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ABSTRACT

This dissertation seeks to identify actions by the circle group on presentable stable ∞-
categories. A circle action on the category of chain complexes over a commutative ring is
equivalent with the data of a degree 1 differential map. In the more generalized setting, this
characterization of a circle group action is obstructed precisely by the Hopf fibration. This
is identified using the theory of stratifications.
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STRATIFICATIONS

Notation and Conventions

(1) For an integer n ≥ −1, define the n-sphere Sn := {x ∈ Rn+1 | ∥x∥ = 1} .

(2) Let X denote an arbitrary topological space, and M denote an arbitrary manifold.

(3) For any space X, and for any 0 ≤ k ≤ n, let Xk i−→ Xn be the canonical inclusion into

the first k coordinates.

(4) Let U ⊂ X be a subset. Denote the compliment of U in X as X\U .

(5) Let C denote an arbitrary ∞-category. Furthermore, let V and X denote arbitrary

presentable stable ∞-categories.

(6) The ∞-category of arrows in C is Ar(C) := Fun([1],C).

(7) Let c ∈ C. We refer to the corresponding object in Cop as c◦ to distinguish that this is

an object in the opposite ∞-category.

Background on Stratified Spaces

Introduction

The first chapter recalls the basic definitions of stratified spaces and of conically smooth

stratified spaces. Stratifications decompose a topological spaceX into strata. A stratification

of a topological space naturally arises from a number of familiar contexts: an closed-open

decomposition of the topological space, the skeletal decomposition of a CW structure on
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the topological space, via the unstable subspaces of a Morse function on the topological

space. One instance of how stratifications are used is in [3], where the homotopy type

of configuration spaces of points in Rn is identified by considering a stratification of the

configuration space such that each stratum is equivalent to Euclidean space.

When looking at stratified spaces, one quickly realizes that it is natural to consider

stratified spaces with added regularity, just as one might consider smooth manifolds instead

of ordinary topological spaces. In the Appendix of [10], Lurie introduces conically stratified

spaces to understand constructible sheaves on a topological space. Ayala, Francis, and

Tanaka then introduce the theory of conically smooth stratified spaces in [5]. Conically

smooth stratified spaces have the added benefit of being defined inductively in terms of open

covers. In particular, every conically smooth stratified space is an example of a conically

stratified space in the sense of Lurie. The added structure on a stratification in order to be a

conically smooth stratified space can be thought of as being analogous to the extra structure

of a smooth manifold in comparison to a topological space. Indeed, a smooth manifold can

canonically be considered as a conically smooth stratified spaces, just as a topological space

can canonically be considered as a stratified space by using the trivial stratification.

After the recollection of conically smooth stratified spaces, we seek to show the following

theorem.

Theorem (Theorem 140). Let X → P be a closed P-filtration (Definition 114).

(1) For each p ∈ P, the restricted stratification

X≤p → P≤p

is conically smooth.

(2) The stratification X → P is conically stratified.
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There are numerous examples of closed P-filtrations. In particular, a sequence of closed

embeddings of smooth manifolds determines a closed P-filtration. An example of interest in

this work is the sequence of closed embeddings of complex projective spaces

CP0 ↪→ CP1 ↪→ · · · ↪→ CPn .

This sequence of closed embeddings induces a canonical stratification of CPn which is a

conically smooth stratified space by Theorem 140.

A conically smooth stratified space X → P determines an ∞-category called an exit

path∞-category Exit(X). A closed P-filtration for a non-finite poset P may not be conically

smooth, which may cause difficulties when trying to calculate the exit path∞-category. This

is rectified by showing a closed P-filtration is a union of conically smooth stratified spaces,

and as such the exit path ∞-category can be defined as the union over p ∈ P of the exit

path categories Exit(X≤p). The last part of this chapter gives a calculation of the the exit

path ∞-category of the closed P-filtration of CP∞.

Theorem (Theorem 165). The exit path ∞-category of the stratification colim(CP0 ↪→

CP1 ↪→ . . . ) = CP∞ is identified as

Exit(CP∞) ≃

(
⋆

k∈Z≥0

T

)
/T

.

