Definition 2.0.13. Let F : open(X)® — V® be a factorization algebra. We say that F is

locally constant if the restriction

Fi,. ropen(X)? — VF
+

1y 1 iy

carries isotopy equivalences of open sets to equivalences in V. We let Fact')'f'(V@) —
Factx (V?®) denote the full oco-subcategory consisting of the locally constant factorization

algebras.
There is another useful way of thinking about the locally constant condition.

Definition 2.0.14. Consider the full subcategory Z(X) C open(X) consisting of the same
objects as open(X), but only those morphisms that are isotopy equivalences. Additionally,
define the oo-subcategory Z(X)® < open(X)® over Fin, that consists of the same objects
as open(X)®, but only those morphisms (7, (U;)) ER (J4, (V;)) that are a bijection of based

such that for all ¢ € I the inclusion U; < V() is an isotopy equivalence.

In Lemma 2.0.16 below, we give alternate characterizations of what it means for a
factorization algebra to be locally constant. These use the idea of localization of oo-
categories. We refer the unfamiliar reader to Definition A.0.26 for a discussion of localization.

To prove Lemma 2.0.16, we make use of the following lemma.

Lemma 2.0.15. The inclusion Z(X) < Z(X)® witnesses Z(X)® as the free oo-operad on

I(X).

Proof. By Construction 2.4.3.1 in [21], the free co-operad on Z(X) is Z(X ). Therefore,
there is a unique functor between oc-operads under Z(X) from Z(X)" to Z(X)®. The proof
is complete by showing this functor is an equivalence. To show this, it is sufficient to show
the functor is an equivalence over each object I, € Fin, and that defines an equivalence

between spaces of morphisms over each f : I, — J, in Fin,. By inspection of Construction
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2.4.3.1in [21], Z(X)" is an ordinary category. Further, the fiber Z(X)! is precisely Z(X)? .
+

‘I ‘I+

Now, fix f: I, — Jy in Fin,. By construction, the morphisms from (I, (U;)) to (Jy, (V;))

in Z(X)! are

H H HomI(X)(Ui,Vj) .

JeJief~1(4)

These are precisely the morphisms in Z%. O
Lemma 2.0.16. Let F € Factx(V®). The following are equivalent:
1. F is locally constant.

2. the induced functor between underlying co-categories

open(X); [Z(X)~']

uniquely factors through the localization on isotopy equivalences, Z(X).

3. F uniquely factors

open(X)®[Z(X)®™']
through the localization about T(X)®.
Proof. The equivalence of conditions 1 and 2 follows immediately from the definition

of localization. Condition 3 immediately implies condition 2. We now show that condition 2

implies condition 3. From the definition of localization (Definition A.0.26), the dotted arrow
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in condition 2 is equivalent to a unique filler

P
l (2.1)

Now, there is a forgetful functor (—)‘1+ : Op,, — Caty from the oo-category of co-operads

to the oco-category of oco-categories. This functor sends an oo-operad O to its underlying

oo-category OE’ . This functor is a right adjoint with left adjoint given by (—)I, as in
+

Construction 2.4.3.1 in [21]. Thus we see that

|1+ |1+

is the right adjoint (—)|1+ applied to the functor of oco-operads
® F o
open(X)® = V¢ .

As such, a functor Z(X) — open(X)‘f?+ is equivalent to a functor of co-operads Z(X)" —
open(X)®. Similarly, a functor BZ(X) — Vl(i is equivalent to a functor of oo-operads
BZ(X)! — V®. Recall the classifying space B is defined as a left adjoint (Definition A.0.22).
Since left adjoints commute, we can unambiguously write BZ(X ). Therefore, the diagram

in equation (2.1) is equivalent to the following

~

® =~ 5 I ® _F o
I<1() Lemma 2.0.15 I(X) open(X) V

P

. (2.2)

BI(X)® Lemm:2.0.lg BI(X)H —————— )

Again, by the definition of localization, this is precisely condition 3 in the statement of this
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lemma. O
For the duration of this chapter we will further assume that the unit 1 € V is intial.
This is not the case for most V¥ of interest, such as chain complexes; however, we justify

this assumption using the following proposition.

Proposition 2.0.17 ([21] Proposition 2.3.1.11). Let O% be a unital co-operad and let V® be a
symmetric monoidal co-category. The forgetful functor (V®)1/ — V® induces an equivalence
of co-categories

Funepd(O%, (V®)1/) = Funepq(O®, V%) .

Note that both open(X)® and disk(X)® (see Definition 2.0.37 below) are unital, with
the empty set () as the unit. The above proposition then justifies our assumption that the
unit 1 € V¥ is initial. Below we will also need to work with the oco-category of bifunctors.

We note that a similar statement also holds for bifunctors:

Proposition 2.0.18. Let O% and P® be unital oco-operads and let V® be a symmetric
monoidal co-category. The forgetful functor (V)Y — V& induces an equivalence of oo-

categories

BiFun(O%, P®; (V®)Y) = BiFun(O%, P®; V®) .

Proof. This follows by the same logic used in the proof of Proposition 2.0.17 in [21]. In

particular, using Lemma 2.3.1.12 therein. ]

Additivity of factorization algebras

In this section we prove the following additivity statement for factorization algebras.

Its proof can be found after Lemma 2.0.35 below.
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Theorem 2.0.19. Let X and Y be topological spaces and let V& be a ®-presentable oo-

category. There is an equivalence of co-categories

Factx,y(V®) = Factx(Facty (V?)) . (2.3)

Before delving into proving this theorem, we first give a brief outline of the logic
involved. The oo-category Facty (Facty (V?®)) is the more complicated object in the statement
of Theorem 2.0.19. To understand this oo-category, we are inspired by the tensor-hom
adjunction. A classical version of this adjunction is the following. Let R be a commutative
ring. Recall that given two R-modules O and P, we can form a new R-module O ®p P.
Now let V' be a third R-module. In this setting, the tensor-hom adjunction asserts there is

an isomorphism

Homgz(O ®@g P, V) = Homg(O,Homg(P,V)) .

As shown in [21], the oco-category of oc-operads possess a tensor product. Similarly, for

oo-operads O% and P®, and a symmetric monoidal co-category V¥, there is an equivalence

Funopd((9® ® P® V¥ ~ Func,pd((’)@7 Funopd(P®,V®)) )

Recall that an R-linear map O ® g P — V is the same as an R-bilinear map O x P — V. We
again have an analogous statement for co-operads, where the role of bilinear maps is played
by bifunctors of oco-operads. (We refer the unfamiliar reader to Definition A.0.46 and the
surrounding discussion in the appendix.) The statement in this setting is that there is an

equivalence of co-categories

Funepa (0% @ P?, V) = BiFun(0%, P%; V%) .
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Thus, we use the theory of bifunctors of oco-operads to make sense of the oo-category
Factx (Facty (V®)).

The proof of Theorem 2.0.19 now consists of two major components. First, we identify
Facty .y (V®) with BiFun™’> (open(X)®, open(Y)®; V®). This is the statement of Proposition
2.0.34. Then we identify BiFun™”><(open(X)® open(Y)®; V®) with Factx(Facty (V¥)). This
is the statement of Lemma 2.0.35. Lemma 2.0.35 involves simply verifying that the
aforementioned tensor-hom adjunction respects the two additional conditions of being a
factorization algebra: multiplicativity and J,-cosheaf. The main content of this section lies
in establishing Proposition 2.0.34.

The beginning of this section mostly addresses more technical issues. In particular,
Lemma 2.0.27, Lemma 2.0.28, and Corollary 2.0.29 allow us to reduce our consideration of
functors out of the category of open sets to functors out of a simpler category consisting of
open sets that have finitely many connected components. Then, Corollary 2.0.30 provides
an explcit formula that enables us to prove the logical crux of Proposition 2.0.32. We now
proceed towards the proof of Theorem 2.0.19.

Counsider the natural bifunctor

p :open(X)® x open(Y)® — open(X x Y)® | (I, (Uy)), (J4, (V}) = (Iy AJy, (Ui x V3)) .

Restriction along p has a left adjoint given formally by left Kan extension

p1 = BiFun(open(X)®, open(Y)®; V¥) Z——= Fungpq(open(X x Y)® V) : p* . (2.4)

We provide a formula for how this left Kan extension evaluates in Proposition 2.0.30 below.

See Definition A.0.48 for a definition and discussion of left Kan extensions.

Definition 2.0.20. Let F € BiFun(open(X)®, open(Y)®; V®) be a bifunctor.
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e We say F is a multiplicative bifunctor if F takes all pairs of coCartesian morphisms in

open(X)® x open(Y)® to coCartesian morphisms in V®. Let
BiFun™ (open(X)®, open(Y)®; V®)

denote the full sub co-category consisting of the multiplicative bifunctors.

e We say F is a J-bifunctor if the restriction .7-"1+ — V‘? is a Jy-cosheaf separately
+
in each variable. Let

BiFun’>(open(X)®, open(Y)®; V%)
denote the full co-subcategory consisting of the J..-bifunctors.

Proposition 2.0.34 below establishes that the adjunction in equation (2.4) restricts as

an equivalence

pr : BiFun™> (open(X)®, open(Y)®; V¥) —— Fun:;;j""(open(X xY)®, V) p* .

Key to the proof of Proposition 2.0.34 is the colimit expression for left Kan extension along
a bifunctor that we provide in Corollary 2.0.30. To establish this, we use an alternate

characterization of multiplicative factorization algebras that we now describe.

Definition 2.0.21. Let open(X)g. < open(X)® denote the full co-sub-operad consisting of

fin

those objects (I, (U;)) for which each U; has finitely many connected components.

Definition 2.0.22. Let open(X)® < open(X);, denote the full co-sub-operad consisting of

those objects (I, (U;)) for which each U; has a single connected component.

Observation 2.0.23. Note that for connected U € open(X), the composite functor

® ® (=) o~ .
open(X); e OPe”(X)ﬁn/m’U) — open(X )i, = open(U)fin
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is an equivalence. Here, (—), denotes the coCartesian monodromy functor which exists in

light of Observation 2.0.4.

Definition 2.0.24. We define Fung;;j’JI (open(X)2,V®) < Funepq(open(X)2, V®) to be the full
oo-subcategory consisting of those morphisms of operads F for which for each U € open(X),
the composite

5V,

open(X)sin/y — open(X)i?/?i’U) — Vfir

is a J-cosheaf.

Observation 2.0.25. Note that open(X)s, — open(X) is a basis for the J, Grothendieck

topology on open(X). Since we are only interested in J.-cosheaves, this observation justifies

®

our restriction to open(X)g .

There is a functor expand : open(X);, — open(X)¥ given by

<I+7 (Ul)) = (H WO(Ul)) ) (Uia)aeﬂ'o(Ui) >

el

which expands an I-indexed list of open sets. This functor is right adjoint to the inclusion
L : open(X)® & open(X);, : expand . (2.5)

Observation 2.0.26. A morphism (I, (U;)) ERN (J4, (V;)) in open(X)g, is coCartesian if

and only if expand(f) is coCartesian in open(X)%.

Lemma 2.0.27. Given a functor of oo-operads F : open(X)? — V| there exists a unique

multiplicative filler to the following diagram

open(X)® —L— V&
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Proof. The counit of the adjunction in equation (2.5) defines a functor
e : open(X)® — Ar(open(X)?) .

Define the composite

(=)

F in,) 2% V€ xpn Ar(Fin,) —2 VE

F :open(X)£ = Ar(open(X)g.) — open(X)? xgi,, Ar(Fin,) ==

Here, the fiber product open(X)?® Xgi,, Ar(Fin,) is taken with respect to the functor

C

Ar(Fin,) ﬂ> Fin,. Using Observation 2.0.26, one can show that F is indeed the unique

multiplicative filler to the diagram. O

Lemma 2.0.28. There is an equiavelnce of oo-categories

Funopd(open(X)ﬁn,V®) i> Funopa(open(X)2,V®) .

%

Furthermore, this equivalence restricts to an equivalence between the J., subcategories
Funopd (open(X)% V) i> Funopd(open(X)?,V@)) )

Proof. Lemma 2.0.27 defines a functor Fun(open(X)®,V¥) — Fun™(open(X). , V%)
which is inverse to the restriction ¢*. The J,, statement is readily verified since open(X)? is
a J-basis for open(X)5.. O

fin

By applying Lemma 2.0.28 in each factor, we obtain the following corollary.

Corollary 2.0.29. There is an equivalence of oo-categories

BiFun™(open(X)%  open(Y)% ; V®) BiFun(open(X)%, open(Y)%; V) .

o*l\z
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Furthermore, this equivalence restricts as an equivalence between the J., subcategories

BiFun’> (open(X)¥, open(Y)2; V?) .

1

BiFun™’>(open(X)%  open(Y )5 : V)

0%

In light of Observation 2.0.25, Lemma 2.0.28, and Corollary 2.0.29 we restrict attention
to the bifunctor

pe - open(X)Z x open(Y)Z — open(X x Y)Z
defined in the same way as p. Using Proposition A.0.52, we obtain the following.

Corollary 2.0.30. For F € BiFun(open(X)?, open(Y)2;V®), the left adjoint (phJF
evaluates on (I, (U;)) € open(X x Y)® as the colimit
F ()

Hvp e )

/1y

®

colim (open(X)(? x open(Y) — open(X)¢ x open(Y)Z ),
+

®
€ /iy wy)

Further, if F is Ju, then (phJF is Joo-

Proof. Proposition A.0.52 tells us this colimit expression defines a functor over Fin,.
It remains to check that (pc); carries inert-coCartesian morphisms to inert-coCartesian
morphisms, and that (p. )1 F is Jo if F is a J, bifunctor. First we will verify that (p.), carries
inert-coCartesian morphisms to inert-coCartesian morphisms. Let (I, (U;)) EN (J4, (U;)) be
an inert-coCartesian morphism in open(X x Y)?. Since f is inert and V® is a coCartesian
fibration, the monodromy functor V‘@i — Va is given by projection. As such, the

monodromy functor preserves colimits. This implies that

() F (I, (U3))) 2= colim(open(X)¢ x open(Y) ;)

®
c /(I+,(Ui)) - V|I+

pr
VP =SVP ).
Iy lry

~ colim(open(X)& x Open(y)?/@,(m»
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Now, observe the commutative diagram

open(X)? x Open(Y)??/(u,(Ui))

! ! =

open(X)Z x open(Y) — open(X)¢ x open(Y)Z AN VS)
+ +

— open(X)? x open(Y)?/br L Vfi

®
¢ /4.y
This implies (p )1 F((I+, (U;))) is equivalent to

®

colim(open(X)? x open(Y) ©).

®
-V
< /.y oy

® ®
¢ /W) — Open(X)c X open(Y)

Finally, we use Quillen’s Theorem A (Theorem A.0.62) to show the functor

open(X)Z x open(Y) — open(X)? x open(Y)?

®
¢ J(1y.(u;) ¢ /4.y

is final. The hypothesis of Theorem A.0.62 requires us to verify that for any object

(K4, (Vi), (L, (We)), K4 A Ly = J4) in open(X)2 x open(Y') , the classifying

®
< /.y

space of the undercategory

(K (Vi) (L (W), K ALy~ Ty ) /
(open(X)f_?xopen(Y)@) >( AN WK AL 5034

/1y )

(2.6)

is contractible. To see this, note the assumption that f : I, — J, is inert allows us to define a
map K AL, 5 I, via (k,€) = f~(a(k,€)). The object ((Ky, (Vi)), (L, (W), Ky AL, 2
I+) is then seen to be initial in the undercategory of equation (2.6). Hence its classifying
space is contractible by Observation A.0.24. This completes the proof that (pc)iF is a functor
of oco-operads.

Now, for F € BiFun’/>(open(X)®, open(Y)®;V¥), we will show that (p ) JF &
Fungg‘(’j (open(X x Y)&,V¥). Note that products of open sets form a basis for open(X x Y).

Thus, we only need to check this statement holds for products. This is precisely what is
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shown in Proposition 2.0.32 below. O]
In Proposition 2.0.32 below, we verify that (p )\ F(14,U x V) ~ F((14,U), (14,V)).
Corollary 2.0.30 tells us that we can compute (pc)1F (14, U x V') as the colimit of the following

functor

(=

open(X)? x open(Y)? — open(X)? x open(Y’)g@/1+ SN Vi —V. (2.7)
'+

¢ /(p,uxv)

The general strategy of the proof of Proposition 2.0.32 exploits some additional functoriality
coming from the unitality of V®. We do this by extending the domain of the functor in
equation (2.7) to a larger category. Using this extension, we then compute (p.)F as an
iterated left Kan extension. First, we lay out some necessary definitions.

Define the category Fin, X Fin*/rln_i: to consist of the same objects as Fin, x Fin*/1+ but
with a morhpism (I, J, Iy A Jy ERN 1,) = (K, Ly, K, ALy 2 1) given by a map of

based finite sets I, A J, = K, A L, such that the following conditions hold:

1. the diagram
I.NJy - » Ky AL,

I

Ly

commutes;
2. a Y (K x L) = f~1(1);

3. for all (i,5) € a™'(K x L), the projection pry(a(i,7)) is independent of j, and the

projection pr;(a(i, 7)) is independent of i.

For notational purposes, let us now define

open(X)Z x open(Y)?/rlni+n := open(X)? x open(Y)& X, Fin, x Fin*/Ti+n :
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Definition 2.0.31. We define the category open(X )% x open(Y)?/,(nlin to consist of the
+

UxV)

same objects as open(X)? x open(Y)f?/(1 sy, Pub with a morphism
+> X

(1, (A0), (T, (By), Iy ATy D 10) = (K4, (D), (L, (Bo), K4 A Ly 5 14)

given by a morphism « € Fin, x Fin,mn satisfying the following conditions for all (k,() €
+

K x L:

1. the diagram

commutes;
2. a YK x L) = f~1(1);

3. for all (i,7) € a (K x L), the projection pry(a(i,j)) is independent of j, and the

projection pr(«(i, 7)) is independent of 1.

4. the collection of the sets A; indexed over all ¢ € I for which there exists j € J such

that a(7,j) = (k, ) form a pairwise disjoint collection of open susbsets of Dy;

5. the collection of the sets B; indexed over all j € J for which there exists i € I such

that a(i, j) = (k,¢) form a pairwise disjoint collection of open susbsets of Fy;

The idea of the category open(X)& x Open(Y)‘?/Z"fl,va) is that it selects out ‘minimal’
morphisms between partial grids in the open set U x V. We give some visual intuition for
what we mean by this below. Namely, condition 2 eliminates flexibility of the underlying
morphisms of based finite sets by forcing the morphism of sets to collapse everything possible

to the basepoint. This is illustrated in Figure 2.2. Condition 3 ensures that grids do not get



37

split up, as illustrated in Figure 2.3. Conditions 4 and 5 ensure that we can only include

grids, as illustrated in Figure 2.4.

RN IR

vl ] D
U1 UQ US
Figure 2.1: A typical object in open(R)& x open(IER)f})/(1 vy We have indicated the map
+,Ux

{1,2,3}: A{1,2}; — 1, by the style of line used. Namely, those boxes that are sent to 1 are
styled with solid boundary, and those that are sent to 4 are styled with dashed boundary.

Figure 2.2: Condition 2) of Definition 2.0.31 disallows, for example, the identity morphism
on underlying finite sets such as the one indicated.

Proposition 2.0.32. For F € BiFun’(open(X)?, open(Y)®; V) and connected open

subsets U € open(X). and V € open(Y )., there is an equivalence in V
‘F((1+7U)7 <1+7v)) i (pC)!‘F<1+7U X V) :
Proof. Observe the evident functor

® : open(X)? x open(Y)? ;= open(X)¢ x open(Y) mn

¢ /(1 ,uxv (L, Uxv)
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Figure 2.3: Condition 3) of Definition 2.0.31 disallows, for example, a morphism that splits
up gridded elements such as the one indicated.

L] [ ]
L] [ ]

Figure 2.4: Condition 4) of Definition 2.0.31 disallows, for example, an inclusion of
overlapping elements such as the one indicated.

To define the aforementioned extension, observe the solid commutative diagram

T (=)
open(X)? x Open(Y)?/(1+,va> —— open(X)? x open(Y)?/1+ A V}i >V
7
! |
® ® ® & i
open(X)? x open(Y)S /8 —— open(X)? x open(Y)¢ g

We now define the dashed arrow, ]:/r‘;i“. On objects, .7-"/”Ii“ evaluates the same as F, .
+ +

Consider a morphism

((I-H (AZ))7 (J+> (Bj)v [+ N J—i— i> 1+) i> ((K-H (Dk>)v (L-i-? (Ef))ﬂ K—i— N L+ i> 1+)

in open(X)? x open(Y)g@/ﬂn. We define a morphism in Vfi between their images as the
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following composite

(‘F(A“Bj))IXJ KxL"

dnert, (F(A5, B)) j1 ) = @  F(A.B) = (F(Ds, Er))

. 1
(i,5)€a=1 (kL) KxL

(2.8)
The middle morphism is the coCartesian monodromy functor applied to the morphism of
based finite sets f~(1) %y K x L. We now describe the third morphism in equation (2.8).
This is a morphism over the identity K x . — K x L, so we describe this morphism for each

(k,0) € K x L. Fix (k,¢) € K x L. If a!(k,¢) = (), then we take the empty tensor product

Q)  F(A.By)

(i,9)€a1(k,0)

to be the unit 1 € V. By the universal property of the unit, there is a unique morphism

1 — F(Dy, E;). If a'(k, £) # 0 then we claim there is a morphism in V

&)  F(Ai. B)j) = F(Dy,Ep) .
(i,j)€a—1(k,0)
This follows precisely from the conditions that we placed on morphisms in the overcategory
open(X)¢ x open(Y)2 win.
+
Now, (pc)1F(11,U x V) is given by the colimit of the top composite arrow in the

following diagram

F .
open(X)¢ x open(Y)¢ — open(X)? x open(Y)?f’/1+ o, Vfi hoy

c /(1+,U><V)
L@

open(X)Z x open(Y)& mn

(14, UxV)
l!

* .
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We will henceforth refer to this top composite functor as F /1, - Note that the colimit of F /1,
is equivalent to the left Kan extension of F /1, along the unique functor to *. By Proposition

A.0.50, this is equivalent to the colimit of the left Kan extension ®,F /1, - That is,
(p ) F(1+,U x V) = colim @ F, .

Next, we will identify our constructed extension .7-7";“‘ with &, F /1, - To do this, we construct
+
a section ]—"/”;T AN ®\F),, under F;, . By Proposition A.0.36, the coCartesian monodromy
functor Vﬁ — V is a left adjoint and thus preserves colimits. Thus, we will work in V;gl’ )
+ +

On objects ((Iy, (Ay)), (J4, (By), I+ A Js EN 1,), the definition of the section is clear since

]:7;1‘ evaluates the same as F,,, . There is a natural morphism in Vfi
Fro (I, (A9), (T4 (By), Iy ATy L) - OF, (L, (A3), (4, (By), I A Ty 51y)
since left Kan extensions are defined as initial extensions. Now, consider a morphism
(45 (A)), (T4, (By), Iy A Ty 4 1) = ((Ky, (D)), (Ly, (Ep), Ky ALy 2 14)

in open(X)? x Open(Y)?/Tfl,va)' Observe the factorization in Vfi from equation (2.8) also

allows us the following factorization

IxJ F=H 1)

k | . h

iner (=)
(®F), (A0 B)) oy =5 (BF ), (A0 B))) vy = ((_ ! ®1(H) <I>yf/1+(Ai,Bj)) — (D F),, (Dx, Ey))
1,])EQ™ y

KxL

(F(Ai, By)),., — ™ s (F(A,, By)) L>< N I(A“Bj)) ST
(i,j)€a—t (kL) KxL

IxJ
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Note the bottom left object is equivalent to
QuF )y, (L, (AD), (T (By), Lo ATy 5 1)
Similarly, the bottom right object is equivalent to
©F ), (Kso (Dy))s (Lo (Br)), K ALs 25 14)

The two left-most squares commute because coCartesian monodromy is a functor (see
Definition A.0.37). We now explain why the right hand square commutes. Note that

®

both right-most horizontal arrows come from morphisms in open(X)? x open(Y)?