Here the exit path ∞-category Exit(CP∞) is identified as quotient the categorical join

(Definition 121) of the circle group T, where the quotient is induced by the canonical action

of T on the join. This identification of the exit path ∞-category of Exit(CP∞) is used in the

fifth chapter to identify circle actions on a presentable stable ∞-category.

The action of the circle group T on an object V in a presentable stable ∞-category V
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is the data of a functor from the classifying space of T to the ∞-category V

BT→ V .

The classifying space of T is the complex projective space CP∞ . Therefore, a circle action

determines, and is detemined by, a functor

CP∞ → V .

The main result of the thesis is the following theorem, which is informally stated here, with

the precise statement given in Theorem 310

Theorem (Theorem 310). A circle action on an object V ∈ V determines and is determined

by:

+) An object V ∈ V .

+) A morphism in V

∂ : ΣV → V .

+) For each k ∈ Z≥2, an identification of ηk−1∂ : ΣnV → V with ∂n : ΣnV → V

compatibly.

In the statement of this theorem, η is the map induced by the Hopf fibration (Definition

217). The difficulty in this is the compatibility requirement, which made preceise in Theorem

310. The problem of trying to handle this higher coherence data is studied by stratifying the

∞-category Fun (Exit(CP∞),V) by considering the closed subcategories Fun (Exit (CPn) ,V)

for each n.

A corollary of this result is as follows.
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Corollary 1. Let k be a commutative ring spectrum. If 0 = η ∈ π1(k), then ta circle action

on an object V ∈ V determines, and is determined by

(1) An object V ∈ V.

(2) A morphism in V

∂ : ΣV → V

(3) For each k ∈ Z≥2, and identification

(
ΣnV

0−→ V
)
≃ (∂n : ΣnV → V )

compatibily.

Here, the lefthand ∞-category is that of T-modules in the stable ∞-category of k-modules;

the righthand∞-category is that of non-negatively indexed chain complex objects in the stable

∞-category of k-modules.

What follows is some example and non examples of when the Hopf map η vanishes.

Example 2. Let k be a commutative ring spectrum. The element 0 ∈ η ∈ π1(k) vanishes

in the following cases.

(1) k is an (ordinary) commutative ring. For instance, k = Z is the ring of integers or

k = Q is the ring of rational numbers or k = Fq is a finite field.

(2) The first homotopy group of the underlying spectrum π1(k) has no 2-torsion. For

instance,

(1) k = KU is the complex K-theory spectrum, since π1(KU) = 0.

(2) k = Sp, the p-local sphere spectrum for p an odd prime.
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(3) k = Kp(n) or k = Ep(n) is the Morava K-theory and E-theory spectrum for n > 0

and p an odd prime.

Example 3. Here are examples of commutative ring spectra for which the element η ∈ π1(k)

is not zero.

(1) KO, the real K-theory spectrum. Indeed, η ∈ π1(KO) ∼= Z/2Z is a generator.

(2) S, the sphere spectrum. Indeed, η ∈ π1(S) ∼= Z/2Z is a generator.

We begin by giving a background in stratified spaces. Working towards the definition of

a stratified space, we first recall the definition of a posets, as well as different constructions

on the category of posets that we will need in our discussion of stratified spaces.

Posets

This subsection introduces the notion of a partially ordered set, or poset for short.

Intuitively, a partially ordered set is a set with an ordering on the elements of the set,

allowing statements about elements of the set being less than another element. There are

many examples of posets, and many of the examples listed in this section will be used

throughout this work.

The purpose of introducing posets is to work toward the definition of a stratified space.

A stratified space is the data of a continuous map from a topological space to a poset. The

main result of this section is to construct a fully faithful embedding of the category of posets

into the category of topological spaces. The embedding of posets into topological spaces

ensures the notion of a continuous map into a poset.

Definition 4. A poset (P,≤) is:

+) A set P.

+) A binary relation ≤, which is a subset of P× P.
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such that for all x, y, z ∈ P, the binary relation satisfies:

-) (x, x) ∈≤ (Reflexive)

-) If (x, y) ∈≤ and (y, x) ∈≤, then x = y (Antisymmetric)

-) If (x, y) ∈≤ and (y, z) ∈≤, then (x, z) ∈≤ (Transitive)

Definition 5. A poset P is linearly ordered if for all p, q ∈ P, either p ≤ q or q ≤ p.