< /apuxvy

Further, the vertical arrow labeled canon is from the definiton of left Kan extension as the
initial extension of F,, . Thus, the right hand square commutes since it is the evaluation
of the canonical natural transformation from the definition of left Kan extension. This

completes the construction of the natural transformation
v ]-"/";I‘ — (ID;]-'/l+ :

Note that this evidently lies under F /1, and clearly defines a section of ®,F /1, - By initiality
of the left Kan extension, this implies the equivalence ®,F S, .7-"/";1‘ Therefore, we have

shown

(p ) F (14, U x V) = colim @ F), = colim]—"}?i: : (2.9)

We will now show that F((14,U),(14,V)) =~ colim ]-;T:, which will complete the proof.

Consider the object ((14,U),(14,V),id) € open(X)? x open(Y)E m . Observe the

¢ (14,UxV)
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forgetful functor

— open(X)¢ x open(Y)¢ min

(4, UXV) (L, Uxv)

V: (open(X)? x open(Y)& min )
/(4 0),(14,V) id)

We will show the counit VgV*]:;T” — }7‘:"‘ is an equivalence. Before doing so, we explain
+ +

why this implies F((14+,U), (1+,V)) =~ (pc)1F(14+,U x V). Note that the category

<open(X)g® X Open(y)f/?ﬂ,uw)

> [ (1 0,1y V) i)

has a final object ((14,U),(14,V),id). This can be verified using Quillen’s Theorem A
(Theorem A.0.62). Thus,

colim v*;f;';‘: ~ ]-“7;1‘((1+, U), (1., V),id) ~ F((1,,U), (1.,V)) .
Further, since left Kan extensions compose by Proposition A.0.50, we have
colim V*]:;T: ~ colim V!V*}""Ii: )
Using equation (2.9), upon taking the colimit of the counit, we have
F((14,U),(14,V)) ~ colim V;V*]—"}‘IT — colim]—"/”:i: ~ (p )W F(1,,U x V) .

Finally, we now complete the proof by showing the counit V;V*]—"/"Ii“ — .7-"/”?" is an

+ +
equivalence. To do this, we will use the assumption that F is a J.-cosheaf in each factor.
We show this using Lemma 2.0.33 below. First, note that for

(L, (A)), (T4, (B;)), I+ A Jy L 1,) € open(X)® x open(Y)%,,

)
(14,UxV)
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the functor VgV*]:;T: evaluates as the colimit of the composite

® ®
((OPGH(X)C x open(¥e r(nlli‘*’va))/(( ), (14.V) >>
10,04,V /)

J

(open(X)? x open(Y )& min

s
(T, (AD) (T (By) Ly ATy =21 4)

(4.UxV)
v
open(X)? x open(Y)? min

(11, UxV)
l}—/hr

V.

) [ (140,14 V) id)

Further, since open(X)? X open(Y)? mn is a subposet of open(U) x open(V), so is the

(14,UxV)

domain of this composite. Now, we verify that

® ®
((open(X)c x open(Y')¢ /E”fl,Uxm)/(( o )) (2.10)
L0040V /g

f
(g (A)), (T4 (BT L AT = 1y)

satisfies the hypotheses of Lemma 2.0.33. First, note that the projection of the overcategory
in equation (2.10) is simply identified as openi™ (II4;). Next, observe the subposet
open®'(I1A;) C openfi" (ITA;) consisting of those open sets that are surjective on connected
components. Using Theorem A.0.62, this is checked to be final. Further note that for
D € opens'i(I14;), the fiber of equation (2.10) is evidently a J,-cover of V. Finally, the

coCartesian condition in Lemma 2.0.33 is also readily verified, which completes the proof. [J

Lemma 2.0.33. Let U € open(X). andV € open(Y').. Assume F : open(U) x open(V) =V
is a Joo-cosheaf in each factor. For U C open(U) x open(V') a full subposet, let Uy := pryd C

open(U) denote the full subposet given by projection onto U. If
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1. Uy is a Jo cover,

2. there exists a final full subcategory U C Uy such that for each D € Uy, the fiber

U, C open(V) is a Jo-cover, and
3. the functorty, , — Uy is a coCartesian fibration,
U

then

colim (Z/{ — open(U) x open(V) SN V) ~ F(U,V) .

Proof. Note the functor U = Uy. By Proposition A.0.50 and the assumption that Uy

is final, we have
. F . . 0 pri.F
colim (Z/l — open(U) x open(V) = V> ~ colim (pr,F) =~ colim <L[U — Uy —> V) :

By assumption, i , — U} is a coCartesian fibration. Therefore, by Proposition A.0.51, the
U

left Kan extension can be computed as a fiberwise colimit. That is, the functor

U < Uy =5y
evaluates on D € U as D + colim <Z/{‘D SN V) ~ F(D,V) The equivalence is the
assumption that F is a J,-cosheaf in the second factor. Thus, since F is assumed to be a

Jo-cosheaf in the first factor, taking the colimit of the fiberwise evaluations is equivalent to

F(U,V), as desired. O

Proposition 2.0.34. Let V® be a ®-presentable oo-cateqory. The adjunction in equation

(2.4) restricts to an equivalence of co-categories

pr : BiFun™”">= (open(X)®, open(Y)®; V®) p— Facty«y (V%) : p* .
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Proof. Observe the commutative diagram

Fung"p’;j]” (open(X x Y)&  V®) > Fung;fj(open(X x V)2 V®)

lp* lp’é
BiFun™’> (open(X)%. x open(Y)s., V®) —— BiFun’>(open(X)Z x open(Y)&, V®)
(2.11)

Lemma 2.0.28 established that the top horizontal functor is an equivalence. Corollary 2.0.29
established that the bottom horizontal functor is an equivalence. Thus, it suffices to show
that p? is an equivalence. To prove this, we show that the unit and counit of the adjunction
evaluate as equivalences.

First, we show the counit (p.)ipiF — F evaluates as an equivalence. Since pr: VxV —
V preserves colimits, we have the equivalence (p)piF (L, (Us)) ~ (I, (pohpiF (14, U5))).
Further, since (pc)ipiF is a Jo-cosheaf, and products of open sets form a basis for the Ju-
topology on open(X x Y), its values are determined by its values on products of opens.
Proposition 2.0.32 establishes this.

Similarly, for G € BiFun™”> (open(X)?, open(Y)®; V®), we can use the fact that p*(pc)iG
is Js in each factor to reduce the computation to an evaluation on unary objects. Again,
since products of opens form a basis, we invoke Proposition 2.0.32 to show the unit evaluates
as equivalences. O

There is a natural functor
ev : BiFun(open(X)®, open(Y)®; V¥) — Fun®®(open(X)®, Fun®®(open(Y)®, V®)®) | (2.12)

given by evaluation. As shown in [21], this functor is an equivalence. More precisely, by
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definition a functor K — Fun®?(0% P®) is a dashed arrow filling the diagram

|

Fin, —9 3 Fin,

For K — Fin, and V® a symmetric monoidal co-category, a functor K — Fun®(Q®,V®)®

over Fin, is a dashed arrow filling

KxQO% ------3 > VO

|

Fin, x Fin,

|7

Fin, ———— Fin,
Thus, a functor

BiFun(open(X)®, open(Y)®; V¥) — Fun®(open(X)®, Fun®(open(Y)®, V®)®)

is a filler

(BiFun(open(X)®, open(Y)®; V®) x open(X)®) x open(Y)® ----- y PO

lpr

open(X)® x open(Y)®

|

Fin, x Fin, > Fin,

The natural such filler is what we are denoting by ev.
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Lemma 2.0.35. The equivalence in equation (2.12) restricts as an equiavelnce

ev: BiFun™">= (open(X)®, open(Y)®; V®) — Factx (Facty (V%)) .

Proof. Since equation (2.12) is an equivalence, it suffices to show

ev ! (Factx (Facty (V®))) ~ BiFun™’>(open(X)®, open(Y)®; V%) .

So consider

G € ev ! (Facty(Facty (V®))) C BiFun(open(X)®, open(Y)®; V¥) .

Since evG € Factx(Facty(V¥)) is a factorization algebra in each factor, it folllows
directly that G takes pairs of coCartesian morphisms to coCartesian morphisms. Also,
it follows that G restricts as a J,-cosheaf in each factor. In other words, G €
BiFun™">= (open(X)®, open(Y)%; V®).

It remains to show that if G € BiFun™”<(open(X)®,open(Y)®; V%), then evG €
Facty (Facty (V®)). Note that G being multiplicative is equivalent to saying that it takes
pairs of morphisms of the form (id,a) and (a,id) to coCartesian morphisms, for « a
coCartesian morphism. This implies that evG € Fung,(open(X)®, Fung  (open(Y)®, V¥)).
The J, condition on the Y wvariable follows immediately. Thus, we have evG €
Fung,(open(X)®, Facty (V¥)). The Ju condition on the X variable is a little subtle. This is
because it requires taking a colimit in the oo-category Facty (V®). It’s not clear colimits in
this category look like, or if they even exist. To bypass this difficulty, note that

Facty (V®) — Fungpq

(open(Y)®,V®) (2.13)
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is a full co-subcategory. Therefore, we can compute the colimit in Fung ;(open(Y)®,V¥) and
then check that this colimit satisfies the J, condition. Since the functor in equation (2.13)
is full, this implies that the colimit in Facty (V¥) does exist, and is equivalent to the colimit
as computed in Fung ;(open(Y)®, V¥). O

We now use the results established in this section to prove Theorem 2.0.19 stated at
the beginning of this section.

Proof of Theorem 2.0.19. Proposition 2.0.34 asserts that restriction along p is an

equivalence of oo-categories

p* : Factx,y (V®) = BiFun™’>(open(X)®, open(Y)®; V®) .

Lemma 2.0.35 then establishes that the evaluation functor is an equivalence of co-categories

ev : BiFun™’> (open(X)®, open(Y)®; V®) = Factx (Facty (V%)) .

The composition of these two results establishes the desired equivalence

Factx .y (V®) = Factx(Facty (V®)) .

Additivity of locally constant factorization algebras

In this section, we prove the following:

Theorem 2.0.36. There is an equivalence of oo-categories

Factﬁf‘xy (V) ~ FactJXC' (Facté‘f' V).
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Proof. We organize the structure of this proof into establishing the following

commutative diagram:

FactlS,y (V®) ------------- » BiFun™”>"%(open(X)®, open(Y)®; V®)
\
Factyxxy (V®) BiFun™”= (open(X)®, open(Y)®; V®)
Fun™/='<(disk(X x Y)®,V®) ---||--= BiFun™”"<(disk(X)®, disk(Y)®; V)
Fun™/= (disk(X x Y)® V¥) BiFun™’> (disk(X)®, disk(Y)®; V®)

Proving the statement amounts to showing that the top dashed arrow is an equivalence.
To deduce this, we show that the bottom dashed arrow is an equivalence. Theorem 2.0.19
shows the top adjunction is an equivalence. Lemma 2.0.41 establishes that the second vertical
adjunction from the left is an equivalence and Lemma 2.0.42 establishes that the leftmost
viertical adjunction is an equivalence. Lemma 2.0.45 establishes that the rightmost vertical
adjunction is an equivalence and Lemma 2.0.46 establishes the vertical adjunction second
from the right is an equivalence. In particular, the bottom adjunction is an equivalence.
Next, we show that this bottom adjunction restricts to an adjunction between the locally
constant co-subcategories. This shows the bottom adjunction restricts, and thus is manifestly
an equivalence. This statement is Corollary 2.0.50. This completes the proof. O

We now turn our attention to proving the above mentioned lemmas.

Definition 2.0.37. For X a topological manifold of dimension n, there is a full co-sub-
operad disk(X)® < open(X)® consisting of those (I, (U;)) for which each open U; = [ R"
is homeomorphic to a finte disjoint union of Euclidean space. Further, we let J(X) C Z(X)

denote the full subcategory consisting of those opens that are homeomorphic to a finite
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disjoint union of disks.

The functor ¢ : disk(X)® < open(X)® induces an adjunction of co-categories

t : Fun(disk(X)®, V®) ——— Fun(open(X)®, V®) : /* (2.14)

with left adjoint given by operadic left Kan extension. In Proposition A.0.53 we provide a

colimit expression for computing the values of ¢,.

Definition 2.0.38. For notational purposes, we define

Fun”™ (disk(X)®, V) := 1" (Fun™ (open(X)®, V) .

Definition 2.0.39. Let disk(X)? < disk(X)® denote the full co-suboperad consisting of

C

those (14, (U;)) for which each U; has a single connected component.

Lemma 2.0.40. There is an equiavelnce of oo-categories

m
Funopd

(disk(X)®, V) — Fungpq(disk(X)2, V®) .

rest

Proof. This follows the proof of Lemma 2.0.28. O

Lemma 2.0.41. The adjunction in equation (2.14) restricts to an equivalence

ut Funlii™ (disk(X)®,V®) & Factyx(V®) : 1" .

Proof. Note that disk(X)® < open(X)® takes coCartesian morphisms to coCartesian

morphisms, so for F € Fung  (open(X)®, V¥), we see that (*F is multiplicative. Let

G € Fung,(disk(X)®,V¥®). By Lemma 2.0.40, this is equivalent to a functor of co-operads
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disk(X)% — V¥, which we will also call G. An active coCartesian morphism

(I—H (UZ)) i> J+7 H U;

i€f~1()

in open(X)® induces a functor

d|sk(X)?/act _> dlsk(X)é@/act

(I4.(U;) (T4 (11U)
given by postcomposing with f. We claim this functor is final. We verify this through
Quillen’s Theorem A (Theorem A.0.62). To use this theorem we must verify that for

o . ®
«g;jﬂ@»,K;—»J;)edexyc?zﬂuw»’

the classifying space of the undercategory

i k(X)®(<K+,<vk>),K+i>J+)/
IS C act

(I+,(U;)

is contractible. To show contractibility, we note there is an initial object in the undercategory.
The existence of an initial object comes from the fact that each Vj, is connected. This implies
that for k € a~%(J), the connected open set V} is a subset of a unique U;. This allows us
to define a map K LA .. The object ((Ky, (Vi)), K4 LN I,) is intial in the undercategory.
Thus,

uG(fily, (U;))) ~ colim <disk(X)§ act — V%)

(J4,(LTUy)

ve Ly pe

)

Since the canonical projection maps pr; : J; — {j} preserve colimits, we will compute the

~ colim (disk(X)? act

i
(I,(Uy)) Iy
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colimit separately in each factor of V@Jr ~ V*7/ So without loss of generality, let us consider
the case of an active coCartesian morphism (7, (U;)) — (14,][U;). This general case of an
active coCartesian morphism will follow completely analogously to the case (24, (U, Us)) ER
(1.,U; I Us,), and this latter case will ease the notational burden tremendously. Note the
canonical functor

disk(X)€ uc =, disk(X)® x disk(X)¢ e

(1 .(U1,02)) SRATERIN (12} 1.02)

is an equivalence. Further, the functor

disk(X)® e X disk(X)® e T disk(X)E e

{1} 4.,U) {2} 4.U2) {1} .U

given by the projection onto the first factor is a coCartesian fibration. Proposition A.0.51
says that left Kan extension along a coCartesian fibration evaluates as a fiberwise colimit.

Therefore,

ng(f](2+,(U1, UQ

~ colim ( disk(X)? act g> Ve 2 V|® ~)
<2+,<U1,U2>> 24 1
: ® 9 yy@ ©
~ colim | disk(X)? X disk(X)¢ et =V, =V
<{1}+,U1> ({2}4.U2) 2+
prg
~ colim | disk(X)? .. —V
<{1}+,U1)

~ Colim® (colim ((disk(X)? o )) g, V))
i 2 ,U:
U DINEISCOS ) oy L I

~ colim colim G((K+, (D)) @ G((Ly, (Er)))
(K+4,(Dg))€edisk(X)E jact (L+,(Br))edisk(X)E jact
{1} 4.0 ({2} 4.U2)

~ uG(Ur) ® uG(Us) ,
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as desired. Note that the last equivalence invokes the assumption that V® is ®-presentable.
In particular, the ®-presentability of V¥ means that for any V' € V), the functor V ® — :
Y — V preserves colimits.

By definition, G : disk(X)® — V® is J if /G is J,. Thus, to show the adjunction
restricts, it remains to show that if F € Factx(V®) then *F € Fungqp’(‘j]oo (disk(X)®, V).
That is, we must show that v.*F € Factx(V®). Note that disk(X) is a basis for the J
Grothendieck topology on open(X), as discussed in Example A.0.59. Therefore, we can
check that ¢;.*F satisfies the J,.-cosheaf condition by checking that it is a J.,-cosheaf with
respect to covers in disk(X). Observing that for U € disk(X), ut*F(U) ~ F(U), this follows
from the fact that F is a J.-cosheaf.

To verify this adjunction is an equivalence, we check that the unit and counit evaluate
as equivalences. Take F € Facty(V?®) and consider the counit ¢ *F — F. Since both
functors are J,, cosheaves, it suffices to check the counit is an equivalence evaluated on
unary elements. Further, since disk(X) is a J, basis for open(X), as just elucidated above,

it suffices to check this equivalence on elements of disk(X) which follows immediately. A

similar argument shows that the unit evaluates as equivalences. O

Lemma 2.0.42. The adjunction in Lemma 2.0.41 restricts to an adjunction between the

respective locally constant subcategories

b Fung;j“”‘c'(disk(X)QQ,V@) —— Factif(V®) 0.

In particular, this adjunction is an equivalence.

Proof. First, for G € Fun?r;a]"""'c'(disk(X)®, V®), we show uG € Facti&(V®). That is, for

USVinT (X), we show the canonical morphism induced by ¢

ug(U) = ug(v)
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is an equivalence. Observe the commutative diagram The colimit of the top horizontal line

disk(X) % disk(X) e ———2 s disk(X) % —Zo Vi —Z5 V
(1,.0) (14.X) 1, -
lloc loc ’//////

disk(X) e [(T(X)

®
/act
(14.0) (1.0)

-1 H ® ® -1 -

)7 — d'Sk(X)/e(ﬁX)[(J X)/?ilm) | I—

is the definition of (;G(U) and the existence of the dashed arrow follows from G being locally
constant. There are canonical identifications J(X)%.. =~ J(U) and disk(X)%.. =~

(14.,0) (14,0)

disk(U), where disk(U) is the poset. By Proposition A.0.14 localizations are final, so
uG(U) =~ colim (disk(U)[J (U)~"] —= disk(X)[T(X)™"] = V).

By a similar analysis, we see
uG (V) =~ colim (disk(V)[J (V) ™'] = disk(X)[T(X)"'] = V).

By Proposition 2.19 in [3], we see disk(U)[J(U)™'] ~ Disk(U), and likewise for V. Here,
by Disk(X) we mean the topological category of embedded disks in X. (We choose to not
dwell on Disk(X) because we make no further use of it beyond this paragraph. We refer the
interested reader to [3] for further details.) Finally, we claim that the isotopy equivalence ¢
induces an equivalence Disk(U) = Disk(V'). To see this, choose an isotopy inverse to ¢, say
1. Then ¢ and ¥ induce an adjunction that is checked to be an equivalence.

It remains to show that +*F is locally constant, for F € Fact’&(V®). This follows from



25

the following diagram

dISk(X)%Ct - ” open(X)%ct — Open(X)® F > V® (_)!\ V
(14X (14,X) 1
l(—)!

loc open(X)

disk(X) e [(T(X)foa )71 ===-+ open(X)[Z(X)]

%0 /Ty 0

The bottom right most arrow is the condition of F being multiplicative, and the existence

of the dashed arrow is given by the fact that ((—); o t)(J(X)%e )) C I(X). O

(1y.x

Lemma 2.0.43. The functor of co-operads disk(X)® < open(X)® induces an adjunction

v : BiFun(disk(X)®, disk(Y)®;,V®) ——— BiFun(open(X)®, open(Y)®;V?) :*  (2.15)

in which the left adjoint evaluates on ((I4, (U;)), (J+, (V}))) € open(X)® x open(Y)® as the

following colimit

colim (disk(X)® % disk(Y)® S disk(X)® x disk(Y)® Ty Ohye ) :

/(4 U3)), (T (V) Jrpnay /1y nay 1y sy

Proof. Proposition A.0.52 establishes the formula for the left adjoint, so it remains to

verify that o F is a bifunctor. To see this, take an inert coCartesian morphism (I, (U;)) ERN

Jo,(U;)). There is a commutative square
( + 7 q

i ® ; ® ®
disk(X) Xd'Sk(y)/((u,(m)),(m,<Vk>>> V\I+AK+
disk(X)® x disk(Y)? e

(4 (U)K g (Vi) PN

Note the left vertical functor is final, as verified using Quillen’s Theorem A (Theorem A.0.62).

One can use the fact that I, ERN J4 is inert to show the relevant undercategory in the
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statement of Theorem A.0.62 has an initial object. The result then follows from the fact

that the projection VIQ? preserves colimits. O
+

AK ‘JJr/\KJr

To prove Lemma 2.0.45, we need an analogue of Lemma 2.0.40 for bifunctors:

Lemma 2.0.44. There is an equiavelnce of oo-categories

BiFun™(disk(X)®, disk(Y)®; V®) — BiFun(disk(X)®, disk(Y)®; V®) .

rest

Proof. This directly follows the proof of Lemma 2.0.28. n

Lemma 2.0.45. The adjunction in equation (2.15) restricts to an equivalence
v BiFun™7>(disk(X)®, disk(Y)®; V®) === BiFun™">(open(X)®, open(Y)®; V) : 1* .

Proof. This is proved in the same manner as Lemma 2.0.41. O

Lemma 2.0.46. The adjunction in Lemma 2.0.45 restricts to an adjunction between the

respective locally constant subcategories
v @ BiFun™">"< (disk(X)®, disk(Y)®; V) = BiFun™’>""(open(X)®, open(Y)®; V) : .* .

In particular, this adjunction is an equivalence.

Proof. The proof of this follows analogous to Lemma 2.0.42. O
To prove Proposition 2.0.49 below, we employ a result from [23] that enables us to
identify localizations of oo-categories via complete Segal spaces. This result is recorded as
Theorem A.0.28. For the reader unfamiliar with complete Segal spaces, we devote a section

in the appendix to the basic definitions and ideas that we use.

Definition 2.0.47. We let J(X)? denote the full co-subcategory of J(X)® over Fin,

consisting of those (I, (U;)) for which Uj; is connected.
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Lemma 2.0.48. Let (I, (U;)) € disk(X x Y)?. The classifying space

X)ExT(Y)

®
BFun’" ) ([-], disk(X)? x disk(Y)? )
(I,(Uy)

s a complete Segal space.

Proof. Let us adopt the notational conventions

C = disk(X)® x disk(Y)% W= T(X)€ x T(YV)@ . (2.16)

< /g,y ¢ /gy

First, we establish the Segal condition. That is, for all p > 0, we show the diagram of

classifying spaces

BFun™([p],C) ——— BFun™ ({0 < 1},0)

l l (2.17)

BFun({1 < --- < p},C) —— BFun™({1},0)

is a pullback. To show the diagram in equation (2.17) is a pullback, we make use of
Proposition A.0.10 and show an equivalence of vertical fibers. Note that the diagram prior

to taking classifying spaces

Fun”([p],C) ———— Fun™ ({0 < 1},C)

l - l (2.18)

FunV({1 <--- < p},C) —— Fun"({1},0)

is a pullback. Thus by Proposition A.0.9, the vertical fibers of the diagram in equation (2.18)
are equivalent, hence their classifying spaces are equivalent. Therefore, we must show that
the classifying space of the vertical fibers in the diagram in equation (2.18) are the vertical

fibers of the diagram in equation (2.17). Quillen’s Theorem B (Theorem A.0.63) provides
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a method to verify this. By Lemma A.0.64, we only need to show this for the rightmost
vertical functor, so we restrict our attention there. All told, proving the Segal condition

reduces to verifying the hypothesis of Quillen’s Theorem B for the functor
Fun({0 < 1},C) — Fun™({1},C) .

By Observation A.0.29, Fun"({1},C) ~ W, so to invoke Quillen’s Theorem B, we need to

show that for each ¢ L ¢ in W, the induced functor
BFun™ ({0 < 1},C),. BUeT), BRun® ({0 <1},C),, (2.19)

is an equivalence. The vertical functors in the diagram in equation (2.18) are coCartesian

fibrations, so by Proposition A.0.36 the canonical functor
Fun({0 < 1},C),. — Fun™ ({0 < 1},C),.

is a right adjoint, with left adjoint given by the coCartesian monodromy functor. Since, an
adjunction induces an equivalence between classifying spaces by Proposition A.0.25, showing

that equation (2.19) is an equivalence is equivalent to showing that
BFun™ ({0 < 1},C)|. —= BFun™ ({0 < 1},0)|. (2.20)
is an equivalence. Observe the equivalence
BFun™ ({0 < 1},C),. ~ B(C,.)"Y

This implies that showing equation (2.20) is an equivalence is equivalent to showing that the
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functor

B(C/.)" — B(C/,)" (2.21)

is an equivalence. Observe the equivalence

® ®
TREXTWE )
)" = (disk(X)? X disk(Y)?/(,+,<Ui))>/
sV e Wi T A DL
T(XE, T,
o (a4 ® (V) : ® e (W)
~ <d|Sk(X)C /<J+,(Vj>>) + ) <d|5k<Y)C /(K+,(Wk))) T

We now restrict attention to one factor of this product. Namely, consider (Ji,(V;)) —
(4, (V])) in J(X)Z. Note that

®

J(X)é®/ j J(X)c
(disk(X )2 o ) T (disk(X)2 )

(T4, (v;) € /(1 .(vp)

is a right adjoint with left adjoint given by using the inert-active factorization system of Fin,
(see Observation A.0.32), and thus induces an equivalence of classifying spaces. Furthermore,

note that .
T v
disk(X)? e T~ Vi) .
(diskz ) [Tom)

RSN jed

Now, we use Theorem A.0.65 to identify B[, ; J (V) with [[,.; [ 1,5, Conf.(V})s,. Consider

the functor

= T[73)  TLoven ([T cors 15

jeJ jeJ r>0

given by

(Dj CVj)jey = <{S CVj | card(S) < oo, SC D, mS = 7TODJ})jeJ '
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Note that

{ScVjlcard(S) <0, ScD;, mS=mD;}= [[ D

OéE’/l’()Dj
which is contractible as a subspace of configuration space. Let (S; C Vj)jes €

HjeJ [1,50 Conf.(Vj)s,. Then

Us,cvy),e, = | [{Di € TVi) | S; € Dy, m0S; = moDy}

jeJ

This poset is cofiltered (Definition A.0.3) since it is the product of cofiltered posets. Note
that each factor is cofiltered by Example A.0.8. Namely, because open disks form a basis for
the topology of a manifold. Therefore, we have verified the hypotheses of Theorem A.0.65

with respect to U, so Theorem A.0.65 establishes an equivalence

BI[7(Vi) ~ 111 Conf- (V)=

jeJ Jj€J 720

Earlier, we reduced the Segal condition to showing for each isotopy equivalence ¢ — ¢’ in W,
the induced map

B(C,.)" — B(C,,)"” (2.22)

is an equivalence. We have just shown that

C/C o~ HHConf s, X H HConf

J€J r>0 3'edJ’ r>0

and likewise for B(C /C,)W. Theorem A.0.66 states that the space of self-homeomorphisms
of R™ is homotopy equivalent to the space of self-embeddings of R™. Note that we just
functorially identified the domain and codomain of the functor in equation (2.22) with

configuration spaces, which are homeomorphism invariant. Thus, the functor in equation
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(2.22) is a weak homotopy equivalence.

We now prove that the Segal space

X)ExT(Y)

BFun (142 ([-],d.sk(){)c x disk(Y) ) (2.23)

/4wy
is complete. That is, we will show that the map from the space of [0]-points

® ®
T(X)ExT(Y)e /(I_‘_’

BFun @) <[O},disk(X)? x disk(Y)

i)
/)

into the space of [1]-points that are equivalences
T(X)ExT(V)E . : equiv
(BFun (X)EXTE 1wy ([o], disk(X)% x dISk(Y)?/ )
(I,(Uy))
is an equivalence of spaces. A key observation to proving this is that a morphism in

disk(X)® x disk(Y)®

¢ /1y,

is in the isotopy equivalences

J(X)Ex TY)¢E

¢ /(1,0

if and only if the underlying maps of finite sets are both bijections. Now, consider a [1]-point
of the Segal space in equation (2.23) that is an equivalence. By definition, this is a point in

the space

® ®
BFun” T (1], disk(X)2 x disk(¥)¢ ) -

¢ /1y,

Such a point is represented by an object in

T(X)ExT(V)E . .
Fun” 7 <[0],dlsk(X)§) Xdlsk(Y)é@/u (U))) ;
+(U;
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i.e. a functor

(1] = disk(X)¢' x disk(Y)), ), -

Let’s say this functor selects out the morphism

(K (Vi) (L (W), Ko A L D 1) 2% (K (Vie)), (B, (We)) KL AL D5 1)
(2.24)

Since there is a natural morphism of Segal spaces

(X)ExT(Y)

®
BFun” oo ([o], disk(X)S x disk(Y)2, ) = Fin. x Fin. ,
(I4,(Uy))

the equivalence in equation (2.24) gets carried to an equivalence in Fin, x Fin,. This implies
that ¢ and 1 are bijections, so by the key observation above, the equivalence in equation
(2.24) lies in

T(X)E X T(V)E

<y

Now, using the notation given in equation (2.16), observe the solid commutative diagram

BFun” ([0],C) —— BFun" ([e],C)

where the solid arrow [1] — BFun" ([e],C) is the assumed equivalence. We showed that
this is represented by a dashed arrow [1] — C, and further that this dashed arrow actually
factors through W, hence the other dashed arrow [1] — W in the diagram. This shows that
the space of [0]-points is a deformation retract of the [1]-points that are equivalences, and is

thus a homotopy equivalence as desired. O]
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Proposition 2.0.49. An isotopy equivalence (I, (U;)) < (J4, (V) in J(X xY)2, induces
an equivalence of co-categories

(disk(X)2 x disk(Y)2) 1, ) [(T(O)E % T(¥V)E)]!

/(4. >>]

= (disk(X)Z > disk(Y)Z) 15, ) (T (X)E x T(V)E)7 ]

/s, (vn] '

Proof. We used Theorem A.0.28 to identify the localizations as complete Segal spaces
in Lemma 2.0.48 above. Thus, to complete the proof, we establish an equivalence between
[0]-points and [1]-points, which by Observation A.0.21, implies an equivalence of complete
Segal spaces. First, we establish the equivalence of [0]-points. To do this, we first identify
the [0]-points, that is the classifying space B(J(X)2 x J(Y)? )/(1 (w.» With the following

space

H (H Confy-1ycrxr (Ui C X X Y)) ; (2.25)

s
el
(K Ly KyALs f”+] ? JAut(K Ly, KyALy——>11)

where the coproduct is indexed by equivalence classes, and Confs—1(;cxxr(U; € X xY) is

defined as the following pullback

Confp-1(ycxxr (Ui C X xY) —— XE xY*E
J |
(X x Y)IxJ . (2.26)

|

Conffq(z-)(Ui) R — (X X Y)f_l(i)
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Note that Confs—1(;cxxr(U; € X x Y) carries a natural action by the pullback

Aut(f~'(i) C K x L) —— Aut(K) x Aut(L)
Aut(K x L) - (2.27)

|

Aut(f~1(i)) ——— Inj(S, K x L)

Using Theorem A.0.63, we have the following pullback

® ® ® ®
B (j(X>c % j(Y)C /(I+’(Ui>>)| f —B (j(X)c x j(Y>c /(I+»<Ui))>
K ALy =71y J/
J _ )
f
<K+/\L+—>I+> . . . . .
* > B (Obj(Fm*) X Obj(Fln*)/I+>

with the bottom righthand corner equivalent to BAut(K ., Ly, K\ A L, EN I,). Also, the

following diagram is a pullback

H Confffl(i)chL(Ui C X X Y) — H (H Conff—1<i>cK><L(Ui C X x Y)) ;
iel [K+,L+,K+/\L+L>I+] el JAut(Ky Ly, K ALy —>1)

[ J
(KoL D1y

¥ BAut(K,, Ly, K. AL, 5 I,)

To identify B(7(X)Z x j(Y)?)/(I+7(U_)) with the space in equation (2.25), by Proposition

A.0.10, it suffices to show an equivalence of the above fibers over BAut(K,, Ly, K A Ly ERN
I,). We use Theorem A.0.65 to prove the equivalence of the fibers in the prior two diagrams.

First, observe that

U= (j(X)f_? % T (V)8 )

¢ /4 .wy)
KyALy =14

is a poset. The bottom horizontal morphism in the diagram in equation (2.27) is an open
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embedding, so by Proposition A.0.11 the top horizontal arrow is as well. Using this, we

define a Aut(K,, L., K, AN Ly ER 1) equivariant functor

Uu— Hopen Confr1(crxr (Ui C X x Y)) C open (H Confr1(crxr (Ui C X x Y))
el i€l
(2:28)
given by

(K (Vi) (Ls W) = {(vi)k | ox € Vi) x {(we)r | we € WL} .

This is well-defined since it takes values in open(X ¥ x Y'L) that evidently restrict to opens
in Confs-1(;)(U;). To invoke Theorem A.0.65 we must verify that for ¢ € Conf;1(;(U; C
X xY), the classifying space BU,. ~ * is contractible. This is true since the category is
cofiltered, which can be seen using the fact that disks form a basis for opens (Example
A.0.8). Finally, observe that each value of the functor in equation (2.27) is a contractible
subspace of configuration space, since it is a product of disks. Thus, by Theorem A.0.65,
we identify the [0]-points of each space in the statement of this proposition in a functorial
manner. Similar to the proof of Lemma 2.0.48, since the functor is induced by an isotopy
equivalence, Theorem A.0.66 gives us a weak homotopy equivalence of [0]-points. It remains
to verify an equivalence on [1]-points. Adopting the notation of Lemma 2.0.48, observe the

following diagram

~

B(C,.)" —— B(Fun”([1],C)
l/l//’

* —> BFun”Y

The top left diagonal equivalence was establish in Lemma 2.0.48, and we just established the
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bottom right diagonal equivalence. Thus, the dashed arrow between [1]-points is manifestly

an equivalence. O

Corollary 2.0.50. The adjunction

p* 1 Funi= (disk(X x Y)®,V®) === BiFun™"> (disk(X)®, disk(Y)®; V®) : p

15 an equivalence. Further, the adjunction restricts to an adjunction between locally constant
subcategories

p* 2 Funle >t (disk(X x Y)®, V®) == BiFun™">"(disk(X)®, disk(Y)®; V®) : pr.

Manifestly, the restricted adjunction is an equivalence.

Proof. The first statement is immediate from Theorem 2.0.19, Lemma 2.0.41, and
Lemma 2.0.45. For the second statement, consider F € BiFun™>"<(disk(X)®, disk(Y)®; V®).

We wish to show that pF € FungqF;;]w"‘c'(disk(X x Y)® V). To prove this, we restrict to

the oco-sub-operads of connected disks. That is, given an isotopy equivalence, (I, (U;)) <

(J4, (V) in disk(X x Y)?, we show the morphism

pF((Ly, (U) = pF (T4, (V)

in V¥ is an equivalence. Recall that pF((I, (U;))) is computed as the following colimit

1+

colim ((disk(X);? x disk(Y)2)/, ) 25 (disk(X)2 x disk(Y)2),,, i

Note that the following diagram commutes
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(disk(X)2 x disk(Y)2)/,,, ) et disk(X)2 x disk(V)§ ———F——— V®
lloc lloc //’,4”///’(
(disk(X) x disk(Y)Z),;, 5, [(T(OZ x TVI2)L ] =5 (disk(X)2 x disk(Y)2)[(T (X0F x T(¥V)E)7] -

The existence of the dashed arrow is given by the assumption that F is locally constant.

By Proposition A.0.14 localizations are final, so

pF (L, (Ui))) = colim <(disk(X)é® x disk(Y)¢) (T(X)Ex T, )= V®!1+) :

/(W) /g,

and likewise for pF((J4,(V;))). Thus, by Proposition 2.0.49, we have pF((I, (U;))) —
pF((J4, (V) is an equivalence. O
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THE COHOMOLOGY OF REAL GRASSMANNIANS

In this chapter we use the theory of stratified spaces, as recently developed in [5], to

compute the additive R-cohomology of the real Grassmannian manifolds.
Notation

We will now fix some notational conventions that we will use throughout this chapter:
e For S a finite set, we let card(S) denote the cardinality of S.
e For r € Z-o, we let r denote the set {1,...,r}.
e For S a set, let Sub(.S) denote the poset of subsets of S.
o We let {Z} denote the set of all cardinality k subsets of the set {1,...,n}.
e Let Mat, ., denote the collection of n-by-k matrices with real coefficients.
o Let 1,4, € Mat,,«,, denote the n-by-n identity matrix.

e For each 1 <1 < n, e; € R" is the i-th standard basis vector of R"™. That is, it is the

vector consisting of a 1 in the i-th entry, and 0’s in all other entries.

e For S € {7}, we define R to be the span

R® := span{e; | i € S} .

e For a X a topological space, we let X denote the set, X IT {oo}, where we attach a
single disjoint point to X. This set is equipped with the following topology: U C X+
is open iff U is an open subset of X, or U = (X \ C) II {oc}, for some closed and

compact C' C X.
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e For x € X a pointed topological space, we let XX denote the reduced suspension,

SX = (X x [0,1])/ ~

where ~ is the equivalence relation defined by (z,1) ~ (2/,1),(z,0) ~ (2,0), and

(x,t) ~ (x,t"), for all z,2" € X, and ¢,t' € [0,1].

e We use homological grading conventions: A[r|, :== A, _,.

Grassmannians

Grassmannians are the moduli space of subspaces of a fixed vector space. In this
chapter, we restrict our attention to subspaces of Euclidean space. These are the real

Grassmannians:

Definition 3.0.1. Let n,k be nonnegative integers such that £k < n. We define the

Grassmannian, Gri(n), to be the set consisting of all k-dimensional subspaces of R".

The simplest case to understand is when n = 1, as Gry(1) is just a singleton. In general,
Gr,(n) is also a singleton. The first nontrivial example is (n, k) = (2,1). One way to think
about this set is to observe that, by taking its span, each choice of a unit vector in R? defines
a 1-dimensional subspace, hence a point in Gry(2). Further, by observing that antipodal

vectors define the same subspace, we see that the following map of sets is a bijection
[0,7) = Gry(2), 0 +— span{(cosf,sinf)} .

Thinking of a Grassmannian as a set does not capture its entire being. In the above
example of Gry(2) = [0,7), if we sweep through the angles 0, as we approach § = 7, our

subspace is getting closer to the z-axis, which is represented by the point 0 € [0, 7). In other
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words, thinking of Gri(2) as the set [0, ), ignores the fact that points near 7w are actually
near 0 as well. We will make this intuition precise below, and we will see that Gri(2) is
actually diffeomorphic to S?.

More generally, each p € Gri(n) can be representated by a k-plane in R™, and we know
how to wiggle planes in Euclidean space. This suggests two things. First, we know which
planes are close to a given plane, so we might expect Gry(n) to be a topological space. Second,
we know how to budge a plane into a nearby plane, so we might further expect Grg(n) to
possess the structure of a manifold. This is indeed the case, as we briefly recall in Section
3. Even better than possessing a manifold structure, there is a natural way of decomposing
Gr(n) into pieces called Schubert cells. These endow Grg(n) with the structure of a CW
complex. We give a description of this Schubert CW structure and the corresponding CW
chain complex in Section 3. We refer the reader to [24] for a more in depth treatment of this

material.

Manifold structure

Let us fix positive integers n and k, with & < n. We define a manifold structure on
Gri(n) by realizing it as the quotient of an open subset of Euclidean space called the Stiefel

space.

Definition 3.0.2. We define the Stiefel space Vi(n) to be the collection of all injective,

linear maps from R* to R":

Vi(n) := {R* & R" | ¢ is injective and linear} C Mat,, .

A point in Vi(n) is a matrix A € Mat,; whose columns are linearly independent.

Linear independence is an open condition. Indeed, observe the continuous map

F :Mat, . > R, A det(ATA) .
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Note that
Vi(n) = F7Y(R\ {0}) C Mat,,, = R" .

Thus,t Vi(n) C (R™)** is an open subset of Euclidean space. As such we consider Vj(n) as a
topological space via the subspace topology. Each point A € Vj(n) defines a k-dimensional

subspace of R™ by taking its column space. This defines a map

col : Vi(n) — Gri(n) , A — col(4) .

Observe that this map is surjective: given V € Grg(n), choose a basis for it and define a
matrix whose columns consist of those basis vectors. This defines a point in Vi(n) whose
column space is V. Thus, we endow Grg(n) with the quotient topology induced by the map
col. Further, in Proposition 3.0.8 below, we show that Gry(n) is a compact topological space,
and that it has a natural manifold structure. For this, it is convenient to introduce the

orthogonal Stiefel space.

Definition 3.0.3. The orthogonal Stiefel space V,°(n) is defined to be the set

Vk"(n) = {A € Mat,, 1 | ATA = ]lkxk} C Mat,,«x ,

equipped with the subspace topology.

Remark 3.0.4. Similar to the case of the ordinary Stiefel space, there is a surjective

continuous map

col : V2(n) — Grg(n) , A+ col(A) .

Remark 3.0.5. Consider the continuous map

G: Matnxk — Mathk s A ATA .
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Then V2(n) = G '(lgxk). As such, V¢(n) is closed and Hausdorff. Observe that the
condition AT A = 1, implies that each entry of an element in V°(n) is bounded between
—1 and 1. Since V;?(n) is a closed and bounded subspace of Euclidean space, the Heine-Borel

theorem states that V,?(n) is in fact compact.

In the proof of Proposition 3.0.8 below, we introduce a smooth atlas for Grg(n). This

atlas is composed of the following sets.

Notation 3.0.6. Let S € {Z} Denote the subset
Us = {V CR" |V <SR 25 RY s an isomorphism} C Grg(n) .
Lemma 3.0.7. Let V € Gr(n). Let S = {s; < --- < sp} € {1} where
Sp 1= max{l <s<n|V—=R" 2 R s surjective}
Sp_q = max{l <s<spq | VAR s R PREY 4s Surjectwe}
S1 = max{l <s< sy | VAR — R* 2R s surjective} )

Then such an S exists, and V € Usg.

Proof. We proceed by induction on n > k£ > 0. The case k = 0 is trivial. Assume

k > 0. Consider the subset
{1§$§n |V — R* 25 REY §s anisomorphism} c{l<---<n}.

Since dim(V') = k > 0, this subset is not empty. Since {1 < --- < n} is a finite linearly

ordered set,

Sk = max{l <s<n|V—oR" PLoREs} g surjective}
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exists and is unique. So V' C R®* C R". By definition of s;, we have
dim(VAR* ) =k —1.

Indeed, either the dimension of this intersection is k or k—1 and it cannot be k for dimension

reasons. Let " = 5\ {sx} € {S,f__ll} By the induction hypothesis on k, V NR*~1 C Ug. In

other words,

4

VAR* ! — R 5 RY

is an isomorphism. It remains for us to show that V' € Ug. To see this, consider the following

diagram Each of these squares evidently commutes. To show that V' € Ug is to show that

174 RSk R™ Pr RS

"'F prlg prlg wr|=

(VAR @ (V L (VNAR* 1)) e R* 1@ (R LR%* ) e R% 1 (R L R X9 RS gy REsw)

the top composite is surjective, and thus an isomorphism by dimension reasons. This follows
because the bottom composite is surjective. Note that each bottom horizontal arrow is a
direct sum of maps: the direct sum of inclusion for the first two maps, and the direct sum
of projections for the last map. Indeed, the composite of the morphisms of the left factors
in the direct sum is surjective by the induction assumption, and the composite of the right
factors of the direct sum is surjective by definition of s;. Therefore, V' € Ug, which completes

the proof. O
Proposition 3.0.8. The space Gri.(n) is a compact, smooth manifold of dimension k(n—k).

Proof. First we show that Gri(n) is compact. Remark 3.0.4 says that Grg(n) is the
continuous image of V,?(n). Remark 3.0.5 shows that V?(n) is compact. It follows that

Gri(n) is compact, since it is the continuous image of the compact space V,°(n). Next, we

show that Grg(n) is Hausdorff. To do this, we will show that each V' # W € Grg(n) can be
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separated by a continuous real valued function. Regard an element of V,?(n) as a list of k

orthonormal vectors of R". For x € R", consider the function
fe:V2(n) =R, (ur, ..., up) = -z — (v-u)*> — - — (2 uy)

This function is evidently continuous. For V' € Grg(n), note that f, evaluates the same on
each element of col™' (V). By the universal property of the quotient topology, f, defines a
continuous map f, : Gri(n) — R. Now, for V # W € Gry(n), choose a point v € V \ W.
By definition, f,(V) = 0 and f,(W) # 0. This shows that distinct points of Gry(n) can be
separated by a continuous real valued function. It follows that Grg(n) is Hausdorft.

We will define a smooth atlas on Gry(n) as follows. Let prg : R* — R denote the
orthogonal projection = — Y, (z, e;)e;. Given S € {}}, consider the subset from Notation
3.0.6

Us = {V CR" |V <SR 25 RY s an isomorphism} C Grg(n) .

Define a map

whose value on a linear map F' is its graph

F +— Graphg(F) := image (RS L), s @® R2\S % R”) :

Here, Qs : RS @ R®Y — R" is the evident reordering of bases. In fact, Graphg is

a bijection with inverse given by the following. Given V € Ug, define a linear map

e; > prgl(ez-) NV —e;,
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for all + € S. Further, one can check that this in fact defines a homeomorphism. Thus, for

each S € {Z}, we have a homeomorphism

Graphg : R¥"0) & Homlin(RS R{L--n1\S) = U

Graphg
E—

By Lemma 3.0.7, the collection {R*"=%) Us} covers Gri(n). It remains to check

Graphg
E—

that the transition functions for the cover {RF"=F) Us} are smooth. That is, for

S, T € {Z} we need to show the composite
_1 Graphg Graphgl ~1
Graphg (Us N Up) —— Us N Upr —— Graphg (Us N Ur) (3.1)
is smooth. First, note that the composite

-1
RS @ RV 95 g 20, RT g R\

is some permutation matrix
Prys  Prxn\s
PE\TXS PE\TXE\S
where the superscripts on the blocks denote the dimension of the block. Using this notation,

the map (3.1) evaluates as

F s (Pazxs + Porsns) © (Prcs + Proms)

This map is evidently smooth since matrix multiplication, matrix addition, and taking

inverses are smooth. O
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CW structure
There is a natural CW structure on Grassmannians called the Schubert CW structure.