Notation 6. For a poset (P,≤), we will write x ≤ y to mean (x, y) ∈≤. We will frequently

say that x is less than or equal to y if x ≤ y. Similarly, we say x < y to mean that (x, y) ∈≤,

and that x ̸= y. In this case, we will say that x is less than y. Furthermore, we will often

just write P instead of (P,≤) unless there is more than one binary relation on P involved.

Definition 7. Let (P,≤P) and (Q,≤Q) be posets. A map between their underlying sets

f : P→ Q

is order preserving if a ≤P b implies that f(a) ≤Q f(b). Equivalently, a map f : P → Q

is order preserving if there exists a filler

≤P ≤Q

P× P Q× Q

∃

f×f

.

A filler between their binary relations is necessarily unique, since the inclusion ≤Q↪→ Q×Q

is a monomorphism in the category Set.

Notation 8. Define the category Poset to be the category with posets as objects, and order

preserving maps as morphisms.

Notation 9. Throughout the remainder of this paper, let P denote an arbitrary poset.
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A stratification will consist of a map from a topological spaceX into a poset P. The goal

then is to construct a topology on a poset P. This topology should ensure that continuous

maps bewteen posets should be the same as order preserving maps between posets. Order

preserving maps corresponding bijectively to continuous maps ensures the category Poset

fully faithfully embeds into the category Top. The embedding Poset ↪→ Top allows one to

consider continuous maps from a topological space to a poset P.

There are several constructions of posets needed in the discussion of determining a

topology on a poset P. We begin by recalling these constructions.

Notation 10. Let P be a poset. For each p ∈ P, define the following four subposets of P to

be

P≤p := {q ∈ P | q ≤ p}

P<p := {q ∈ P | q < p}

P≥p := {q ∈ P | p ≤ q}

P>p := {q ∈ P | p < q}.

Notation 11. Define the category P≤p∩≤q to be the pullback

P≤p∩≤q P≤p

P≤q P

⌟ .

This pullback1 is the intersection of the subposets P≤p and P≤q in P.

1There is a notion of products in a poset P, by canonically regarding P as a category. If the poset P
admits products, the poset P≤p∩≤q agrees with the poset P≤p×q
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Definition 12. Define the poset [n] to be the linearly ordered poset with n+ 1 elements

[n] := {0 ≤ 1 ≤ · · · ≤ n} .

Example 13. Define the poset Z to be the integers, with the standard ordering

Z := {· · · ≤ −2 ≤ −1 ≤ 0 ≤ 1 ≤ 2 ≤ . . . }.

The poset Z is an example of a poset which is linearly ordered.

Definition 14. The depth of a poset P is the maximal [n], if it exists, such that there is

an inclusion

[n]→ P .

The empty poset ∅ is defined to have depth −1.

Observation 15. Note that two finite linearly ordered posets P and Q are isomorphic if

and only if their underlying sets have the same cardinality.2 Therefore, every finite linearly

ordered nonempty poset is isomorphic to [n] for some non-negative integer n.

Notation 16. Let P be a poset. A poset P can be depicted as a directed graph, where there

is an arrow p→ q if p ≤ q . For a triplet p ≤ q ≤ r, we depict as

p→ q → r ,

and do not depict the arrow from p→ r . This is similar to how a category can be depicted

as a directed graph.

2Moreover, the posets P and Q are uniquely isomorphic.
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Example 17. The poset [n] (Definition 12) can be depicted as

0→ 1→ · · · → n− 1→ n .

Example 18. Let P and Q be posets. The product of sets P×Q inherits a canonical ordering.

Let (p, q) and (p′, q′) be in P× Q. Define the ordering on P× Q to be (p, q) ≤ (p′, q′) if and

only if p ≤ p′ in P and q ≤ q′ in Q.

Example 19. The poset [1]× [1] is the poset

(0, 0) (0, 1)

(1, 0) (1, 1)

.

Definition 20. Let S be a set. Define P(S) ∈ Poset to be the power set3 of S, which we

regard as a poset with the ordering given by inclusion. If S is a topological space, define

Cls(S) ⊆ P(S) to be the full subposet of P(S) consisting of the closed subsets of S.

Definition 21. An element p ∈ P is a minimal element if q ≤ p implies q = p.