The set of Schubert cells is in bijection with the set {Z}

Definition 3.0.9. For positive integers k£ < n, let

{i}={Sc{1,...,n}|card(S) =k},

denote the set consisting of all cardinality k subsets of the set {1,...,n}. Define a partial
order on the elements of {7} by declaring S = {s1 < -+ < s} < T = {t; < -+ < t;;} to

mean s; < t; for each i € {1,...,k}.

Example 3.0.10. The poset {;l} can be depicted as
{2,3}
N
{1,2} —— {1,3} {2,4} —— {3,4} -
\ /
{1,4}
For S € {Z}, the Schubert cell corresponding to S is the subspace

Gri(n)s := {V € Gr(n) | S is the maximal element in {}} for which V € Us} .

Lemma 3.0.7 establishes that such an S exists for each V' € Grg(n). The following lemma
shows that the resulting S from Lemma 3.0.7 is the unique maximal S € {Z} for which

Ve Us.

Lemma 3.0.11. Let V € Gr,(n). There exists a unique mazimal S € {}} for which V € Us.
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Proof. Recall from Lemma 3.0.7 that there exists a maximal S = {s; < --- < s} € {}}
for which V' € Ug. The poset {Z} is not linearly ordered, so it remains to show that the S
constructed in Lemma 3.0.7 is in fact unique. We induct on n > k£ > 0. The case k£ = 0 is
again trivial, so assume k > 0. Let T € {Z} be a maximal element for which V' € Ur. Recall

from Lemma 3.0.7 that
Sk = max {1 <s<n|V—oR" PLoREs} §g surjective} .

Thus, tp < sg. Since T is maximal by assumption, t; < si. If this were the case, then
T < T U{s} for T = T\ {tx}. So t), = s,. Now recall dim(V NR*~!) = £ — 1. By

assumption on 7" and S, we have that both

VARS ! o R 2 RT
and

VAR Rt 2y RS

are isomorphisms. Thus by induction, 77 = 5, and therefore T'=T"U{t;} = S"U{sx} = 5,

which completes the proof. O
Observation 3.0.12. Let S € {Z} Lemma 3.0.7 and the proof of Lemma 3.0.11 above
gives us the following characterization of the S-stratum of Grg(n):

Gry(n)s ={V e€Gr(n) |V1<i<k,si—l=max{l1<s<n|dmVNR®) =i-1}} .

Example 3.0.13. Consider {3} = {{1} < {2}}, and take S = {1}. Then Gr (2)(; is a
singleton because the only 1-dimensional subspace of R? that does not project isomorphically

onto the y-axis, R{% = span{e,}, is the z-axis, R{'} = span{e;}. This also tells us that
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Gri(2){2y consists of all other points in Gry(2). Thus, Gry(2) is comprised of a single 0-

dimensional cell,

1
Gri(2){1y = 4 span ,
0

and a single 1-dimensional cell,

*
Gri(2)g2y = 4 span * € R
1

We depict these cells in the following picture.

Gﬁ <2){2}

Gri(2)

To name a CW structure, one must define attaching maps that specify how the higher
dimensional cells attach to the lower dimensional cells. We will now explicitly describe this
cellular decomposition of Grg(n).

For each S € {Z} we define a map Rotg from a closed cube to Grg(n) whose interior is
homeomorphic with Grg(n)s, and whose boundary maps to strictly lower dimensional cells.
To define Rotg we will use a product of rotation matrices, which are elements of O(n). Since
O(n) is non-Abelian, the order in which we multiply these matrices is critical. To obtain the

correct order of multiplication we use a particular linearly ordered index set Zg
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Definition 3.0.14. For S = {s; < --- < s} € {}}, define the set

Zs={(i,j) i€ {l,....k}je{i,....5—1}} .

We equip this set with a total ordering by declaring (i, j) < (¢, j") to mean either i < ¢, or

1 =1 and j > j'. See Remark 3.0.16 for a further explanation of this ordering.

For 1 <j <mnand#f €R, let R;(#) denote the n x n matrix implementing a rotation of

R™ in the oriented (j < j 4 1)-plane by an angle of 6:

T 1xj-1

cos(f) —sin(0)
sin(f)  cos(0)

Ln—j—1)x(n—j-1)

Here, the middle block lies in the j and 7 + 1 rows and columns, and all unspecified entries

are (. For example, for n = 3,

1 0 0
Ra(0) = [0 cosf —sind

0 sinf cosf

Note that for each j, this defines a continuous map

0,7] = O(n), 6 — R;(0) .
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Given a matrix A € O(n), the first k£ columns of A form an ordered set of k linearly

independent vectors in R™, which is a point in Vj(n). This assembles as a map
O(n) — ‘/;C(n) ) A A:H-nxk )

where 1,4, denotes the first k columns of the n x n identity matrix. This map is evidently
continuous, since matrix multiplication is continuous.

Recall the linearly ordered set Zg from Definition 3.0.14.

Definition 3.0.15. These maps, together with the group structure of O(n), and the linearly

ordered index set Zg allow us to define the composite continuous map

ﬁ\o-ES: H [0”]’(’] )('L]>€ZS HO mult ( ) —Lnxk Vk_(n) ’

(sz)EZS

that sends

Oei)enezs = | 1T Riep) | Lnsk -
(ivj)eZS'

Finally, postcomposing with col : V;(n) — Grg(n), we obtain the continuous map
Rots : Ho 7] B9 Vi (n) < Gre(n) .

Remark 3.0.16. The reason for the above defined ordering on Zg is to ensure that the
matrix multiplication in the definition of ﬁ\o/tg occurs in the correct sequence. Namely, we
have set this up so that if we evaluate Rotg at the point (7/2) 24, then we obtain the plane
RS%. The defined ordering is such that /R\o/tg first sends e; to ey, and ensures that the
subsequent rotations will not move e, further. Next, it sends e;_; to e,, ,, again ensuring
that subsequent rotations will not move either e, or e;, ,. This process continues, until the

final result produces R.



81

Having defined the attaching maps, we now show that the collection of sets Gri(n)g do
form a CW structure on Grg(n). First, we establsih a homeomorphism of Grg(n)s with the
interior of the closed disk [[, [0, 7]. In particular, this will tell us that the dimension of the

cell Gri(n)g is the cardinality of Zg. Let us denote this dimension by d(.5):
d(S) := card(Zs).

Observation 3.0.17. Recall that for S = {s; <--- < .} € {}},

Next, we establish that the boundaries of these cells attach to strictly lower dimensional

cells. In what follows, denote

o Jlo.x]:=Jio. 7\ [0, ).

Lemma 3.0.18. For S € {Z}, the restriction of Rotg to the boundary factors through the

union of the lower dimensional cells:

Proof. Let © = (04 ;1)) € 8H[0,7T]. We will show that for each 1 < i < k, and each
Zs
J > s, the (j,7) entry of Rotg(0) is 0. Fix such a pair (j,i). Consider the partition of Zg

given by the sets {(¢',j') € Zg | i’ < i} and {(i',j') € Zs | ' > i}. This gives a factorization
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/R\o/tg(@) = BA, where

B:i= [  Rlwy), A= ] BilOws).

(,5)€Zs, V'<i (,3)€Zs, i'>i

So, the (j,i)-entry of /RT)Es(G) is row;(B)col;(A). Since j > s;+1, and each (7, j') € Zg with
' < has j < sy, the j-th row of B is e]. Further, since each (i’,5') € Zg with ¢ > i has
j' >’ > i, the i-th column of A is e;. Finally, since ¢t <s; < 7, e;-€ = 0. O

We will now show that, for each S € {Z}, the subspace Gry(n)s is homeomorphic with
a Fuclidean space. This is Lemma 3.0.24 below. The proof of Lemma 3.0.24 makes use of

several intermediate results, which we now establish.

Notation 3.0.19. Let 0 <r <k <n. Let S ¢ {Z} Denote the element

Ser = S\ {s, < <sppi={s1 < <s_1} € {Tfl}.

Consider the inclusion

ZS<r — ZS ) (27]) = (Zaj) )

whose image consists of those (i, j) for which i < r. Note that this inclusion is convex, and
has the property that for (i,j5) € Zs_,, if (¢,j") < (4,7) in Zg, then (¢, j') € Zs_,. This

inclusion determines a projection between open cubes, whose values we denote as
proj
(O,W)ZS —_— (O,W)ZS<T , @S — @S<r .

Lemma 3.0.20. Let S € {}}. Let ©g € (0,m)%.

1. The k-dimensional vector subspace Rots(©g) C R™ in fact lies in R C R":

ROts(@g) C R° .
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2. The (k — 1)-dimensional vector subspace is
ROtS<k(@S<k) — ROtS<@S) N Rsk—l

is the intersection of the k-dimensional vector subspace with R**~1,

Proof. Recall the Definition 3.0.15 of /R\o/tS(GS), as a Zg-fold (ordered) product of
matrices, with the (7, j)-factor being a rotation matrix in the oriented {j < j+ 1}-coordinate
plane. By Definition 3.0.14 of the linearly ordered set Zg, each element (i,j) € Zg has the
property that j < s,. Therefore, for each s, < ¢t < n, the value ﬁs(@g)(et) =¢. In

particular, there is an equality between vector subspaces of R™:
ﬁas<65)(R{sk+l<m<n}) _ R{sk+1<-“<n} )

Because the n x n matrix /R—B/ts(@s) is an orthogonal matrix, the fact that the vector
subspace R¥ is orthogonal with the vector subspace Rss+1<<n} implies the vector subspace
Rots(Og) = /R—BES(GS)(]R";) is orthogonal with the vector subspace I/?—BES(@S)(R{SWK”'@}) =
Riset1<<n}  We conclude an inclusion of one vector subspaces of R™ into the orthogonal

complement of the other:

This proves the first statement of the lemma.

By inspection of the Definition 3.0.15 of ﬁc\)jcs, for each 1 <17 < k, the values agree:

Rots(e;) = Rots_, (&) -
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There follows an equality between (k — 1)-dimensional vector subspaces of R™:

Rots(05)RUSH1) = Rotg., (6., )(RO< <11
= ROtS<k<®S<k) : (32)

Next, by careful inspection of the Definition 3.0.15 of /R\o/ts, the projection onto the

es,-coordinate is not the zero-vector:
Projgis) (Rots(©s)(ex)) # 0.

In particular, the composite linear map

Rots(0s)(ey) — R 2 Riss)

is surjective. Therefore, there is not a containment:
Rots(Os)(ex) ¢ R (33)

Now, by Statement 1 of the lemma, applied to S¢;, and ©g_,, the (k — 1)-dimensional

vector subspace Rotg <k(@5 <k) is contained in the span of the first s, — 1 coordinate vectors

of R™:
Rots_, (Os_,) C R*'CR*'CR". (3.4)

State 1

We conclude a containment between vector subspaces of Rs+~1:

ROtS<k(@S<k) /R—\&S(@S)(R{l<---<k71}) ﬂR%*l

(3.2) & (3.4)

/R—B/ts(@S)(R{l<m<k}) N Rsk—l

N &l

ROts(@S) AR+
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The domain of this containment has dimension dim(Rots_,(©s_,)) = (k —1). The non-
containment (3.25) implies the codomain of this containment has dimension dim(Rotgs(©g) N
]Rs’fl) < dim (Rots(@S)ORs’“’l) = k. It follows that this containment is, in fact, an equality,

which proves the second statement of the lemma.

Lemma 3.0.20 yields the following, by induction on k.

Corollary 3.0.21. Let 0 <i<k <n. Let S € {Z} Let Og € (0,7)%s. There is an equality

between (i — 1)-dimensional vector subspaces of R":
ROtSQ(@SQ) = ROtS(@S) N Rsi_l .

We now establish two corollaries of Lemma 3.0.20 that will be used in the proof of

Lemma 3.0.24. Consider the inclusion (0, 7)%s N [0, 7]%M given by ©g +— O, where

(©3)a,) > if (i,5) € Zg
CINI

0, else .

Corollary 3.0.22. Let S € {}}. The restriction of Rot : [0,7]?» — Gri(n) to (0,7)%s takes

values in the S-stratum Gry(n)s:

[0, 77 Bty Gry(n) .

Proof. We proceed by induction on k. The base case in which £ = 0 is tautologically
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true. So assume k > 0. Let ©5 € (0,7)%5. We will show that

ROts(@S) — R" E) RS

is an isomorphism, and that S is the maximal such S for which this is true. Statement 1 of

Lemma 3.0.20 implies, for r > si, the composite linear map

R0t5<@g) — R" ﬂ) R{r}

is the zero map. Statement 2 of Lemma 3.0.20 also implies the composite linear map

Rotg(0g) — R" & Risw} (3.5)
is surjective. So s is the maximal element in the finite linearly ordered set {1 < --- < n}

for which (3.5) is surjective. By induction on k, the element S € { kfl} is maximal for

which the composite linear map

Rots_, (Os_,) — R™ & R¥<k (3.6)

is an isomorphism. Statement 2 of Lemma 3.0.20 states that Rotg(Og) N R%~! =
Rots_, (©s_,). Therefore we have an identification as a direct sum, with respect to which

the inclusion into R™ respects this direct sum:

Rots(@s) = (Rots(@s) N RSk—l) D (RO’ES(@S) 1 (Rotg(@g) N R%—l))
= Rots_,(Os_,) ® (Rots(Os) L Rots_, (Os_,)) (3.7)

CR* ! @RI C R @RI = R

Note also that, with respect to the identification as a direct sum, RS = RS+ g Rist},
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the projection R™ P, RS also respects this direct sum. These splittings together with the

surjectivity of the linear maps (3.5) and (3.6) imply the linear map

Rots(Qg) — R" & RS (3.8)

is surjective. Because the domain and the codomain of this linear map both have dimension
k, this map (3.8) is an isomorphism.

Lastly, recall from above that both s; is maximal with the property that the linear
map (3.5) is surjective, and S is maximal with the property that (3.6) is an isomorphism.
It follows that S = S.j U {sx} is maximal with the property that the linear map (3.8) is a

surjective. Therefore, Rots(Og) € Gri(n)s, as desired. O

Corollary 3.0.23. For k > 0, the map between sets

T:Gr(n)s = Gn_1(n)s_, , Vi VARST (3.9)

1s defined and continuous. With respect to this map, the following diagram commutes:

(0,7)%s Rots > Gr(n)s
lpr l(g.g) (3.10)

(O,ﬂ')ZS<Ic TM) Gl’k,1<n)s<k .

Proof. We first show that the map (3.9) is defined. Let V' € Gri(n)s be an element in
the S-stratum. By Observation 3.0.12, the element s, € {1 < --- < n} is maximal among

those elements r € {1 < --- < n} for which the composite linear map
Vo RO R

is surjective. It follows that the vector subspace V NR%*~! C R" is (k — 1)-dimensional.
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Observation 3.0.12 implies that this (k — 1)-dimensional vector subspace indeed belongs to

the S_g-stratum of Gry_1(n):
VNAR* ! € Grp_y(n)s., -

This shows that the map is defined.
We next show that the map (3.9) is continuous. Post-composition with projection onto

Rk} defines a continuous map

Proszk o—

Vi(n) Mats, yxk A Ligyxs, - A,

which is given by left multiplication by a truncated identity matrix. Let Vi(n), C Vi(n)
denote the subspace consisting of those A € Vi (n) for which col(A) € Gry(n)s. Observe the

solid diagram among sets:

Vk(n)‘s +—— Vk<3k)\s — {A < Vk(Sk) ‘ rank(ﬂ{sk}XSkA) = 1}

lc0| lnu”(]l{sk}xsk'_)

Gra(n)s Vo VOR'E y Grp_1(n)

Sck -

Each map in this solid diagram is manifestly continuous. Since Grg(n) is a quotient of Vi (n),
the bottom horizontal map is continuous, as desired.
Lastly, the commutativity of the diagram in equation (3.14) follows directly from
Statement 2 of Lemma 3.0.20. [l
We are finally prepared to state and prove that each subspace Gri(n)g is homeomorphic

with a Euclidean space.

Lemma 3.0.24. For S € {Z}, the factorization of Corollary 3.0.22,

Rotg : (O,?T)ZS — Gl’k(n)g , (3.11)
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18 a homeomorphism.

Proof. We first show that (3.11) is a bijection. We prove this by induction on k£ > 0.
The k£ = 0 case is tautologically true.

We now consider the case in which £ = 1. So S = {s}, for some 1 < s < n. We
proceed by induction on s. For s = 1, then Zyy = 0 so that (0, 7)%1 is a singleton, as is
the {1}-stratum Gry(n){1;. So this case in which s = 1 is tautologically true. Now assume

s > 1. Via the standard action of O(n) on Gry(n), the assignment,
(0,7) x Gry(n) — Gry(n) , (0,L) — Rs_1(0)(L) ,

is a continuous map. By inspection, the restriction of this map to the {s — 1}-stratum takes

values in the {s}-stratum:
(0,7) x Gri(n)gs—13 — Gri(n)(s , (0,L) — Rs_1(0)(L) . (3.12)

By the universal property of subspace topologies, this map is continuous. We now show
that this continuous map (3.12) is a bijection. So let V' € Gry(n)s. By definition of the the
{s}-stratum, the number s € {1 < --- < n} is maximal with respect to the property that the
composite linear map V — R” Py REY is an isomorphism. In particular, V' C R* C R",
which is to say that, for r > s, the r-coordinate of a vector in V' is zero. Furthermore, there is
a unique unit vector v € V for which the dot product v-e, > 0 is positive, which is to say there
is a unique unit vector in V' with positive s-coordinate. Now, there is a unique 6, € (0, ) for
which Rs_1(—6y)(Vv) - e, = 0. Then the element (6, R,_1(—0y)(V)) € (0,7) X Gry(n)s_1; is
the unique preimage of V' under the map (3.12). So the map (3.12) is a bijection, as desired.

Next, notice the inclusion

Z{sfl} — Z{s} ) (17]) = (L]) :
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This inclusion is convex, and has the property that for (i, 7) € Zy,_1y, if (4, 5) < (7, §') in Zgg,
then (7', j') € Zs—13. The complement of this inclusion is the singleton {(1,s — 1)} C Z4.

There results a bijection:
(0,7)%r = (0,7) x (0, 7) %=1 (3.13)

Notice, now, from the Definition 3.0.15 of Rot, that the maps constructed just above fit into

a commutative square among sets:

Roty,
(0, )% a0 » Gry(n) (s

%l(&l?)) (3,12)Tg

id(g ) XRoty,_
(0’7'[') X (O’W)Z{s—l} ©m) X1} > (0,7T) X Grl(n){s,l}.

By induction, the bottom horizontal map is a bijection. Because the vertical maps are
bijections, it follows that the top horizontal map is a bijection, as desired. This completes
the case in which k£ = 1.

Now assume k > 1. Corollary 3.0.23 fits the map Rotg that we seek to show is a

bijection, into a commutative diagram among topological spaces:

Rotg

(0,m)%s > Gr(n)s
lpr l(g.g) (3.14)

(O,']T)ZS<I€ TM) Grk_l(n)

By induction, the bottom horizontal map is a homeomorphism, and in particular a bijection.
Therefore, to show that the top horizontal map is a bijection, it is sufficient to show that,

for each ©g_, € (0,7)”S<x, the map between fibers,

(Rots)‘

prl(0s.,) — 2Ly {v € Gry(n) | VRS = Rotg<k(@s<k)} (3.15)
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is a bijection. So let Os_, = (0(1,5))(.j)ezs_, € (0, 7)%s<k
Let us enhance the notation Z% := Zg to emphasize the implicit dependence on the
ambient parameter n. Note the inclusion between linearly ordered sets:

Zph —zE . (L) e (kg k—1). (3.16)

This inclusion is convex, and has the property that for (i, j) € Z‘fg’jﬁl}, if (4,7) < (7,7 in

Z?s}, then (i, ') € Zf:k_f,j Jrll}. Further, the image of this inclusion is precisely the complement

Z%\ Zg_, - Restriction along (3.16), which is simply projection off of the Zg_, -factor, thusly

defines a homeomorphism:

pl’_l(95<k) projection (077T)Zf§k:k;:1} '
The inverse of this homeomorphism is
Zsk—k+l ({®S<k}7id) Zsk—k+1 1
(0, )" tse=h41 ————5 {Og_, } x (0,7) s+ = pr(Og_,) - (3.17)
Now consider the continuous map
{RS<*} x Gry(sp — k 4+ 1) — Gry(s) C Grg(n) , (3.18)

(R5<k7 LcC Rﬁ\sd) — RS<k @ [  Ro%1 @ Risi—1H1<<sk} — RSt « R™ |

Recall the map

Z:Grg(n)s = Gri_1(n)s_, , Vi VAR !
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from Corollary 3.0.23. Note that the map (3.18) takes values in Z=*(R%<*) C Gry(n)s:
{R5<*} x Gry(sp — k + 1) — T7H(R<*) . (3.19)
Furthermore, this continuous map (3.19) is a homeomorphism, with inverse given by
T HRS<k) — {R<*} x Gry(sp —k+ 1), Vi (RS< VL RS<+) |
Consider the orthogonal n x n matrix

— — o7
R = R0t5<k(@g<k)ROtS<k(§)il € O(n)

This matrix R is just so that the two (k — 1)-dimensional vector subspaces of R”,
R(R%<*) = Rots_, (Os.,) (3.20)

agree. Via the canonical action of O(n) on Grg(n), acting by this matrix R determines a

homeomorphism
I (R¥<+) = I\ (Rots_,(0s.,)), V— R(V). (3.21)

Concatenating the homeomorphisms (3.19) and (3.21) results in a homeomorphism

Gry(sp—k+1) = {R5<F} x Gry (s — k+1) —0y 71 (RS<r) 22 7= (Rotg (05_,)), (3.22)
L RR*<*® L) = R(R**)®R(L) = Rots_,(Os_,)® R(L) .

R orthog (3.20)
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Next, note that the map (3.15) fits into a commutative diagram among sets

sp—k+1 ROt{Sk}

(0,7T) {sp—k+1} > Gl’1(5k){sk}

~l(3.17) gl(s.m)

pr'(Os.,) {V € Gre(n) | VNR* = Rots, (0s.,) }.

The above case in which k£ = 1 implies the top horizontal map is a bijection. It follows that
the bottom horizontal map is a bijection. This concludes the proof that the map Rotg of the
lemma is a bijection.

It remains to show that the map Rotg is a homeomorphism. By the universal property
of subspace topologies, the commutative diagram (3.14) reveals that Rotg is a continuous
map. The codomain of Rotg is Hausdorff, because it is a subspace of a Hausdorff topological
space. Being an open cube, the domain of Rotg is compactly generated and Hausdorff. So
to show that Rotg is a homeomorphism, it only remains to show that Rotg is a proper map.
Recall the definition of Rotg, supported by Corollary 3.0.22, as the restriction of Rot. The
domain of Rot is compact and Hausdorff. So to show Rotg is proper it is sufficient to show
that the restriction of Rot to the point-set boundary 9[0, 7]?s of (0, 7)%s C [0, 7]%5, regarded

as a subspace of the domain [0, 7]?™ of Rot, factors through the complement Gry,(n)\ Gry(n)s:

90, 71% > Gry(n) \ Gry(n)s

I J

[0, w7 —R s Gry(n) .