Remark 22. In an arbitrary poset P, a minimal element might not be unique. However, if

P is linearly ordered, or if P admits all greatest lower bounds, then a minimal element must

be unique, provided the minimal element exists.

There is a canonical way to regard a poset as a category. The set of objects of the

category P is the underlying set of P. Given two elements p, p′ in P, the set of morphisms

3Recall that the power set of a set S is the set of all subsets of S.
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HomP(p, p
′) is defined to be

HomP(p, p
′) :=


∗ p ≤ p′

∅ else

.

The composition rule is unique if it exists, since each hom-set is either ∗ or ∅. The transitive

property of the poset P ensures that a composition rule exists. The reflexive property ensures

that there is an identity element for every p ∈ P. The antisymmetric property of the poset P

ensures that this category is skeletal, that is, two objects are isomorphic if and only if they

are equal. Note that given two posets P and Q, there is a bijection of sets

HomPoset(P,Q) ∼= HomCat(P,Q) .

The bijection between the hom sets ensures the following lemma.

Lemma 23. The canonical inclusion

Poset ↪→ Cat

is fully faithful.4

The fully faithful embedding Poset ↪→ Cat allows one to consider colimits and limits

indexed by posets, as well as to recover some familiar concepts of a poset P in category

theoretical terms. Namely, a poset P determines a poset Pop with the opposite ordering.

Regarded as categories, the category Pop is the usual opposite category of the category P.

Another instance of being able to recover a familiar concept is the greatest lower bound and

the least upper bound of a subset of elements of P. The greatest lower bound and least

4The essential image of this functor are categories C such that for each a, b ∈ C, the set of morphisms
HomC(a, b) is either empty or a singleton.
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upper bound correspond to products and coproducts in the category P.

Lemma 24. Let P be a poset.

(1) The product of two elements p, p′ in P is the greatest lower bound of p and p′ if it exists.

(2) The coproduct of two elements of p, q ∈ P is the least upper bound, if it exists.5

(3) The poset P has a unique minimal element if and only if P is not empty and the product∏
p∈P

p exists.

(4) The poset P has a unique maximal element if and only if P is not empty and the

coproduct
∐
p∈P

p exists.

Proof. (1) and (2) follow by inspection of the definitions of a greatest lower bound and a least

upper bound, as well as recalling that the morphisms of P are determined by the ordering

of P. (3) follows since the product of every element of P must have the property that that∏
p∈P

p ≤ p for every element of P by examining the projection maps. Finally (4) follows as

the dual of (3)

Notation 25. Define ∆ to be the full subcategory of Poset consisting of the non-empty

finite linearly ordered posets. Note that equivalently, this category is the full subcategory

on the posets [n] (Definition 12) for each n ∈ Z≥0.

Definition 26. Let P be a poset. Define the subdivision of P, denoted sd(P), to be the

full subcategory of ∆/P consisting of objects [n]
inj−→ P that are injective.

Observation 27. The subdivision of a poset P is a poset. Indeed, an injective map between

posets is a monomorphism in the category of posets. This is two say, that for two objects

5One could take this fact as a definition of the greatest lower bound and least upper bound .
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([n]→ P) and ([m]→ P) of sd(P), the space of fillers

[m] [n]

P

is either empty or admits a unique filler.

Example 28. The poset sd([2]) is the poset

{1}

{0 ≤ 1} {0 ≤ 1 ≤ 2} {1 ≤ 2}

{0} {0 ≤ 2} {2}

.

Here, each object [n] ↪→ P is depicted by its image.

Definition 29. Let S be a set. Define P(S) ∈ Poset to be the power set6 of S, which we

regard as a poset with the ordering given by inclusion. If S is a topological space, define

Cls(S) ⊆ P(S) to be the full subposet of P(S) consisting of closed subsets of S.

Observation 30. For a finite linearly ordered poset P, there is an equivalence of posets

sd(P) ∼= P(P)\∅ .

Finally, we have enough background to define a topology on a poset P.

Definition 31. Let U ⊂ P. The subset U ⊂ P is upwards closed if p ≤ q and p ∈ U

implies that q ∈ U . Similarly, a subset U is downwards closed if p ≤ q and q ∈ U implies

that p ∈ U .