So let (0;.5)).)ezs € 010, m|%s. Let (io, jo) € Zs be maximal for which 6; ;) ¢ (0,7). Then,
for r <1,

Rot((0i))(ig)ezs ) (er) € R0,
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yet, for r > iy,

Rot((0(i,j)) i.jyezs)(er) & R¥ L.

It follows that the linear map from the k-dimensional vector subspace
Rot((0(i5).j)ezs) = R —— Py RS

is mot an isomorphism. Therefore this k-dimensional vector subspace is not an element in

the S-stratum:

ROt((e(i,j))(ZJ EZS) ¢ Grk( )

This completes this proof.

Lemmas 3.0.24 and 3.0.18 give the following corollary.

Corollary 3.0.25. The collection

{(Gr.(n)s, Rots) | S € {}}}

defines a CW structure on Gr,(n).

The Schubert CW chain complex

To give a general description of the CW chain complex for the Schubert CW structure
on Gri(n), we need to know how many cells there are of each dimension. These can be
counted by a partition function. For positive integers k,n with k < n, and 1 < d < k(n—k),

define
pr(d) == {{dl_--§d5}| ZdT:d,Egk,O<dr§n—k}.

1<r<t
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This is the set of all partitions of d as the sum of at most k positive integers, each of which

is less than or equal to n — k. For consistency, let us define p(0) := {0}.

Lemma 3.0.26. There is a bijection between the set of d-dimensional cells of the Schubert

decomposition of Gr,(n) and the set p(d).

Proof. Consider the map of sets

via the assignment
{di < <d} = A{1,2,... k=l k—(—1)+i1,k— (L —2)+ig,...,.k+ 1} .

First note that {1,2,..., k=0, k—({—1)+i1,k—({—2)+1a, ..., k+1i,} indeed has cardinality
k, and is thus an element of {Z} Observe that this map is injective. We will now show that
the image of ¢ is the collection of sets S € {7} such that d(S) =m. Let S = {s; < --- < s;,}

be such that d(S) = m. By Observation 3.0.17,
Z Sp—r=d.
r=1
Therefore there exists some set L C {1,...,k} where for each r € L, s, —r # 0 and

Zsr—r:d.

relL

Then [ := {s, —r | r € L} is an element of p}(d) for which ¢(I) = S. Finally, we
show that the only sets in the image of ¢ are those S € {Z} for which d(S) = d. Given

S={1,2,....k—lk—(—1)+1dy,....k+i} € {Z} in the image of ¢, by Observation
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3.0.17, the dimension of the corresponding Schubert cell is
k
d(S):Zsr—r:i1+---+ig:d.
r=1

]
Lemma 3.0.26 tells us that the CW chain complex for the Schubert CW structure on

Gry(n) is of the form

8k(n—k)\ 8d+1\ 4 o1
0— EB Z ,EBZ%---—»@Z—M)
Pr(0)

Py, (k(n—Fk)) py(d)

for some boundary maps 0;. In order to compute the homology of this chain complex, we
need to have a description of these boundary maps, which is given in Proposition 3.0.46

below.

Homology of stratified spaces

As we saw in the preceeding section, the remaining task to compute the homology of
Gri(n) is to determine the differentials. In order to do this, we exploit some natural extra
regularity on the Schubert decomposition of Grg(n), namely, a stratification. For the purposes
of computing homology, we need to impose some further regularity on this stratification, that
of a conically smooth structure. In this section we give a brief introduction to the theory of
stratified spaces a la [5], including the notion of conical smoothness. Then we discuss how

this theory enables us to compute the homology of conically smooth stratified spaces.

Stratified spaces

In this section, we introduce the basic definitions of the theory of stratified spaces that

we will use in the remainder of the chapter.
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Definition 3.0.27. A stratified topologcial space is a triple (X AN P) consisting of

e a paracompact, Hausdorff topological space, X,
e a poset P, and

e a continuous map ¢ : X — P, where P is equipped with the downward closed topology:

U C P is closed if for each p € U, if ¢ < p, then ¢ € U.

Definition 3.0.28. For X % P a stratified topological space, and p € P, the p-stratum of

X is the subspace

Example 3.0.29. Let M be a smooth manifold, and let W < M be a properly embedded

submanifold. The map

0, ifreW
M — {d <n}, T

1, otherwise

exhibits M as a stratified topological space with strata My =W and M; = M \ W.

Example 3.0.30. Let X be a topological space equipped with a CW structure. The skeleta
of the CW structure give rise to a stratification of X. The stratifying poset is the nonnegative
integers with their natural partial order, (Zso,<). For k € Zs, let X} denote the k-
skeleton of X. That is, X}, is the union of all cells, X, in the CW structure of X such that
dim(X,) <k

X, = U X, .

dim(X,)<k

Notice that each element x € X lies in X \ X;_; for some unique k. Define the map

X = Z>y , x + the unique k > 0 for which x € X3 \ Xy .
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This map is continuous precisely because X; C X is closed.
Definition 3.0.31. Let p € P be a minimal element of a poset. The link of P along p is
defined to be the poset
Link,(P) :=Ppc :={qg€P | p<gq}.
Definition 3.0.32. Let P and Q be posets. The product poset P x Q has underlying set
P x Q, and partial order given by declaring (p,q) < (p/,¢") if p <p' and ¢ < ¢
Using the prior two defintions, we can define the blowup of a poset.

Definition 3.0.33. Given a diagram of posets

VW4 A

we can explicitly describe the pushout P[], Q as follows. As a set, P [[, Q is the pushout
of sets. That is, we quotient the product P x Q by the relation f(r) ~ g(r) for all € R. The
partial orders on P \ g(R) and Q \ f(R) are the given ones. On [r], we declare [r] <p € P

if g(r) <pin P. Slmilarly, [r] < qge Qif f(r) <qin Q.

Definition 3.0.34. Let p € P be a minimal element of a poset. The blowup of P along p is

defined to be the poset

BI,(P) :=Link,(P) x {0 <1} J[ P\ {p}.

Linky (P)x{1}
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Example 3.0.35. Consider the poset

NW < N » NE
7 1
P= wq o) s E
I
SW < S » SE

Here, the arrows indicate the partial order, with a — b meaning a < b. The link of P along

O is
NW « N > NE
. |
Linko(P) = w E
| |
SW < S >y SE

and the blowup of P along O is

(NW,1) +—— (N,1) ——— (NE,1)

A~ K ™ BN
(NW,0) « (N,0) - (NE,0)
T T
B|O<7D) = (VV, 1) — (W7 0) (E7 0) — (Eal)
4 4
(SW,0) < (S,0) — (SE,0)
L v 4 ~ L

(SI;[/, He——(S)1) — (Sé,l)

Definition 3.0.36. Let X — P be a smooth manifold equipped with the additional structure
of a stratified topological space. Further, assume that each stratum, X, is a smooth
submanifold of X. For p € P a minimal element of the stratifying poset, we define the

link of X along X, to be the stratified topological space with underlying space the unit
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sphere bundle of the normal bundle
LinkXp(X) = S(NXpr> .

The stratifying poset is given by Link,(P).

Note that this definition in fact exhibits the link as a smooth fiber bundle
7 : Linky, (X) = X, .

A choice of a tubular neighborhood of X, C X gives us a smooth map Nx,cx — X,

extending the inclusion X, < X. We then get a smooth map from the thickened link to X
v LinkXp(X) X (0,00) = NXpCX \Xp — prcx — X .

Definition 3.0.37. Let X — P be a smooth manifold equipped with the additional structure
of a stratified topological space, and let p € P be a minimal element. We define the blowup

of X along X, to be the pushout

Blx, (X) := (Linky, (X) x [0,00)) 1T X\ X, .
Link x,, (X)x(0,00)
This space is naturally stratified by the poset Bl,(P). Indeed, the natural stratifications
Linkx, (X) — Link,(P) and [0,00) — {0 < 1} define a continuous map Blx, (X) — BIl,(P).

Example 3.0.38. We can stratify R? by the poset P from Example 3.0.35. We specify the
structure map R? — P in Figure 3.1 by labeling the strata. There is a single 0-dimensional
stratum R% consisting of the origin. The resulting blowup and link of (R* — P) along R

are given in Figure 3.1.
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v
NW | NE

W — O
SE SW

Figure 3.1: Left: (R* — P) with indicated strata. Middle: the blowup Blgz (R* — P).
Right: the link Linkgz (R — P).

Example 3.0.39. Let P be a poset. We define the set of subdivisions of P to consist of all
subsets S C P such that S is nonempty, finite, and the partial order on S induced by the
partial order of P is a linear order. There is a natural partial order of the subdivisions of a
poset given by inclusion of subsets. We denote this poset by sd(P). The closed interval [0, 1]
admits a natural stratification by the poset, sd({0 < 1}). The map [0,1] — sd({0 < 1}) is
given by

(

{0}, ifz=0

re (1), ifz=1 -

{0,1}, else
\

More generally, let k € Z~y. The following topological space
Cube” := [0, 1]**

admits a natural stratification by sd ({0 < 1})Xk. This can be seen by taking the k-fold

product of the above stratified space, [0,1] — sd({0 < 1}).

Conical smoothness

By imposing some extra regularity on a stratified topological space, we can use the

stratification to compute the homology of the underlying topological space. This is the notion
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of a conically smooth structure, which is analogous to a smooth structure on a topological
space. We begin by briefly narrating key features of smooth structures on topological spaces
(see [29] for an introduction).

Among paracompact Hausdorff topological spaces, C’-manifolds are characterized by
being locally Euclidean, that is, each point has a neighborhood that is homeomorphic to
R for some 7 > 0. A smooth structure is a type of reqularity on a C’-manifold. A C°-
manifold, or smooth manifold, is a C%-manifold equipped with a smooth structure. There is
a distinguished class of continuous maps between two smooth manifolds, called the smooth
maps. This class of smooth maps consists precisely of those continuous maps that respect
this smooth structure. Here, “respect” is just so that points (2) and (3) below are true. This

regularity of a smooth manifold M is tailored precisely so that it has the following features:

1. For each point © € M, there is a tangent space, T,,M, which is a vector space. This
tangent space is a canonical local model of M about x, which is to say there is a
basis for the topology about x € M comprised of images of smooth open embeddings

@e : Ty M — M each that carries 0 to x

2. For f: M — N a smooth map, and for each x € M there is a linear map,

Dmf : TJ;M — Tf(x)N ,

called the derivative of f at . Through a choice of smooth open embeddings T, M N

e
M and Ty N <™, N as in the above point for which f(Image(y,)) C Image(vfw)),

this derivative can be identified as the limit

"/1711 wié fgox tv
T.M 25 Image(p,) - Image(vy) —= Tye)N , v lim %() '
o = -
(3.23)

3. The map (3.23) depends smoothly on x € M, appropriately interpreted.
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Example 3.0.40. Let f = (f',...,f"): R™ — R" be a sequence of n polynomial maps,

each in m variables. Suppose, for each x € f~1(0), that the total Jacobian matrix of f at z,

has rank n. The Regular Value Theorem states that the subspace f~!'(0) C R™ has the

natural structure of a smooth manifold.

We now give a similarly brief narrative of features of conically smooth structures on

stratified spaces (see [5] for an account). First, we recall a definition.

Definition 3.0.41. For X a topological space, we define the open cone of X as the pushout

CX):=x+ J] (Xx[0,1)).
X x{0}

Among paracompact Hausdorff stratified topological spaces, C’-stratified spaces are
characterized by being locally a product of a Euclidean space and an open cone: R x C(L)
for some i > 0 and compact CP-stratified space L. While this seems circular, because the
topological dimension of C(L) is strictly greater than that of L, this notion can be grounded
through induction (on dimension). A conically smooth structure is a type of regularity on
a Cl-stratified space. A C>-stratified space, or conically smooth stratified space, is a C°-
stratified space equipped with a conically smooth structure. There is a special class of
continuous maps between two conically smooth stratified spaces, called the conically smooth
maps. This class of maps consists precisely of those continuous maps which respect this
conically smooth structure. Here, “respect” is just so that points (2) and (3) below are true.
This regularity of a conically smooth stratified space X is tailored precisely so that it has

the following features:
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1. For each point x € X, there is a tangent cone, T, X x C(L,), which is a product of a
vector space and an open cone. Such a product has a scaling action by the group R+,
via t- (v,[s,{]) := (tv, [ts,f]). This tangent cone is a canonical local model of X about
x, which is to say there is a basis for the topology about x € X comprised of images

of conically smooth open embeddings ¢, : T, X x C(L,) < X each that carries 0 to x.

2. For f: X — Y a conically smooth map, and for each x € X there is a R g-equivariant

map,

D,f: T, X x C(Lz> — Tf(w)Y X C<Lf(€v)) )

called the derivative of f at x. Through a choice of smooth open embeddings

T,X x C(L,) £ X and Tr@)Y x C(Lya)) m Y as in the above point for which

f(Image(p,)) C Image(ty()), this derivative can be identified as the limit

—1

T.X x C(Ly) £ Image(p,) —— Image(vsi) ——> Tyw)Y x C(Lyw) . (3.:24)

o)

(v,[5,]) — lim Uyt Falt, [ts,1])
) 19 : |

t—0
3. The map (3.24) depends conically smoothly on z € X, appropriately interpreted.

Example 3.0.42. We follow up on Example 3.0.40. Let f = (f',...,f"): R™ — R" be a
sequence of n polynomial maps each in m variables. The Thom-Mather Theorem [22] states
that, with no assumptions on the total Jacobian matrix, the subspace f~(0) C R™ has the

natural structure of a conically smooth stratified space.

Example 3.0.43. We follow up on Example 3.0.29. Let W C M be a properly embedded

smooth d-submanifold of a smooth n-manifold. Assume d < n. Consider the stratified
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topological space of Example 3.0.29
UVcA@;:@fﬂﬁfﬂﬁ$w<nD.

So the d-stratum is W = (W C M)y, and the n-stratum is M \ W = (W C M),. For

each x € W, consider the vector space N, := %% The unit sphere of the vector space

Ly == S(N;) := (N; \ 0)/r., is diffeomorphic with a (n — d — 1)-sphere. Its open cone
C(L,) = N, is conically homeomorphic with the normal space, which is linearly isomorphic
with (n — d)-Euclidean space. A choice of tubular neighborhood of W C M determines, for

each z € W, an open embedding
Op: T,W x C(Ly) 2T,W x NNW 2T, M — M
that carries 0 to . These open embeddings determine a conically smooth structure on the

stratified topological space (W C M).

The following is a catalogue of the key features of a conically smooth stratified space

X =(X = P):

1. For each p € P, the stratum X, is equipped with the structure of a connected smooth

manifold.

2. For each strictly related pair p < ¢ in P, there is a smooth manifold Blx,(X), with

boundary Linkx, (X), as well as a proper quotient map

Tp<q: Blx, (X)q — X, U X,

to the union in X of the p- and the g¢-strata. This continuous map 7,, has the

following features.
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(a) The preimage of the p-stratum is precisely the boundary of Blx,(X),; equivalently,

the preimage of the g-stratum is precisely the interior of Blx, (X),:
Tpeq (Xp) = Linky, (X), and Tp<q (Xq) = Interior(Bly, (X)) .

(b) The restriction of Ty, to the interior of Blx, (X), is a diffeomorphism onto the

g-stratum:

o

(Tp<q)): Interior (Blx, (X)) — X, .

(c) The restriction of 7,., to the boundary of Blx, (X), is a proper smooth fiber
bundle:

Tpeq: Linkx, (X)g — X .
Points (a)-(c) can be summarized as a commutative diagram

Linkx, (X ), —2<0% 5 Bly (X), 2" |nterior (Bly, (X),)

lwp <q lfp <q lg

X inclusion , Xp UX, < inclusion X

p q

in which each square is a pullback and the left square is a pushout. In particular, a

choice of collaring of the boundary,

Fp<q: Linkx, (X)g x [0,1) = Blx, (X), ,

restricts as a smooth open embedding

Yp<q: Linkx, (X)g x (0,1) = X, . (3.25)

3. For strictly related triples p < ¢ < r in P, there is a smooth manifold with (2)-corners
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- O O

Figure 3.2: Left: the stratified space ({0} C R?). Middle: the blowup Bl (({0} C R?)).
Right: the link Linkgy (({0} C R?)).

Blx,ux, (X)r, together with a proper quotient map 7,<q<,: Blx,ux, (X), = X,UX,UX,
with similar features to (a)-(c) above.
4. FEtcetera, for finite strictly monotonic sequences p; < --- < py in P.

Example 3.0.44. We follow up on Example 3.0.43. Namely, the smooth structures on the
strata W = (W C M), and on M \ W = (W C M), are the given ones inherited from the

given smooth structure on M. The link
(LinkW((W C M)) = W) - (S(NWCM) LN W)

is identical with the unit sphere bundle of the normal bundle of W C M, which is a smooth
manifold. The smooth n-manifold with boundary Bly, ((W C M)) is the real blow-up of M
along W. The interior of this real blow-up is the complement M \ W. See Figure 3.2 in the
case that (W C M) = ({0} C R?).

Notation 3.0.45. Let X — P be a conically smooth stratified space, and let p < ¢ be a

pair of strictly related elements of P. We will often denote the link simply by

Lyeq(X) = Linkx, (X), .
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Links and homology

We now explain how the previously defined links allow one to compute the homology
of a conically smooth stratified space. In this section, we restrict attention to topological

spaces, X, that possess the following structure:
e X is a smooth manifold;

e X is equipped with a conically smooth structure X — P that is compatible with the

smooth structure;

e Fach stratum, X,, is diffecomorphic to Euclidean space, and we further fix such a

diffeomorphism

o

a, 0 X, = RIMXP)
for each p € P.

This structure gives rise to a well-defined map of posets

dZP—)Zzo, pr—>d|m(Xp)

We let X(;) denote the fiber of the composite X — P — Zx
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and let X(<; denote the pullback

The diffeomorphisms, «, for each p € P, endows each stratum with an orientation, and

thus a quasi-isomorphism

O (X)) <2 Zfdim(X,)

between the reduced chain complex of X\ and Z in dimension dim(X,). To each such

conically smooth stratified space, we obtain a sequence of graded abelian groups
Z{mo (X)) (0] , Z{mo (X)) (1], Z{mo(X(a)))1d] , 0,

Here, we use the notation Z(A) to denote the free abelian group generated by the set A.

For ¢+ > 0, we now name a homomorphism
0;
Z(mo(X (i) = Z(mo(X(i-1))) -

To do this is to specify a mo(X(—1)) X mo(X(;))-matrix. Because each stratum X, C X is

connected, there is a canonical bijection
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First, for each p < ¢ in P, such that dim(X,) + 1 = dim(X,,), we define a map
ol mo(Lpeq(X)) — {£1} [€] = det (Deypeq o (Demmpey) " @id))

by sending [¢] to the determinant of the composite linear map

(Dzﬂ') -1 @id
7

i ~ ~ D ~ i
R™'OR = Tr () X,HR Tilp<q(X)BR = Tip1/9)(Lp<g(X)x (0, 1)) =5 Tyn Xy = R'.

Now, we define the homomorphism
0; + Z(mo(X(3y)) = Z(mo(X(i—1)))
by declaring, for ¢ € Py and p € P(;_1), its (g, p)-entry to be

@)= > o). (3.26)

[Jemo(Lp<q(X))

In other words,

O@) = D Y oplh= D > det(Dirpeqo ((Dimpey) ' @id)) .

pEP(i,l) (4] pEP(i,l) 4]

Proposition 3.0.46. Let X — P be a compact, connected, conically smooth stratified
manifold such that each stratum is diffeomorphic to a Fuclidean space. The previously defined

sequence of abelian groups, and homomorphisms between them
Oiv1 + Z(mo(X(i+1))) — Z(mo(X(1)))

is a chain complex. Furthermore, the homology of this chain complex is isomorphic with

H.(X;Z), the singular homology of X with Z-coefficients.
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Proof. The filtration

X<o) > X<y = -9 Xy == X,

of X induces a filtration of C,(X),
Co(X<o) = CulX(<y) = -+ = CulX(<p) = - = Cu(X) .
The EY page of the spectral sequence associated to this filtration is
Ey; = Ciyj(X (<) /Ciri(X(<im) -
Hence the El-page is
El; = HS (Copy(X<) /Cini (X (<imny) = HSS (X< /X (<inny)

where the homology is taken with respect to the d!-differential on the Ey-page. Since X is
compact and connected,

X</ X(<imy = (Xp)™

where (X(;))* denotes the one-point compactification of X;).Further, since each stratum is

equipped with a diffeomorphism «, : X, = RIm(X5) we have the based homeomorphism,

N
Xt [ ®R) =2V oS (3.27)

mo(X(4)) mo(X(s))
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Therefore,

ELyx2HS[ ) 5= © _ (3.28)

i+j
mo(X(i)) 0, otherwise

The d'-differential is then for each i > 0, simply a homomorphism
dzl : Z(?TO(X(Z-)» — Z<7T0(X(i_1))> .

We will now identify d* with the homomorphism (3.26). This will complete the proof of the
first statement, since d' o d' = 0. For dimension reasons, this spectral sequence collapses at
the E%-page. Indeed, (3.28) reveals that E;, is concentrated in degree @ = (0. It follows that
the d?-differential is 0. This implies the spectral sequence collapses at the E?-page. Further,
because this filtration is finite, this spectral sequence converges to H.(X;Z).

The d!-differential is induced by applying H**? to the following composite morphism of

based spaces

X(<i1)

X<y =~
——= — Cone(X(<ipy = Xi<py) = 2XE. =%
X(Si—l) ( (<i-1) (< )) (<i—1) X(Si—?)

Y

where the first morphism is given by collapsing X(<;) in the mapping cone, and the second

morphism is the quotient. Consider the continuous map

Vein : X = Slinky ., (X))t
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which is the following composite

Vsi-1) .
X(er) ______________ » ELka(gif1)<X(§i))+
X(<i .
X(<(Z—)1) (Lka(Si—l)(X(Si)) X (07 1>)+

Tﬁ

le(gi—l)(X(Si)) collapse . (LinkX<971)(X(§i>)><[0,1))+
LinkX(Si_U(X(Si)) ’ LinkX(Si—l) (X(Sl))X{O}

The top right vertical homeomorphism is using the fact that for Y a locally compact and

Hausdorff space, there is a based homeomorphism
YYT (Y x(0,1)". (3.29)
Further, the collapse map uses
Y<i-1 ¢ Linkx_,_, (X(<iy) x [0,1) = Blx_,_, (X<;)

to collapse Blx_,_, (X<i)\ (Linkx(g,-_l)(X(gi)) x [0, 1)) to the basepoint. So, 7&9’-1) evaluates
as

' v Nz, if z € image(y)
’Y{gz‘—l)(f) =
+, else.
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Consider the following solid commutative diagram

-
-’ ~
!