6Recall that the power set of a set S is the set of all subsets of S.
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Definition 32. The upwards closed topology on a poset P is the topology such that

U ⊂ P is open if and only if it satisfies the property of being upwards closed.

Lemma 33. The upwards closed topology indeed defines a topology on a poset P.

Proof. The subset ∅ and P are clearly upwards closed subsets.

Let {Uα}α∈S be a collection of upwards closed subsets of P indexed by a set S. Let

p ∈
⋃
α∈S

Uα, and q ∈ P such that p ≤ q. We seek to show that q ∈
⋃
α∈S

Uα. Since p ∈
⋃
α∈S

Uα,

there exists an α such that

p ∈ Uα .

Since p ≤ q and Uα is upwards closed, then

q ∈ P .

Therefore
⋃
α∈S

Uα is upwards closed.

The intersection condition for the upwards closed topology is shown in Lemma 52. In

fact, a stronger condition is shown, namely that the arbitrary intersection of upwards closed

subsets is upwards closed.

Observation 34. Let p ∈ P. The subposets P≥p and P>p are upwards closed by the

transitive property of the ordering on P. Therefore the subposets P≥p and P>p are open

in the upwards closed topology on P. The subposets P<p and P≤p are examples of closed

subsets in the upwards closed.7

Remark 35. The upwards closed topology is sometimes referred to as the Alexandroff

topology, or the specialization topology [1] . More generally, an Alexandroff space is one in

which the arbitrary union of closed subsets is closed.

7Warning: note that the compliment of a poset P≥p is not necessarily P<p.
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Lemma 36. Let P and Q be posets. A map of sets

P→ Q

is order preserving if and only if the map is continuous with respect to the upwards closed

topology.

Proof. Let f : P → Q be an order preserving map of sets, and let U be an upwards closed

subset of Q. We seek to show that f−1(U) is an upwards closed subset of P. Let p ∈ f−1(U),

and p ≤ q in P. The map of sets f : P→ Q is order preserving, so p ≤ q implies that

(f(p) ≤ f(q)) ∈ P .

Since f(p) is in U , and U is upwards closed, then f(q) is an element of U . Therefore

q ∈ f−1(U) .

Now assume that f : P→ Q is continuous. We seek to show that f is order preserving.

Let p ≤ q in P. The element f(p) determines an upwards closed subset

Q≥f(p) := {s ∈ Q | f(p) ≤ s} .

Therefore it suffices to show that f(q) ∈ Q≥f(p). Since the map f is continuous, the subset

f−1(Q≥f(p)) is an upwards closed subset of P that contains p. Therefore q ∈ f−1(Q≥f(p)),

Applying the map f to q gives f(q) ∈ f(f−1(Q≥f(p))) = Q≥f(p). Therefore f(p) ≤ f(q) and

f is order preserving.
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Corollary 37. The upwards closed topology on a poset determines a fully faithful functor

Poset
f.f.
↪−→ Top .

Stratifications

We are now ready to define stratified spaces. A stratified space is a continuous map

from a topological space X to a poset P. A topological space X and a poset P have the same

type by Corollary 37, ensuring the notion of a continuous map from a topological space to

a poset is well-defined.

Definition 38. A stratification of a topological space X by a poset P is a continuous map

Z : X → P,

where the poset P has the upwards closed topology.

There is also a notion of a map of stratified spaces, as follows.

Definition 39. Let X → P and Y → Q be stratified spaces. A map between stratified

spaces from the first to the second is a commutative square in Top

X Y

P Q

.

Notation 40. Define the category StTop to be the category whose objects are stratified

spaces, and morphisms are maps between stratified spaces.

Notation 41. We will write X for a stratification X → P if the stratification is clear from

context. We will also write X → Y for a map of stratified spaces.



17

Observation 42. The category StTop fits into a pullback

StTop Ar(Top)

Poset Top

t
⌟ .

The pullback witnesses the category StTop as a subcategory of Ar(Top) on those arrows

such that the target of the arrow is a poset. Therefore a morphism of topological spaces

can be thought of as natural transformation between two arrows in Top. Recall a natural

transformation between arrows is a functor from the poset [1]× [1] into Top.

Let us consider a few examples of stratifications. The examples that follow have a focus

on the examples needed throughout this paper.