V(<i-1 . collapse .
X(—E) S—g ELInkX(Si—l) (X(Si))'i_ —p> ELInkX(i_l) (X(z‘—l) UX(Z'))+

F”(gi—n F“(i—l) )

+ . +
XX (i r 82Xy

Denote the indicated horizontal composite as 7&%1)' Since the bottom composite induces the
d* differential upon applying reduced homology, we have identified the d* differential with the
map induced on homology by the composite ¥m(;_1) 0721'—1)' Recall from the definition of links

that LinkX(i_l)(X(i_l) U X(i)) — X(i—1) is finite sheeted cover. Each connected component of

X(;—1) is homeomorphic to R, so

Linky,, ,,(X(-1)U X)) = 1T R (3.30)

TFO(LinkX(iil) (X(i—1)UX(3)))

Thus, there is a based homeomorphism

3.29) "
Slinkx, ) (X1 U X)) " = ('—inkxa_l)(X(i—l) U X)) x (0, 1))
.
(3.30) .
& H Ri-1 | x (0, 1) (331)
mo(Linkx ) (X-1)UX(0)))

I

\ St

WO(LinkX(l-_l) (X(i—1)UX(3)))

Using these identifications together with (3.27), we identify 7&-1) as a map between
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wedges of spheres

; ’Y!i7 . >~ i
751’—1) : \/ S* g“j X(—;._) —)( 2 ELka(H) (X(i—l) U X(i))—i— — \/ St

7'l'()(X(Z)) WO(LinkX(,L-_l)(X(ifl)UX(i)))
Here, the first homeomorphism is from (3.27), and the last homeomorphism is from (3.31).
We identify Ym;_1) as a map between wedges of spheres,

; . Ymia i
27T(ifl) : \/ St ELInkX“;D(X(i,l)UX(Z-))+ (—)> ZX(—'Z.;U = \/ St

mo(Linkx ;) (X(i-1)UX(5))) mo(X(i-1))
Here, the first homeomorphism is from (3.31) and the last homeomorphism is the suspension

of (3.27). Thus, upon applying H™d, the d'-differential is a composite homomorphism
Vi1 * Z{mo(X(iy)) = Z{mo(Linkx,,_, (Xi-1) U X)) ")) = Z{mo(X-n)) -

So, for ¢ € P(i1) and p € Py, the (p, q)-entry of the Py x P 41)-matrix associated to this

homomorphism is
. . 7)o, : .
(»yéifl))ZZdeg (SlH % (8P 0y (S7)VPw 2 Sz) .

The arrow labeled ¢ signifies the inclusions of sphere associated to ¢, and the arrow labeled
by p signifies the projection onto the sphere associated to p. To identify the d'-differential
with (3.26), and thus complete the proof, we now identify these degrees.

The degree of a smooth map f : X — Y between compact, oriented smooth manifolds

can be computed by choosing a regular value y € Y, and then taking a count of preimages
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of y, signed according to whether f is orientation preserving or reversing at that point:

deg(f) = ) sgn(det(D,f)) .
zef~1y)
(see [14], for instance). Note that Xm(;_q O’Yéi_n is smooth away from the basepoint. Further,
each element of my(X(;)) is a stratum X, for some ¢ € P, such that d(X,) = 4. Similarly,
each element of 7y(X(;_1)) is a stratum X, for some p € P, such that d(X,) =i — 1. Thus,
we can compute the degree by computing the degree of the induced map

(Smny 0 7hiiy) 2 Sii= X = (X, x (0,1))F = 57,

p<q P

for each p < ¢ € P with d(p) + 1 = d(q). Choosing a regular value, y € S, we have

deg (@W(i—l) ° 7&—1>)p<q> - > &M (det (D » (B © %i—1>)p<q>> '

-1

Te (Eﬂ-(ifl)o'%i,l))p<q(y)

Observe that
-1
p<q

card ((zm_l) oY) (y)) = card(mo(Ly<y (X)) -

It just remains to establish that

sgn (det (Dm (271’(,'_1) o 7&i—1))p<q>> = sgn(det(Dyy o ((Demr) ' @ ido,))))

as in (3.26). Since (Zmi_l) o ”Véi—1)> is given as the composite, we have
p<gq

D, (S o 7&i—1)>p<q = (Dem @ id(o)) © (Do) ™",

where ¢ =+, (). Hence the sign of this determinant matches that of Equation (3.26),
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which completes the proof. O]

The Schubert stratification

In Section 3, we showed that the cells of the Grassmannian Grg(n) are parameterized

by the set

(M ={Sc{l,...,n}]|card(S) = k} .

Since each element in {Z} corresponds to a cell in the CW structure on Grg(n), there is a

canonical map

Gry(n) — {1}

given by sending a k-plane to the set indexing its cell. This realizes Gri(n) as a stratfied

topological space with S-stratum the S-cell:

Gri(n)s :={V € Gr(n) | S is the maximal element in {}} for which V € Us} .

In particular, recall from Lemma 3.0.24 that each stratum of Grg(n) is diffeomorphic to

Euclidean space. In fact, the following theorem is proven in a forthcoming paper.

Theorem 3.0.47. For 0 < k < n, the Schubert stratification of the Grassmannian Gry(n)
can be naturally upgraded to the structure of a conically smooth stratified space. With respect

to this stratification, for each pair S < T in {Z} with d(S)+1 = d(T), there are identifications

Gl’k(n>5 (7rS_<T LS<T(Grk(n)) LS<T(Grk(n)) X (0,71') M) Grk(n)T
gTRotS gT and gT f:vTRotT .
(0,m)% 27— Loy Lo<r x (0,m) ZP2228 (0, m)2r
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Here,

Lser = {(H(i’j)) € [O,W]ZT| for all (i,j) € Zr, if (i,7) € Zs,0(; 5y € (0,7), else 0, j) € {0,71'}}

>~ (0,7)% x {0,7} .
We now give a description of the map
swap I Rswap : Lgr x (0,1) 2 (0,7)%5 x {0, 7} x (0,1) — (0, 7)%" (3.32)

that appears in the statement of Theorem 3.0.47. Let S < T € {}} with d(S) + 1 = d(T).
Recall that d(S) = card(Zs), so we have card(Zr \ Zs) = 1. Let Og = («95@)23 € (0,m)%s.

The map (3.32) is given by the following two maps. The first map
swap : (0, 7)% x {0} x (0,1) — (0,7)%T

maps (0g,0,0) — O = (9(7;,]‘)>ZT where

(ij) if (i,) € Zs

0, if (i, ) € Zr \ Zs

That is, swap takes the extra coordinate in the domain and swaps it into the Zp \ Zg-

coordinate in the codomain Z7. The second map

Rswap : (0,7)% x {n} x (0,1) — (0, 7)?"
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maps (O5s,0,0) = Or = (0, ;))z, Where

05 ) . if (i,) € Zs

1—6,  if(i.j) € Zr\ Zs

That is, swap takes the extra coordinate in the domain and swaps it into the Zrp \ Zs-
coordinate of the codomain Z7, except with reversed orientation.

As stated by Proposition 3.0.46, to compute the homology of Gr(n), we need to
understand the differential given in (3.26). In particular, for S < T € {}} with d(S) + 1 =

d(T'), we must understand the map
ot mo(Lger) — {£1}, [€] — sgndet (Dvg o ((Derd) ™' @ id))

whose value on [f] is the sign of the determinant of the composite map

Rz’ D R Ri-H

2l Al

(DemnE)~l@id N D,~T
ng(z)Grk(n)S SR —>—— Tilscr @R = T(Z,s/2)<LS<T x (0,¢)) S T'yg(ﬁ)Grk(n>T .

By the chain rule, each such value can be computed as the product of signs
sgn det ((Dmg)’l) - sgn det (D[yg) :

So, let us fix S < T € {}} with d(S) +1=d(T).
The following immediate consequence of Theorem 3.0.47 tells us that we only need to

compute o for two values.

Corollary 3.0.48. For S <T € {}} with d(S)+1=d(T), m(Ls<r) = {0,7}.
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Let us fix two such values, one in each connected component of Lg r:

/2, if (i,)) € Zs

@?9<T = (e?i,j))(i,j)GZT ) 9?@‘73‘) = ’
0, if (iaj)EZT\ZS
and
/2, if (i,)) € Zs
S<T — (e(i,j)>(i7j)€ZT ) 0(1',]') =

m, i (i4) € Zr\ Zs

We will now unpack the maps Dyrf and DyyE. Let us now fix S < T € {}} with
d(S)+1=d(T). Let M ={n—k+1<---<n} e {}} be the maximal element.

By Theorem 3.0.47, we have the following commutative diagrams of spaces:

Loer M) > Gri(n)s Ls<r x (0, ) 15t > Gr(n)r
lpr \[incs lswapHstap [incs
(0’ 7T)ZS Rotg k(’n/) , (O7 71_)ZT Rotr (n) ,

> Gr > Gry,
Ve (n) Vi(n)

from which we compute Dymrs.7 and D;ys.r as their respective composites.

Remark 3.0.49. Let S = {s; < --- < s} <T = {t; < -+~ <t} € {}} with d(5) +1 =

d(T). We claim there exists a unique integer 1 < igep < k for which s;,_, +1 =1

is<r*
Indeed, the condition S < T implies that for each 1 <1 < k, we have s; < t;. Now, recall

that
2

d(S) ;ZZS,-—@', d(T) =) ti—i.

i=1
Thus, d(S)+1 = d(7T) if and only if there exists precisely one integer 1 < ig.r < k for which

Siser +1= tiS<T'
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Lemma 3.0.50. Through the linear isomorphism

Mat,\ 5 s 5 Hom(R®, R™\%) = Ty Hom(R*, R2\%) % Tws Gri.(n) ,

the vector subspace Tgs Gry(n)s C Tgs Gri(n) is identified as the vector subspace of Mat, sxs
consisting of those F' such that for all1 < s <r < n withs € S andr € n\S, the (r, s)-entry

of F is 0.

Proof. Recall from Proposition 3.0.8 the open embedding

Graphg 1
Matn\SXs — Grk(n) , F +— col
F

(Sx(n\S))xS

Here, S x (n\ S) denotes the linearly ordered set in which all elements of S are less than

those of n \ S. Thus, we have a nested sequence of subspaces

1 1 1
col C --- C col C col

F F F
(5%(n\S))xS<s, (S%(n\S))xS<sp (S%(n\S))xS<sy

By Lemma 3.0.7, Graphg(F) € Gri(n)g if and only if for each 1 <7 < k, the element s; € S

is the maximal element for which

1 1 )
col C R% | yet col ¢ R%™ .

F F
(5x(n\S))xS<s; (5%(n\S))xS<s,

For 1 < ¢ < k, the condition on F' from the statement of the lemma directly implies the



122

composite

]]' r
s R*m\S) Py Rir} (3.33)

col

F
(S%(n\8)+;) % S<s;

is the zero map if r > s; and is not the zero map for » = s;. In particular, this implies

1 1 r
C ker | col .y RS*@\S) P, Risi<-<n}

col
F F
(S%(n\S)>s;) X S<s; (S*(n\S)>s;) % S<s,;
(3.34)

The left hand side of (3.34) has dimension i — 1 by inspection. Equation (3.33) implies that

the right hand side of (3.34) also has dimension i — 1. Therefore, for each 1 < i < k, the

element s; is the maximal element of S for which

1 1
col C R%, yet col ¢ Rs™ 1,
F F
(Sx(n\S))x S<, (Sx(n\S)) < S<,
Thus, Graphg(F') € Gri(n)s, as desired. O
Lemma 3.0.51. For S <T € {}} with d(S)+1=d(T),
k
Itktiscer+ >0 si—i
T (—1) =is<rtt , fo S [0] c 7T()(LS<T)
os([f]) = e :
PR
(=)<, if € € [r] € mo(Ls<r)
is<T*

where 1 <iger < k is the index for which s;g_, +1=1

Proof. Let us first consider the derivative of col. For A € V?(n), T4AV?(n) = {V €
= Mat(,—p)xk-

Mat,x | VIA + ATV = 0}, and Teoi(a)(Gri(n)) = Homji,(col(A), col(A)+)
1 <j <k},

Thus, a basis for Tii(a)(Gri(n)) is given by the set M := {M; ;) | 1 <7 <n\k,
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where M; ;) has a 1 in the (4, 7) entry and all other entries are 0. For col(A) € Gry(n)s,

Lemma 3.0.50 says Teo(a)(Grg(n)s) has a basis given by
MSIZ{M(W‘) | 1 <5<k, 1§i<8j}CM.

Note that we will refer to elements of M or Mg as the indexing pairs, (i,7). Recall
that col : V2(n) — Grg(n) takes an n x k matrix to its column space. Let A €
{/R\o/tg(@%<T), Rots( %or)}. The surjective submersion O(n) — V;?(n) tells us that for each
V € T4VP(n), there exists V € Skew(n) for which ¢!V A represents the equivalence class of
the tangent vector V. Let 1, s)xn denote the n x n identity matrix with the rows labeled
by S removed. We compute the derivative of col at A € V,?(n) via the derivative of the
following path

R — V?(n), tiselVa

Restricting to an open chart Mat(,\ syxx < Gri(n), we have the following diagram

The dashed arrow is given by
t— ﬂ(ﬂ\s)xneth(ATetf/A)_l .
We now use this path to compute D 4col for A € {/R\OES(Q%<T),/R—BES(®§<T)}. Namely, the

derivative of this path at ¢ = 0 is

d

dt

(T ne™ AATT A7) = LgnVA

t=0
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So, when A = /R\O-{S(@g<T), we have an equaltiy of n x k-matrices VA=V. Thus,

D@O

S<

_col : V2(n) = Grg(n) , V= IysxiV

sends V' to the n\ S x k matrix that consists of the n\ .S rows of V. When A = ﬁ?)/ts<67§<T),
the n x k-matrix VA is V except with the ig-p-column negated. Let Il;\ gy denote T\ gy

except with the 1g.p-column negated. Then,
Dey_,col : V2(n) — Grg(n) , Ve 1V

sends V' to the matrix that consists of the n\ S rows of V', but with the ig.7-column negated.
Therefore, T4V2(n) = {V € Mat,x;, | VA + ATV = 0} has a natural basis consisting of
two types of matrices. The first type consists of n X k-matrices whose only nonzero entry is
the (4,7) entry, for (i,7) ¢ S x S, one such matrix for each such (4, 7). The second type of
matrices will have their nonzero entries concentrated in the rows and columns labeled by S.
Note that our description of the derivative shows that for both 0 and 7, the derivative sends
all matrices of the second type to 0. Note that Ty A)Grk(n) = Mat(,,—r)xx has a natural basis
consisting of the matrices of the first type described above. Thus, deleting the second type

of basis elements of T4V,?(n), D )col is simply the identity matrix. Since we are only

Rots(©%_

interested in those basis elements for which (i,j) € Mg, as discussed above, we conclude
that

det(D col)=1.

Rots(@%<T)

Also, we see D= .. .col is the identity matrix except where all columns labeled by (i, j)
ROts(@S<T)

for which 7 = ig-r are negated. Thus, this will introduce a negative sign in the determinant

det(DfRES(@gd)col)
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for each basis element of the first type. Namely, one negative for each (i, ) € n x k for which

(1,7) ¢ S x S and j — ig<p. Therefore.

det(D )C0|) — (_1)Card{(i7j)€ﬂ><& | (1.5)gSxS , j=is<r} _ (_1)51‘S<T*is<T ‘

ER_z;tS(@7Sr<T

Note that /R—\CES(G%<T) = /F\T0—£5<@§<T) € V2(n) is the n x k matrix whose ith column is

— ORots
Deyg_,Rots = ( 90 5) >
zy

That is, for each pair, (i,j) € Zg and (x,y) € Mg, we will identify the (z,y)-entry in the

es,. We will first consider

ORotg
99,5

matrix . Note that we ignore those entries indexed by elements (z,y) € M \ Mg, as

Dcol will map those to 0, as discussed above. Let us now fix (i,j) € Zs. Then

ORotg OR,
60—(@05<T) — H R],(Q(l,’],)) 80 ']‘ H Rj”<0(i"7j”))
(4,3) (& 41 <(i,5) (4,9) 1o (8,5 (4,7)
For ease of notation, let us denote
Rotg(l,]) = H R]/(e(ll,j/)) s
(#',3")<(4,5)
and
ROtE(ZJ) = H Rj”<9(i”,j”)> .

(@,3")>(i.5)

Recall that 0 jy = m/2 for each (7', j') € Zg, so each entry in azfj,> is zero, except for the
1,7 0

(7,7) and (j + 1,7 + 1) entries which are both —1. Thus, we only need to know which e,

gets sent to e; and e;,; under the map Rotg(i’j ), By definition, Rotg(i’j Visa product of cyclic

permutation matrices

[ei = ejHeH—l = e5i+1] T [ek’ = esk] :
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The first block [e; — e;] sends

e;, if r=1
e,

ej+1, 1f7”=]+1

For the next block, [e;1; — e, ]|, we care about what gets sent to e; and e;;;. We see that
leiy1 — e,.,] sends

€;, if r=1
e —

—ej+1, lfT:]—I—Q
Similarly, the next block will fix e;, and send e; 3 to —e; 2. Since there are k —¢ blocks after

le; — €j], we see that

—ej, ifr=1

OR; i .
o0 ’ © ROtg( 7 Cep (-1)k7@+1ej+17 if r = j +k—i4+1 -
(4,9) 1o

0, else
\

Next, we will determine where Rotg(i’j ) sends e; and e;;;. Note that ﬁo/ts is the following

product of cyclic permutation matrices
le1 — es, ] - [eim1 = es, ,]lejr1 — es,] - (3.35)

The [ej+1 +— ey,] block fixes e; and sends e;1; — e,;. The next block from the right,
le;_1 + es,_,] sends
€, if j > 5,1
€; —

—e;_1, else
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Similarly, the next block sends

€1, lf] —1> 59
€1+

—ej_9, else

Thus we see that the composite in (3.35) will move e; some number of times. We let
Bs(i,j) :=card{l < ¢ < i | j+1—4 < s;_4} denote this number. As indicated in the

formulas above, each movement of e; also introduces a negative. Thus, we see that Rotg

ORotg

sends e; — (—1)5ej,5 and e;j; — e,. Therefore, the composite B0

(©%_7) maps e; —

(=1)%e;_5 and e; i1 — (—1)*"*le,,. As discussed above, these are the only values

that matter. Namely, % only has two non-zero entries, so all other basis elements get
43) |0

sent to 0.. The (,7) column of

has a single nonzero entry of (—1)°*!in the (j—23,i) € Mg row. To compute the determinant
of D9%<Tﬁ\o/tg, we first observe that for (i,5) < (i,j — 1) € Zg, there is an inequality,
j—1—=p0s(i,7—1) < j— Bs(i,j). Therefore, ignoring signs, D@gdﬁ\o/tg, is a block sum of
antidiagonal matrices. There will be a block of size s; — i for each 1 < ¢ < k, so ignoring

signs, the determinant of Dgy <T/R\0{5 is

s.
it
.

(=1)

The number of negative entries of Deg _, Is given by

S Bs)+D)=dS)+ S Bslig) -



All told,

det(D®%<TRotS) — (—1)1':1 r=1 (_1) (i,j)€EZg

The only difference in computing det(D@g<T§<\):cg), as opposed to det(D@%dﬁaS), is that

the matrix in the (ig<7, S; -entry is no longer the identity matrix, but rather the diagonal

s<r)
matrix all of whose diagronal entries are 1, except the (ig<r,is<r)- and (ig<r + 1, i<+ 1)-
entries are both —1. For (i, j) € Zg, if (4,7) < (is<r, Sis_y), then i < igep, and thus /R—BES
still sends e; — e; as in the ©%_;, case. Let us now consider the case (¢,7) > (is<r, Sig_q)
in Zg. If i = ig-r, then the effect on /R—\CES is that the ig.r block now sends e;; —€s;. .
and e;;_,4+1 + —€j;_,+1. Thus, this block sends e; — e; as in the @OS<T case. The last
case to consider is that ¢ > ig.p. The effect on /R\o/tg is that the ig.7 block now sends

— and e;g_, 41 — —€js_p+1. This will introduce an extra factor of —1 on the

Ciser “Ciser
image e; precisely if j + 1 — (i — is<r) = 8i5_, + 1, or more simply if j —i = s;,_, — ig<7.
Thus, the determinant of D@gdﬁo/tg will have one extra factor (compared to D@% <T/R\o/tg)

of —1 for each pair (4, j) € Zg for which j —i = s;,_, — is<p. Note that
card{(i,j) € Zs | j —i = Sig_p —ig<r} =k —iger .
Therefore,
det(Dey_, Rots) = (—1)= =1 " (=1) 9% (—p)kriser

Recall that swap : (0,7)%s x {0} x (0,7) — Zz simply moves the last coordinate to the
(is<r, Sigp)-coordinate in Zp. Thus, the derivative of swap is a matrix consisting of 1’s
along the diagonal until the (ig<r, S;_,)-row. The (ig<r, sig_, )-row will consist of all zeros,
except the final column will be a 1. There will be 1’s along the subdiagonal, and all other

entries are 0. Likewise, the derivative of Rswap will be the same as the derivative of swap,
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except the last column of the (is<r,s;s_,)-row will be a —1, since Rswap is orientation
reversing in that factor. Thus,

det(Deo swap) — (_1)Card{(i7j)€ZT ‘ (i,j)>(IS<TusIS<T)}
S<T 9
and
det(Dgo _Rswap) = (_1>Card{(i7j)€ZT | (00)>(Us<rs1g )11
S<T

All told, we see that 0% ([©%_7]) is equal to the number

k s;—i—1 k t;—i—1
r+d(S)+ 2 B+ X rHd(T)+ 30 Br(ij)teard{(ij)eZr | (i.7)>(is<rsig )}
(_1)1‘:1 r=1 (,j)€Zg i=1 r=1 (4,4)€Zp
Eos;—i—1 k ti—i—1
1+Z Z T+ Z ﬁs(%])JFZ Z T+ Z BT(/LJ)+card{(ZJ)€ZT | ('7j)>(iS<T»Sis<T)}
(_1) i=1 r=1 (i.4)€Zg i=1 r=1 (i.5)eZp

Y

since d(S) + d(T) = 2d(S) + 1. Notice that for i # ig<r,

ti—i—1 s;i—i—1
2=
r=1 r=1
Further, t;;_, = sis_, + 1. Thus,
k s;j—i—1 k ti—i—1
> > X
(-1)1’:1 r=1 i=1 r=1

Next, note that

k

card{(i,j) € Zr | (i,5) > (is<rsisn)} = ) (si— 1) -

i=ig<r
To assess when (g(i,j) # Pr(i,j), we must figure out if there exists 1 < ¢ < i for which

J+1—0<t, 4, yet j+1—40> s, 4. Since s; = t; for all © except ¢ = 157, the only ¢ for
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which this could possibly hold is ¢ = i — ig.p. Then, we are seeking (i,7) € Zg for which
J—i+iser +1 <t =5Sis_p+1and j —i+iger + 1> s;,_,. Both of these inequalities

hold precisely if j — ¢ = s;,_,. — ig<r. Therefore,

Bs(i.3)+ Br(i.7)
(_1)(1’,3‘)25:25 s(2,.J (i,j)Xe:ZT T (%] _ (_1)ﬂT(iS<T,5iS<T)+Card{(i7j)€ZS | j—iZSiS<T—iS<T} — (_1)k—is<T

since Br(is<r, Sig.p) = 0, and card{(i, j) € Zs | j — i = Sig_; —is<r} = k — ig<p. Hence,

the formula for 0§ ([©%_;]) is proven. The above reductions also yield the stated formula for

0§ (0% 1)) u

Observation 3.0.52. We can further simplify the boundary formula

k k
1+k+is<T+_7_ > lsi—i .72 Si—i
05(1051]) + 05 ([0Fcr)) = D (-1) N

_ (_1)iS<T+Z§:¢S<T+1(Sz‘—i) ((_1)(S¢S<T) _ (_1)k>

= (—1)Zrmis<r (0 (1= (=1)Fsis<r)

k

(_1) i:iS<T(Si*i)2’ lf S < T and k i S,L'S<T mod 2

0, otherwise

Lemma 3.0.51 gives a simple, easy to compute formula for the boundary maps in
C3(Gry,(n); Z), the integral chain complex of the Schubert CW structure on Gry(n). Note
that this gives us a description of CZ, (Gri(n);Z), the integral cochain complex. Namely,
Ci,(Gri(n); Z) = CPM(Grg(n);Z). The differential CE (Gry(n);Z) — CLLH(Gri(n); Z) is
simply the transpose of the differential C2%(Gry(n); Z) — CP%(Gry(n); Z). In other words,
given S < T € {}} with d(T') = d(S) + 1, the coefficient ¢f = of. This is codified in

Theorem 3.0.53 below.
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For each 0 < r < k, consider the map

n {s1<<sp b0, cicr St
dri{k} - ==t )Zzo.
Theorem 3.0.53. The Schubert CW cochain complex of Gri(n) with Z-coefficients (Ct.,(Gre(n); Z), 0),
has underlying graded abelian group given by the free graded abelian group on the graded set
{i} —U% 7. The differential ' : C¥(Gry(n); Z) — C™Y(Gry(n); Z) is given by

O S ={s1 < <sp} > (=D&12.8  (3.36)

re{l<r<k | sr41—sr>1 and k—s, is odd}
where S, :={s1 <+ <8 1< S +1 <841 << St E {Z}

Observation 3.0.54 (Arbitrary coefficients). Thus, for the Schubert CW chain complex
with coefficients in a commutative ring R, we see that CZ, (Gri(n); R) has the same

underlying chain groups, and differential specified by

k .
(—1)==is<r® P2 if S < T and k # s;;_, mod 2
07([05r]) + 07([OF7)) = .

0, otherwise

Thus, if 0 = 2 in R, the differentials are all 0, which in particular, recovers the case of Z/27Z
coefficients, e.g. [24]. These computations should also specialize to agree with those of [7]

and [28], though we do not verify this.

The cohomology of Grg(n)

The visualization of C&,(Greg(12);Z) from Figures 3.4 and 3.6 suggests the chain

complex can be written as a finite direct sum of cubes. We will now prove this remarkable
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45

134 —% 39234 2,935 — 0 v 945 2,3
27Ny T X N
Q

123 —% 5 124 135 —2 145 236 —% 246
125 —% 5 126 —25 136 —% > 146 —2 156 —

Figure 3.3: A visual of the chain complex for Gr3(6). Underlying this figure is the poset {g},
with each relation arrow labeled by the coefficient of the differential.

0
356 —2— 456
oo

/34
\ 25

6
S
/

6

observation in Theorem 3.0.56. A consequence of this theorem is a closed formula for the
R-cohomology of Gry(n), which is proven in Corollary 3.0.61.
For S € {Z}, define

In(S):={i€k|si =k (mod2)and s,y <s;,—1} Ck,
and
Out(S):={i€k|si#k (mod2)and s;+1<s41} Ck,

where we set so := 0, and s,1 := n + 1, for notational purposes. Further, define
{Jow =15 Gh10ut(S) =0}, {B}, ={5 € {i} [ In(S) =0},

[ o = {5 € {7} | Min(In(S) U Out(S)) € In(S)} .

Consider the subposet {Z}adm C {Z} consisting of the same objects as {Z}, yet only
those relations S < T that factor as a sequence of relations S =Uy < U; < --- < U, =T in
which for all 0 < r < ¢, we have d(U,)—d(U,_1) = 1 and iy, _, <y, Z k mod 2. This subposet is

generated by the relations S < T for which d(T)—d(S) = 1 and 05([0%_4])+07([0F_4]) # 0.

Observation 3.0.55. Let S < T be a relation in {Z} This relation belongs to {Z}adm if

and only if s; = ¢; — 1 for all i € Out(S) NIn(T) and s; = t; for all ¢ & Out(S) N In(T).
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We are now prepared to state our main result, whose proof relies on lemmas that follow.

Theorem 3.0.56. Let R be a commutative ring. There is an isomorphism of chain complexes

C2(Gn(n);Z)= D  Cone(Z 2 7)ES)[d(S) — card(In(S))]

se {Z} Out

I

P zldS) |e| € Conez 2 Z)d(S) -1
S€ {Z}Out\ {Z}In S€ {Z}Min
Proof. The first isomorphism is immediate from Lemmas 3.0.57 and 3.0.58. The first
summand of the second isomorphism comes from the S € {7} such that In(S) = 0. The
second factor follows from Lemma 3.0.59 below. O
See Figure 3.4 for a depiction of C&, (Gr;(10); R) and Figure 3.5 for a depiction of the

isomorphic complex

P Z[d(9)] | & P Cone(z % z)[d(S) 1]
Se {150}Out \ {Z}m Se {150}Min

We now prove the lemmas that yield the proof of Theorem 3.0.56.

Lemma 3.0.57. There is an isomorphism of chain complexes

C2(Gr(n);Z)= @D  C.(Sub(In(S))*;Z) .

se {Z}Out

Proof. We can regard {Z}adm as a weighted level graph with weights given by
the coefficients 02([0%_7]) + 02([0%_7]), and the level given by the dimension of the
corresponding Schubert cells. Recall there is a bijection between weighted level graphs whose

adjacency matrices square to the zero matrix and chain complexes. Since C>"(Gry(n)) is
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a chain complex, and {”}adm precisely selects out the relations S < T with o2([0%_;]) +
of([0%.7]) # 0, the adjacency matrix of ({} } )°P squares to the zero matrix. Let us
denote the chain complex associated to ({Z}adm)m’ by C*(<{Z}adm)°p). Thus, by construction,

C>M(Gry(n)) = C*(({Z}adm)”). Next, we claim the canonical functor between posets

H { }adm { }adm
se {3} out

is an isomorphism. To prove this, note that for each S € {}}, . the canonical inclusion
{ }adm {Z}adm is fully faithful. Thus, to prove the claim, it is enough to show that for
each T € {Z}a there exists a unique S € {} }o . such that T' € {z }adm So, for T € {Z}adm,

define a set ST € {Z} by defining S! = T; in ¢ ¢ Out(T), and S} = T; + 1 otherwise. By

adm
SST?

construction, S € {Z} our- Observation 3.0.55 implies that T' € {Z} and further that S7
is the unique element of {Z} oye for which this is true. Now, observe that for S € {Z} Out?
there is an isomorphism of posets {Z}f; = Sub(In(S)) given by sending T — Out(T).

Therefore,

CSCh(Gr

||2

C ()

H { }adm
Se {Z}Out

[] Sub(in(s))*
Se {Z}o.n

& C.(Sub(In(S))®) .
S€ {Z}Out

I
2

I
2

12
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Lemma 3.0.58. There is an isomorphism of chain complexes

In(S)
C.(Sub(In(S)°P)) = Cone (Z 2 Z)® :

Proof. In terms of their associated weighted level graphs, note that both underlying
digraphs are isomorphic to the poset Sub({1 < --- < card(In(S))}). Further, the weights in
both weighted level graphs are all £2. We will now prove that for any cardinality r € Z>,
any two choices of weights drawn from the set {£2} on the digraph Sub(r), such that their
adjacency matrices square to 0, are isomorphic. In fact, proceeding by induction on r, we
only need to prove the case r = 2, as the cases r = 0,1 are clear. Namely, we will show that

*

given any solid diagrams with weights uf, v} € {£2},

there exists filler arrows, fy, f1, fo, fiz € {Z£1}. Further, fi, fo, and fi2 are uniquely

determined by fy. The commutivity conditions give the follwing four equations

frug = vy fo (3.37a) foud = 03 fo (3.37b)
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f12U%2 = U%Zfl (338&) f12u52 = ’U%ng . (338b)

The fact that each solid diagram defines a chain complex results in the following two

equations

uyuy = uyug (3.39a) vi%vg = vytup (3.39b)

Equations (3.37a) and (3.37b) uniquely determine f; and fo in terms of f;. Multplying
(3.37a) on the left by v{* and substituting in (3.38a) and (3.39b) yields fiouj*uy = v3*vj fo,
which uniquely determines fi5 in terms of fj. It remains to show that this value of fi5 is
compatible with the value determined by (3.38b). Multiplying (3.37b) on the left by v3? and
substituting in (3.38b) and (3.39a) also yields the equation fiouj*uy = v3*vj fy. Thus, there

is a consistent value of fio uniquely determined by fy. a

Lemma 3.0.59. For r > 0, there is an isomorphism of chain complezes

Cone(Z 2 7)™ = @ (Cone(Z % 7) [a])ée(ral) :

0<a<r—1

Proof. We will prove this by induction on r. As r = 1 is clear, consider the case r = 2.
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The following diagram exhibits such an isomorphism

Assume r > 1, then

Cone(Z 2 7)®"

= Cone(Z 2 Z) ® Cone(Z 2 7,)¥ !

~ Cone(Z 2 7) @ ( P Cone(z = Z)[a]@(rf))
~ D (Cone(Z 3>_Z_) ® Cone(Z = Z)> o=
~ _6_9 (Cone(Z 2, 7) @ Cone(Z Z)) (2(’<)
N ( _@ Conel % z)[a]@<’f>) N < D ConeZ > Z)la + 1]@“2))

=~ Cone(Z > Z)

v ( D (Cone % 2)*(+") & Cone(z % 2)*(:)) w) & Cone(Z 5 Z)[r — 1

0<a<r—2

o~ EB Cone(Z 2 Z)[a]@(il) .

0<a<r—1
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We now prove several corollaries of Theorem 3.0.56. In particular, these will provide a

closed formula for the R-cohomology of Gry(n).

Corollary 3.0.60. Let R be a commutative ring. There is an isomorphism of chain

complexes

Csen(Gri(n); R) = & R[—d(s)]
Se {Z}Out N {Z}In

@ & B Cone(R 2 R -d(S) +df

se {Z}Out \ {Z}In Oascardin(s))

Proof. This follows from the prior lemmas, and observing that

Hom(Cone(Z 2 Z), R) = Cone(R 2 R)[-1] .

Corollary 3.0.61. There is an isomorphism of graded R-modules

H*(Gri(n); R) = @D Vsld(S)],

se {1}

where )

R, if In(S) = 0 = Out(5S)

Vs:=1S ker(R2 R),  if Min(In(S) U Out(S)) € Out(S) -

coker(R 2 R), if Min(In(S) U Out(S)) € In(S)

\

Proof. Taking the cohomology of the chain complex in Corollary 3.0.60 yields an
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isomorphism of H*(Gri(n); R) with

@  Aa)
S€ {Z}Out N {Z}m
©® @ @ H* (O — R[a] 3) R[a — 1] — 0) [d(S) _ Card(In(S))}@(card(ln((ls)),l) .

Se {Z}Out \ {Z}In 0<a<card(In(S))

Note that

H (o 5 Rla] % Rla—1] — o) [d(S) — card(In(S))]

~ ker(R 2 R)[d(S) — card(In(S)) + a] & coker(R = R)[d(S) — card(In(S)) + a + 1] .

Thus, the number of summands in

rd(In(S))—1
cal ¢ )

b (0 — Rla] % Rla+ 1] — 0) [d(S) — card(In(S))]°

0<a<card(In(S))

is equal to 2€2rd(n(5)  Hence there is one summand for each set in {Z}id; . Let us choose the

adm

following convention. Assign to each 17" € {Z} <g » the R-module

ker(R % R),  if Min(In(T) U Out(T)) € Out(T)
T— Vp = .

coker(R 2 R), if Min(In(T) U Out(T)) € In(T)

This choice amounts to the following: Consider the weighted level graph assoicatied to the
complex in the description of C&, (Grg(n); R) from Corollary 3.0.60. See Figure 3.5 for the
example of Gr;(10). We assign ker(R 2 R) to the start node of each edge, and coker(R 2 R)

to the end node of each edge. Recall from the proof of Proposition 3.0.57 that for each T,
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adm

there is a unique S € {Z} such that T € {Z}gs i

Therefore,

card(In(S))—1
=)

%) b (0 — Rla] & Rla +1] — 0) [d(S) — card(In(S))]®(

Se {Z}Out \ {Z}In Pascard(in(s)

12

@ @ Vrld(T)]
se (W ou \ it re {2

D VA[d(S))
se {1} \ ({Z}Out \ {Z}In>

Extending the assignment S — Vg by defining Vs := R if In(S) = () = Out(S), yields the

1%

desired result: H*(Gry(n); R) = D, m Vs[d(S)]. u

Computations

We present some computations for various n and k. Figure 3.3 provides a graphical
depiction of the chain complex of Gr3(6). The vertical columns list the generators of
C¢,(Gr3(6)) in terms of increasing dimension, with the generator of C2, (Gr3(6)) on the
left, and the generator of C¢, (Gr3(6)) on the right. The arrows specify the poset structure
of the poset, {g}, which stratifies the space Gr3(6). Each arrow, S — T, is labeled by the
coefficient of its differential: o2([0%_;]) + 02([0%_;]). Figures 3.4 and 3.6 give a graphical
depiction of C¢,,(Grs(10);Z) and C& (Grg(12);Z), respectively. Each node in the images
represents a set S € {Z} To make the images more legible, in Figure 3.4, the nodes have
been labeled using base 11 notation, where a = 10, and we left the nodes unlabeled in Figure
3.6. The blue dotted arrows indicate the coefficient of the differential is —2 and the solid red
lines indicate the coefficient of the differential is +2. Figure 3.5 is a depiction of the chain
complex from Theorem 3.0.56 that is isomorphic to CZ,, (Grs(10); R). Table 3.1 displays the

number of Z and 7Z/27Z summands in each integral cohomology group of Gri3(24).
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6789a

°

5789a

3689a 4589a 4679a
°
1789a

3589a 3679a 4579a 56789

1689a 46789
1589a 1679a _--2579a 45789
i
'
148pa 1579a 678a 2389a 24790 4567a 45689
° & °

i

i
13890 1479 35680 45679

12346

12345

Figure 3.4: The chain complex for Grs5(10). The dotted blue lines indicate the differential is
+2, the solid red lines indicate the coefficient of the differential is —2. The sets are labeled
using base 11: a = 10.
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6789a
°

5789a

4789a 5689a
3789a 4689a 5679a
2789a, 3689a 4589a 4679a 5678a
°
1789a 26/ 3589a 3679 4579a 4678a 56789
1689a 2589a 679 9a 3579 3678a 4569a 4578a 44789

15894 1679 2489 790 e 5 35690 35784 36789 \Ysa 45789
148ba 1579a \(Sa 23890 24W%
°

13890 147fa 15690  1578a 16789  2379a  2469a 247 256! 257,

3478a 3568a 35789 4567a 45689

°

F468a 34789  3567a 35689 45679

°
1249a 1379 14% 14782 1568a 15789 2X69a  2378a  2459a 35679 45678

12790/ 1369a 1378a  1459a 1468a 1479 1567a 15680 23590~ 2368a 23789 2458a 34679 35678

34579 34678

12690/12780/1359a  1368a 13789._1458a 1467a 146§9 15679 2349a 23580 23673\ 23689 2457a 245

°
1259a 8a 89 13%9a 13584 1367a 13689 1457a 14%79 ISN& 2357a 23580 23679 24560 24579 24678 34569 34578
°
@ 1357a 13589 13679\ 1456a 14579 678 2347a 2349 23560 235 23678 24569/ 24578/ 34568

14569 14578 234@a  234f9 23569 23578 24568/ 34567

1249a 13

1239a  1248a

RN

1288a 13578 14568 23450 234 23478 23568 24367

12370 12389 12460 12/ 13478 13568 14567 23459 23468 2356
° o
12860 12379 122511/12««/‘3 = 150 13468 13567 \%58 23467
1235a \tﬁﬂ 12378 12459 2468 12567 13458 13467 23457
1234a 12359 12368 12458 12467 13457 23456
12349 12358 12367 12:/ 13456
°
12/ 12357 12456,

12347 12356

°

3

13469

12346

12345

°

Figure 3.5: The chain complex from Theorem 3.0.56 that is isomorphic to C&,,(Gr5(10); R).

Each blue line corresponds to one of the copies of Cone(R 2 R). The sets are labeled using
base 11: a = 10.



143

Figure 3.6: The chain complex for Grg(12). The dotted blue lines indicate the differential
is +2, the solid red lines indicate the coefficient of the differential is —2. The labels of the

nodes were omitted for legibility reasons.
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Gri5(24) | Z | 227 || H* | 0 | 1503 || HS' | 0 | 24864 || H®2 | 42 | 16814
H° 1 0 H3 | 0 | 1740 H% | 0 | 25764 || H® | 0 | 15791
H! 0 0 H32 |18 | 2017 || H® | 0 | 26573 || H® | 0 | 14770
H? 0 1 H33 | 0 | 2316 || H% | 55 | 27307 || H*® | 0 | 13776
H3 0 1 H3* | 0 | 2680 || H® | 0 | 27984 || H® | 39 | 12760
H'2 | 0| 367
H* 1 2 H* | 0| 3048 || H | 0 | 28635 || H°" | 0 | 11821
— : H™2 | 7 291
H® 0| 2 || H* |22 3470 || H" | 0 | 29166 || H* | 0 | 10901 -
: : : H' | 0] 239
HS 0 5 H3 | 0 | 3917 || H% | 55 | 29596 || H* | 0 | 10029
126
H 01191
H” 0 6 H38 | 0 | 4440 || H® | 0 | 29963 || H1 | 32 | 9151
H27 | 0| 156
o 2 9 H3 | 0 | 4974 || H™ | 0 | 30272 || H™' | 0 | 8356
H'2% |5 117
H® 0 11 H | 28 | 5562 || H™ | 0 | 30456 || H' %2 | 0 | 7594
H'? 0| 95
H1 0 19 H% | 0 | 6179 H™ | 58 | 30525 || H' | 0 | 6886
H13(J 0 73
H! 0 23 H* | 0 | 6886 H™ | 0 | 30525 || H'™ | 28 | 6179
H™3 0| 58
H™? 3 33 H® | 0| 7594 || H™ | 0 | 30456 || H% | 0 | 5562
HY¥2 | 3| 41
H 0 41 H* | 32| 8356 || H™ | 0 | 30272 || H¢ | 0 | 4974
H3 0| 33
H" 0 58 H* | 0 | 9151 || H™ | 55 | 29963 || H7 | 0 | 4440
- H'™ 0| 23
HY 0 73 H% | 0 [10029 || HT™ | 0 | 29596 || H'® | 22 | 3917
: H'3 0] 19
H1® 5 95 HY | 0 [ 10901 || H™® | 0 | 29166 || H'™ | 0 | 3470
H136 2 11
HY7 0 117 H*® |39 | 11821 || H™ | 0 | 28635 || H"O | 0 | 3048
H¥ 0] 9
H'S 0 156 H* | 0 | 12760 || H® | 55 | 27984 || HM' | 0 | 2680
HlSS 0 6
HY 0 191 H | 0 | 13776 || H¥ | 0 | 27307 || H"2 | 18 | 2316
H139 0 5
H? 7| 239 HY | 0 | 14770 || H® | 0 | 26573 || HM® | 0 | 2017
H140 1 2
H% 0 291 H%2 | 42 | 15791 || H® | 0 | 25764 || H"4 | 0 | 1740
H141 0 2
H? 0 367 H | 0 | 16814 || H® | 51 | 24864 || H'> | 0 | 1503
H142 0 1
H? 0| 441 H5 | 0 | 17898 || H® | 0 | 23959 || HM® | 13 | 1268
H143 0 1
H* 11| 536 H5 | 0 | 18936 || H® | 0 | 23015 || H'7 | 0 | 1087
H144 1 0
H? 0| 638 H5 | 48 | 19967 || H® | 0 | 22040 || H8 | 0 916
H?* 0 T H | 0 | 20990 || H® | 48 | 20990 || HY? | 0 T
H? 0 916 H% | 0 |22040 || H® | 0 | 19967 || H'* | 11 | 638
H? 13| 1087 || H® | 0 | 23015 || H* | 0 | 18936 || H™' | 0 536
H? 0 | 1268 || H | 51 | 23959 || H®' | 0 | 17898 || H22 | 0 441

Table 3.1: This table displays the integral cohomology of Gri5(24). We indicate the number
of Z and Z /27 summands in each cohomology group.
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In this chapter we briefly recall the necessary definitions and notations that underlie
this dissertation.

Category theory

In this section we record some essential notation, definitions, and results from category
theory that we use freely in this dissertation. For more details on the foundations of category
theory, we refer the reader to [1] and [26].

Definition A.0.1. Let F' : C — D be a functor between categories and let d € D. We define
the overcategory as the pullback

¢, — Dy,
[* e
c L5,

where the category D), is defined as the pullback

D,, —— Fun([1],D)

_
l levl
(d)

x* — D

Definition A.0.2. Let F': C — D be a functor between categories and let d € D. We define
the fiber of F' over d as the pullback

C|d—>

l _
(d)
*

C
F
—— D.
Definition A.0.3. An oo-category C is called cofiltered if every functor K L, C between
oo-categories extends to a functor out of the left cone

| S N

21
-
-
-
-
-
-

K.
Proposition A.0.4. Let P be a poset and K be an co-category. The restriction
Fun(IC, P) — Fun(Obj(KC), P) ~ Fun(myObj(K), P)

18 a monomorphism.
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Corollary A.0.5. Let P be a poset and K be an oo-category. A functor F : I — P admits
an extension
K—L—pP

P
s
-,
s
s
-

’C<1

if and only if there exists an extension

F
Tk — s ¢

-
-
-
-
-
-
-
-
-

mo(Obj(K)7) .

Corollary A.0.6. A poset P is cofiltered (as an oo-category) if and only if for all finite
subsets S C P, there exists p_, € P such that for all s € S, we have p_, < s.

Example A.0.7. Let X be a topological space. By Corollary A.0.6, the poset open(X) is
cofiltered since the finited intersection of open sets is open.

Example A.0.8. Let X be a topological manifold. Using Corollary A.0.6, the subposet
disk(X) is cofiltered. Namely, the finite intersection of disks is open, and since X is a
manifold, disk(X) is a basis, so we can find an element of disk(X) in the finite intersection.

Proposition A.0.9. If a diagram of co-categories

E—— &

|

B> pB
s a pullback, then for all b € B the functor
f|b : g|b — S(F(b)
s an equivalence.

Proposition A.0.10. A diagram of spaces

is a pullback, if and only if for all [b] € B, there exists some b € [b] for which the functor

. !
'F]b’ : g‘b’ - 5|F(b’)
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18 an equivalence.

Proposition A.0.11. Consider a pullback diagram in topological spaces

X 4, x

o

y L oy

If f is an open embedding, then so is g.

There is a technical condition that we need to assume on our target symmetric monoidal
oo-category V¥ in Chapter 2 to allow us to compute colimits.

Definition A.0.12 ([3] Definition 3.4). A symmetric monoidal oco-category V¥ is ®-
presentable if it is presentable, and if for each V' € V®, the functor V@ — : V — V
takes colimit diagrams to colimit diagrams.

In particular, V® being presentable means that all colimits exist. We also use that
V ® — distributes over colimits to compute certain colimits in some of our proofs.

Definition A.0.13. A functor F': C — D between oo-categories is final if for each functor
D — & to another oco-category the canonical morphism

colim(C & D — E) — colim(D — &)
is an equivalence, provided the colimits exist.

Note that if D has a final object, d, then the inclusion * ﬂ D is a final functor.

Proposition A.0.14 ([4] Proposition 5.13). A localization of co-categories is both final and
mnitial.

Complete Segal spaces and localization

Complete Segal spaces as developed by Rezk in [25] are one model for the theory of oco-
categories. Though we work model independently in this paper, we explicitly use complete
Segal spaces to use a theorem of Mazel-Gee [23] to identify localizations of oco-categories.
Here we recall the basics of complete Segal spaces.

Complete Segal spaces are simplicial presheaves of spaces satisfying two conditions. To
describe simplicial objects, we recall the simplex category.

Definition A.0.15. The simplex category A is the category of finite nonempty linearly
ordered sets and order preserving maps between them.

We denote objects in A by [p] := {0 < --- < p} for p € Z~,.
Now, we define what we mean by a space.
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Definition A.0.16. The oco-category of spaces Spaces is the category of topological spaces
that admit a CW structure localized on the weak homotopy equivalences.

Definition A.0.17. A simplicial space is a functor A°P — Spaces.
There is a special class of simplicial spaces called the Segal spaces

Definition A.0.18. A simplicial space, F' : A°® — Spaces is a Segal space if for every integer
p > 1 the diagram

Fp] J—>F{p—1<p}

! |

Flo<---<p—-1} —— F{p—-1}
is a pullback of spaces.

Given a Segal space, there is a subspace of [1]-points that have both left and right
inverses. We call these [1]-points equivalences.

Definition A.0.19. Let F' : A°® — Spaces be a Segal space. An equivalence in F is a
[1]-point
s

such that the dashed arrows in the following two diagrams exist

F

{0 <1}
f
[ ™
[ — s F (A1)

{1 <2}
f
[ ™
[2] ------- s F (A.2)

We denote the subspace of equivalences by FeV[1] C F|[1].

The diagram in equation (A.1) asserts that f has a left inverse, and the diagram in
equation (A.2) asserts that f has a right inverse.
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Let F': A°® — Spaces be a Segal space. The unique map from [1] — [0] induces a map
F[0] — F[1] that uniquely factors through the equivalences F*%". This maps the [0]-points
to degenerate [1]-points.

Definition A.0.20. A complete Segal space is a Segal space F' : A°® — Spaces for which
the map F[0] — F°UV[1] is an equivalence of spaces.

The Segal condition says that the [0]-points and [1]-points determine the [p]-points. This
is useful for identifying two complete Segal spaces, as codified in the following observation.

Observation A.0.21. Two complete Segal spaces C and D are equivalent if there is an
equivalence between [0]-points and [1]-points.

Central to the proof of the Theorem 2.0.36 is the identification of the localization of an
oo-category via Theorem A.0.28 below. We define localizations using classifying spaces, or
oo-groupoid completions. The idea of localization of an co-category C is to formally invert a
specific class of morphisms in C. If we simply invert only the isomorphisms, then we obtain
the original oo-category C. On the other hand, if we invert every morphism in C, then we
obtain the classifying space, or co-groupoid completion of C.

Definition A.0.22. As developed in [20], there exists a left adjoint to the inclusion

/—BN
Cat(s,1y <— Spaces

of the oo-category of spaces into the oo-category of oco-categories. For C an oo-category, we
call the value of the left adjoint BC the classifying space of C.

Remark A.0.23. If one takes complete Segal spaces as a model for co-categories, then
the classifying space of a complete Segal space C : A°® — Spaces is given by the colimit
BC := colim C. If one takes quasicategories as a model for co-categories, then the classifying
space of a quasicategory C : A°® — Set is given by the geometric realization |C|.

Observation A.0.24. Let C be an oco-category. If C possesses an initial object, then its
classifying space BC is contractible. Dually, if C possesses a final object, then its classifying
space BC is contractible.

Proposition A.0.25 ([23] Corollary 1.28). An adjunction between oo-categories induces an
equivalence between their classifying spaces.

Using the notion of a classifying space, we can now define the localization of an co-
category.

Definition A.0.26. Let C be an oo-category and let YW C C be an oco-subcategory that
contains all the equivalences in C. The localization of C at VV is defined to be the pushout

We———2C

[

BW —— C[W™1].
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Example A.0.27. If we take W = C™~ to be the maximal co-subgroupoid of C, then C[C™] ~
C. At the other end of the spectrum, if we localize C on all morphisms, then we obtain the
classifying space of C. That is, C[C~] ~ BC.

Theorem A.0.28 ([23] Theorem 3.8). Let C be an oo-category, and let W C C be an
oo-subcategory that contains the mazimal oo-subgroupoid of C. If the classifying space
BFunW([o],C) 15 a complete Segal space, then there is an equivalence of co-categories

BFun”([e],C) ~C[W™] .

Here, Fun"([e],C) denotes the simplicial category whose [p]-points are defined as the
following pullback of co-categories

Fun"([p],C) —— Fun([p],C)
Fun([p]~, W) —— Fun([p|™,C)

where [p]™ denotes the maximal co-subgroupoid of [p].

Observation A.0.29. Note the [0]-points are equivalent to W. Also, the [1]-points are
given by natural transformations whose morphisms are drawn from W.

oo-operads

We use the theory of co-operads as developed by Lurie in [21]. The notion of co-operad
is an oo-categorical analog of a multicategory, or colored operad. We now recall the basic
definitions and notation of this theory.

Colored operads can be thought of as symmetric monoidal categories where the
symmetric monoidal product is not actually representable. The category of based finte
sets is used to organize oo-operads.

Definition A.0.30. Let Fin, denote the category of based finite sets with based maps
between them.

Typically, we will denote objects of Fin, by I, where I is a finite set and + is a disjoint
basepoint. There are several special classes of morphisms in Fin,.

Definition A.0.31. A morphism 7, ER J4+ in Fin, is called
o inert if f71(j) ~« for all j € J;
o active if f71(+) = {+}.

Observation A.0.32. The inert and active morphisms form a factorization system on Fin,.
By this we mean that every morphism I, — Jy in Fin, can be uniquely factored as the
composition I, — I, — J, of an inert morphism followed by an active morphism.
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Definition A.0.33. Let F': C — D be a functor between categories. A morphism f in D is
called F'-coCartesian if there exists an initial filler for each solid diagram of categories

* —><C> C

A
<5>l lF .

We will denote the lift of f by f.

Definition A.0.34. Given a functor F' : C — D and an F-coCartesian morphism in D,
f: D — D', we can consider the coCartesian monodromy functor of f

fg :C‘D —>C|D,

that sends C' € C|,, to fi(C), the coCartesian lift of f evaluated at C'.

Definition A.0.35. A functor F': C — D is a coCartesian fibration if every morphism in
D is F-coCartesian.

Proposition A.0.36. Let E — B be a coCartesian fibration. For each b € B, the canonical

functor
Ly, — E,

15 a right adjoint.

Definition A.0.37. Let E — B be a coCartesian fibration. For b % # in B, the coCartesian
monodromy functor is defined via the left adjoint to the above right adjoint:

E, -5 B,
[0
E, — E//b

Definition A.0.38. A functor F : C — Fin, is called inert-coCartesian fibration if each
inert morphism in Fin, is F-coCartesian.

Definition A.0.39. An oo-operad is an oo-category C and a functor F : C — Fin, such that
1. F'is an inert-coCartesian fibration;
2. for all I, € Fin,, the canonical functor
clr, < T clia,
iel

is an equivalence of co-categoires;
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3. for every f : I, — J; in Fin, and every O € C|;, and P € C|;,, the canonical map
between spaces

((cj)1(0)o—);
J—JEJ> H MapC(Ov PJ) ’Cjof

jeJ

MapC(Oa P)'f

is an equivalence of co-categories.

We now make precise the idea that oo-operads generalize ordinary colored operads, or
multicategories.

Construction A.0.40. Let O be a multicategory. There exists a category O® =2 Fin, over
the category of non-empty based finite sets. An object in O% is a pair (I, 1 o obj(0))
consisting of a based finite set I, and a map O_ : I — obj(O), i — O; € O that selects
out an object of O for each + € I. We might suppress notation and refer to an object,

(14,1 N obj(0)), as the list (O;);es or even just (O;). A morphism of objects
(L. T 2= 0bj(0)) = (4, ] = 0bj(0))

consists of a map of based finite sets, I, ER J+, and for each j € J, a multimorphism
9i € OUOs)ics-1j); Bj)-

Observation A.0.41. Given a multicategory O, the functor mp from Construction A.0.40

is inert coCartesian. Namely, for f : [, — J, an inert morphism, and ([, N obj(0)) €
0%, we have

LT %5 0bj(0)) = (U, T 2225 obj(0)).

That is, fi((Oi)ier) ~ (Of-1(j))jes- Furthermore, Construction A.0.40 actually produces an
oo-operad.

An extremely important example of Construction A.0.40 is the following.

Example A.0.42. Let X be a topological space. Let open(X) denote the poset whose
objects are open sets in X with partial order given by inclusion of open sets. This can be
thought of as a multicategory by declaring that the collection of multimorphisms from a list
of opens (U;);cr to another open V' is a singleton if U; C V for each i € I and U;NUy = () for
each i # i’ € I, and otherwise the collection of multimorphisms is the emptyset. Construction
A.0.40 produces an oo-operad open(X)®. We can think of an object of open(X)® as an [
indexed list of open sets in X. We will typically denote such objects by (I, (U;)). Note

that a morphism (I, (U;)) EN (J+,(V;)) is a map of based finite sets I ER J satisfying the
condition that for each j € J, the collection (U;)s-1(;) is a pairwise disjoint collection of open
sets of V.

Observation A.0.43. Note that open(X)? = open(X).

|1+
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There is a special class of co-operads that play an important role in our arguments.

Definition A.0.44. A symmetric monoidal co-category is an oo-operad O® 5 Fin, for
which 7 is a coCartesian fibration.

Remark A.0.45. Ordinary symmetric monoidal categories can be thought of multicate-
gories where the collection of multimorphisms is given by the collection of maps out of the
tensor product. In this way, one can again use Construction A.0.40 to produce a symmetric
monoidal oo-category from an ordinary symmetric monoidal category.

Tensor products and bifunctors

As mentioned in the introduction, one of the key ideas underlying the proof of genreal
additivity is that the co-category of oo-operads possesses a tensor product with the property
that

Funepd(open(X)®, Fungpa(open(Y)®, V¥)) >~ Fungpq(open(X)® @ open(Y)®, V¥) .

The defining feature of the tensor product of co-operads is such that there is an equivalence
of oco-categories

Funopd(open(X)® @ open(Y)®, V®) ~ BiFun(open(X)®, open(Y)®; V?) .
We now spell this out a little more, and in particular, define the co-category
BiFun(open(X)®, open(Y)®; V)

of bifunctors between oco-operads. We refer the interested reader to [21] for more details.
Define the smash product functor of based finite sets as follows:

. . A .
Fin, x Fin, — Fin,

I+,J+ — [+/\J+ = ([ X J)+
and for f: I, - K., g:J, — L, define

f/\g:[+/\J+—>K+/\L+

by
all+b=1J1= {?(a)]l)[ +g(b) — |L|, i)ft}];(nc:\?vige.#< =
Definition A.0.46. Let O%, P?, and Q% be oc-operads. A bifunctor of operads is a functor
0% x P® % Q¥

such that
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O® x P2 ¥ Q%

! |

Fin, x Fin, —2— Fin,.

1. the following diagram commutes
2. ¢ takes pairs of inert coCartesian morphisms to inert coCartesian morphisms.

Definition A.0.47. Let O%, P® and Q% be oc-operads, and let ¢ : O% x P® — Q% be
a bifunctor. The bifunctor ¢ exhibits Q® as a tensor product of O% and P® if for any
oo-operad, C%, the functor

Funees(Q%,C%) — BiFun(O®, P%;C®)
given by precomposition with ¢ is an equivalence.

We attempted to directly work with the tensor product, but even for the relatively
simple oo-operads like open(X)® and disk(X)®, we encountered trouble explicitly identifying
the tensor product. The tensor product of oc-operads as given above should be a
generalization of the Boardman-Vogt tensor product of ordinary operads. This is another
interesting aspect of the tensor product that we have yet to unravel.

Left Kan extension

We use left Kan extensions in a variety of contexts throughout the body of this work.
In this section we recall the basic definitions of ordinary left Kan extension and operadic left
Kan extension. Additionally, we provide basic results that we utilize.

Ordinary left Kan extension

Given a diagram of categories

one might wish for an extension of F'. That is, a functor F : & = D that fills the above
diagram. Often, such a filler will not exist. However, a left Kan extension is a natural
approximation to a filler arrow. In fact, it is the initial approximation.
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Definition A.0.48. Given a diagram of categories

c-L.sp

le :

)

the left Kan extension of F' along p is a functor pF' : £ — D and a natural transformation
e: F — pF op. This data satisfies the following universal property: given another functor
G : & — D and natural transformation 5 : F — G o p, there exists a unique natural
transformation o : pF' — G such that the following diagram commutes

F —— pFop

N

Gop.

Example A.0.49. Let F' : C — D be a functor. If it exists, the left Kan extension of F
along the unique functor C — * is given by colim F'.

The following proposition tells us that when they exisst, left Kan extensions compose.

Proposition A.0.50. Assume we have a solid diagram of co-categories

A—L%D
B
|#
C.
If the left Kan extensions anF' and (B o a)\F' exist, there is an equivalence of functors
(Boa)F ~ f(aF) .

The following proposition is useful for working with left Kan extensions along
coCartesian fibrations, such as projections. It tells us that the left Kan extension along
a coCartesian fibration evaluates as a fiberwise colimit.

Proposition A.0.51 ([20] Proposition 4.3.3.10). Given a diagram of co-categories
c -t ¢

D
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for which 7 is a coCartesian fibration, if the left Kan extension mE of F along w exists, then
for all D € D, the left Kan extension evaluates as

mF (D) ~ colim (C|D it 5)
a colimit indexed by the fiber over D.

Proposition A.0.52. Consider a commutative diagram of co-categories

€0L>V

ool

E—-L5B.
Provided that for all e € £, the canonical morphism in B
7r (conm(go e &0 D v>) — ple) (A.3)

15 an equivalence, then the diagram

WF

PO
» A

B

V

canonically commutes. If, in addition, V = B is a coCartesian fibration, then for all e € &,
there exists a canonical equivalence

. F ()
p!F(G) ~ colim <50/e — go/p(e) — V/p(e) — V|p(e)> .

Proof. For the first statement, recall that for e € £, the left Kan extension is given by
pF(e) = colim(& . — & L V). Observe the commutative diagram

Since Vp(e) gy preserves and detects colimits, we see that

colim (Eoe = Eo/pe) = Vipte)) = (0 F(€), m(pF(e)) — ple)) -

The inclusion V|ye) < Vyp(e) is fully faithful with image consisting of those objects whose
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morphism to p(e) is an equivalence. Thus, the hypothesis of equation (A.3) guarantees that
pF(e) € V]pe), which completes the first statement.
Now, since 7 is a coCartesian fibration, Proposition A.0.36 tells us that

R
V|b — V/b

is a right adjoint. Now, the first part of this proposition showed that p,F(e) € Vioy = im(R),
and thus pF(e) = R(€’) for some ¢’ € V| . By definition of an adjunction, the following
diagram commutes

R(e/) "5 RLRe/

\ lR(counlt

Note that the right vertical arrow is an equivalence since R is a right adjoint. Since R is fully
faithful, this implies that the unit

pF(e) = RLpF(e)

is an equivalence. Since left adjoints preserve colimits, we see that
. F ()
Lp!]:(e) ~ colim (50/8 — 50/p(e) — V/p(e) — V|p(e)> s

which completes the proof. O

Operadic left Kan extension

Central to several of our proofs is an operadic version of left Kan extension. The general
theory of operadic left Kan extension is detailed in section 3.1.2 of [21]. In this subsection
we establish a colimit formula for computing operadic left Kan extensions within the context
of this paper. Namely, we prove the following formula:

Proposition A.0.53. Let 1 : D® — O% be a fully faithful functor between oo-operads with
D® unital. Given a morphism of oo-operads, F : D® — V®, with target a ®-presentable
symmetric monoidal oo-category, the left Kan extension of F along v evaluates as

)

WF (I, (0)) = colim (p@am 1ty o —»vm 8, ye

act
/Ty 0 /1]

Proof. Proposition 4.3.2.17 in [20] establishes the adjunction of functors over Fin, :

t : Fung,, (D®, V%) —— Fung,, (0%, V%) : *
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It remains to check that uJF takes inert-coCartesian morphisms to inert-coCartesian

morphisms. Let f : Iy — J; be an inert morphism and consider (I, (O;)r) LR (J+,(04))
the coCartesian morphism in D®. Consider the diagram

0. D VR, —— VO,
(I4,(07)) Iy 7
lf! lf! lf! lf’
DS —— DY —— Vi, —— V2.
(J+,(Oj)) I J4

Since f is inert, each of the vertical functors is a projection. Further, the leftmost vertical
arrow is final, as justified through Quillen’s Theorem A, which we have recorded as Theorem
A.0.62. To invoke this theorem, we must show that for each (K, (Dy)) = (J.,(0;)) in

DY the classifying space of the undercategory
(J4,(0;))

(K+,(Di)) = (J+,(05))/
(D%ct )

(I4+,(04))

is contractible. Since f : I, — Jy is inert, f~'(j) is a singleton for each j € J. This

defines a section o : J, — I, of the map I, ERN J. This enables us to canonically consider

(K, (Dy)) = (Jy,(0;)) as an object of D%ct via the coCartesian lift along o
(I4.(0:))

(K+> (Dk)) i> (‘Lm (O])) 2) <I+7 (Uz)) )

where U; := O; if f(i) = j and U; := 0, the initial object of D®, otherwise. This implies the
undercategory

i (K4, (D) 5 (74,(0))/
D ac
( (Ii,<oi))>

has an initial object, and thus by Observation A.0.24, its classifying space is contractible.
Therefore,

uF(fi(L4,(0:)) = uF(Jy, (0))

~ colim [ D%, — D% = VO — V|®
T4,(07)) Ty Ty T+

~ colim [ D%, — D%ct — V}%m — V|® EiN V|®
(I1.(04) Iy Iy Ly T+

~ fi (colim (D@;Ct . — D%at — Vf?m — V¢ )) ,

(Iy,(0; Iy Iy I
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where the last equivalence follows because the projection

® NV[
i, —

fi: vV~ V‘® -V
I+
preserves colimits. O
Cosheaves

Factorization algebras are functors that satisfy a local-to-global property. This is
codified in the idea of a cosheaf.

Grothedieck topologies

Informally, equipping a category, C, with a Grothendieck topology specifies a notion of
‘cover’ for the objects in C. This enables us to make sense of particular coherent systems of
data on C, namely (co)sheaves.

Definition A.0.54. For C' € C, a sieve is a fully faithful functor & — C,c such that for
cach (D4 C) e U and (E % D) € C(E, D), we have (E% D 5 C) e .

Intuitively, we think of a sieve as specifying the allowable ways of accessing the object

C.
Definition A.0.55. A Grothendieck topology, T, on C is

e for each C' € C, a collection of covering sieves for C, denoted 7(C),
such that

1. for each C' € C, C/c < Cic is in 7(C);

2. ford € 7(C), and f: D — C a morphism in C, we have f*U € 7(D);

3. if U is any sieve on C' € C such that the sieve

U{r:D—=Clfuer(D)}er(0),

then in fact, U € 7(C).

Example A.0.56. Let X be a topological space. There is a standard Grothendieck topology
on open(X) the poset of open sets in X where for O € open(X), a sieve = {U, — O} €
Tsta(open(X)) is a cover iff for each € O there exists some U, containing z. Thus, the
covering sieves are precisely the (complete) standard open covers.

A category can be equipped various different Grothendieck topologies, similar to how
a set can be endowed with various distinct topologies. For example, consider the following
family of topologies on open(X).
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Example A.0.57. Let X be a topological space and consider the category open(X). For
each integer r > 0 the is a topology on open(X) called the J,-topology, let us denote this
by 7,,. Given an open set O € open(X), if a collection of open sets U = {U,} is a cover of
O in the J,-topology on open(X), then for each subset S C O with cardinality at most r,
there exists some U, € U that contains S. As an example of the distinction between these
topologies, consider the collection U := {(—o0, 1), (—1,00)} of open subsets of R. This is a
naive .Ji-cover since it is an ordinary open cover, however it is not a naive Jy-cover. To see
this, consider the cardinality 2 subset S = {—2,2} of R. Note that S is not contained in
either element of U.

Definition A.0.58. Let (C,7) be a site. A basis, B, is a full subcategory of C with the
property that every C' € C admits a 7-covering by objects in B.

Example A.0.59. Let X be a topological n-manifold. The full subcategory disk(X). C
open(X) consisting of those U € open(X) for which U = R" is a basis for the standard
topology on open(X). However, disk(X ) is in general not a basis for any J,.-topology on
open(X) when r > 1. Rather, consider disk(X) C open(X) the full subcategory consisting
of those U € open(X) for which U =2 [[; ., R" is homeomorphic to a finite disjoint union of
open disks. Then disk(X) is a basis for every J,.-topology on open(X).

Cosheaves
Recall the right cone of a category, U, is given by

U =uU x{0,1} H *.

Ux{1}

For U C C/¢, observe the functor
u — C/C

given by sending the cone point to (C' SN ('), and sending each morphism (C" — C) 2 % to
the obvious square.

Definition A.0.60. Let (C,7) be a site. The category of (S-valued) cosheaves (w.r.t. T) is
the full subcategory
cShv™(C) C Fun(C,S)

consisting of those functors that have the property that for all C' € C and all covering sieves

U C C¢, the composite

U —Ceehs

is a colimit diagram.

Remark A.0.61. The right cone in the above definition allows us to keep track of the map
that is part of the data of an object in C/c. Note that there is a terminal object in the above
diagram, namely F(C'), and by the diagram being a colimit, we mean that this terminal
point is the colimit of the diagram with the terminal point removed.
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Quillen’s theorems

Quillen’s Theorem A is a useful tool for computing (co)limits, as it provides a way to
check if a functor is final or intial. This is relevant for us because we often must analyze
colimits via the colimit formula for (operadic) left Kan extension. We refer the reader to [4]
for more information on an oco-categorical treatment of Quillen’s Theorems A and B.

Theorem A.0.62 (Quillen’s Theorem A). Let F' : C — D be a functor between co-categories.
The functor F' is final if and only if for each D € D, the classifying space

B(CP/) ~ x
1s contractible. The functor F' is initial if and only if for each D € D, the classifying space

18 contractible.

Quillen’s Theorem B is designed precisely to check if the classifying space of a fiber
sequence is again a fiber sequence.

Theorem A.0.63 (Quillen’s Theorem B). Let F' : C — D be a functor between co-categories.
If for each morphism D — D' in D, the functor C;p — C/pr induces an equivalence between

classifying spaces B(C/p = B(C/p, then for each D € D the diagram of classifying spaces

18 a pullback.
Lemma A.0.64 ([10] Lemma 4.3.1). Let

E—— &

bk

B—— B

be a pullback of co-categories. If ©' satisfies the hypotheses of Quillen’s Theorem B, then so
does .

Miscellaneous

In this section we compile a collection of miscellaneous facts that we reference in this
dissertation.
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Theorem A.0.65 ([21] Theorem A.3.1). Let X be a paracompact Hausdorff topological space

and let U 5 open(X) be a functor from a poset into the poset of open sets in X. For each
x € X, consider the full subcategory

U, ={UeclU |z FU)}CU.
If for all x € X, the classifying space
BU, ~ %
1s contractible, then the map
hocolim <Z/l L open(X) — Top) =X
is a weak homotopy equivalence. Furthermore, if F(U) ~ x for each U € U, then
BU & hocolim (u Ly open(X) — TOp) ES'S
Theorem A.0.66 ([19]). The inclusion
Homeo(R™) < Emb(R",R")

of the space of self-homeomorphisms of R™ into the space of self-embeddings is a homotopy
equivalence.
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