Example 43. Consider the stratification of S1 by the poset [1] that sends (1, 0) ∈ R2 to

0 ∈ [1], and S1\(1, 0) to 1 ∈ [1]. Consider a stratification of S2 by the poset [2] that sends

the point (1, 0, 0) to 0 ∈ [2], the remainder of the equator to 1 ∈ [2], and the north and south

hemispheres to 2 ∈ [2]. The inclusion of the equator

is a map of stratified spaces. Note that the stratification of S2 determine a sequence of closed

embeddings

∗ ↪→ S1 ↪→ S2 .

Notation 44. Throughout the remainder of this paper, let Z : X → P denote an arbitrary

stratified space.
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Definition 45. Let i ∈ P. Define the i-stratum Xi to be the fiber of Z over i

Xi X

{i} P

Z
⌟

.

The map Xi → i can be viewed as a stratification of Xi by the poset {i}, and the

inclusion of the i stratum into X is a map of stratified spaces.

Notation 46. Let Z : X → P be a stratification, and let Q be a subposet of P. Define XQ

to be the pullback

XQ X

Q P

ZQ Z
⌟ .

Note this pullback is the subspace Z−1(Q) ⊂ X. The map ZQ : XQ → Q is an example

of a stratification, and the inclusions of X≤Q ↪→ X extends to a morphism of stratified

spaces.

Notation 47. Dennote the following notation

X≥p := XP≥p

X≤p := XP≤p

X<p := XP<p

X>p := XP>p .

Definition 48. A poset P is downwards finite if for each p ∈ P, the poset P≤p is finite.

We next look at another way that stratifications arise in practice. In practice, a filtration
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of a topological space X, that is, a sequence of closed subsets

(X0 ↪→ X1 ↪→ · · · ↪→ Xn = X) ,

determines a stratification the space X by the poset [n]. The next definition abstracts this

notion where filtrations are indexed by a general poset P. We will refer to these filtrations

as P-filtrations. The next goal is to show that P-filtrations provide a host of examples of

stratified spaces. Similarly, a stratified space determines an P-filtration (Lemma 54). P-

filtrations are often how stratifications arise in practice.

Definition 49. A P-filtration of a topological space X is:

+) A functor

Z : P→ Cls(X) .

such that:

-) The union of the closed subsets determined by the functor Z : P→ Cls(X) is the space

X ⋃
p∈P

Z(p) = X .

-) For each p, q ∈ P, the union of closed subsets determined by restriction of Z to the

poset P≤p∩q is the intersection of Z(p) and Z(q)

⋃
r∈P≤p∩q

Z(r) = Z(p) ∩ Z(q) .

This is the stratification condition .

-) For any downwards closed subposet D ⊂ P, the union of the closed subsets ofX indexed
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by D is again closed ⋃
d∈D

Z(d) ∈ Cls(X) .

This is the continuity condition .

Observation 50. Note that the stratification condition is automatically satisfied in the case

that P is a linearly ordered poset. Furthermore, the continuity condition is automatically

satisfied if the poset P has the property that any proper downwards closed subset is finite,

such as when P is finite, or when P = Z≥0.

The proof of P-filtrations providing the same data as stratifications relies on a few facts

about the upwards closed topology on P, which we now show.

Lemma 51. Let P be a poset. Then the downwards closed subsets of P are the closed subsets

with respect to the upwards closed topology on P

Down(P) := {D ⊂ P|D is downwards closed.8} = Cls(P) .

Proof. First, we seek to show that every closed subset is downwards closed. Let U ⊂ P be

upwards closed, and let D be the compliment of U in P. We seek to show that D ∈ Down(P).

Assume that D is not downwards closed, that is, there exists a d ∈ D, and a p ∈ U such

that p ≤ d. The poset U is upwards closed, which implies that d ∈ U . This contradicts that

d ∈ D = P\U. Therefore D is downwards closed as desired, and

Cls(P) ⊂ Down(P) . (1.1)

Next assume that D is downwards closed, and let U be the compliment of D in P. We

seek to show that U is an open subset of P. We begin by noting

Down(P)
∼=−→ Open(Pop) . (1.2)
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The poset D is a downwards closed subset of P, which implies D◦ is an open subset in the

opposite poset Pop

D◦ ∈ Open(Pop)

by (1.2). By taking compliments, the subset U◦ is a closed subset of Pop

U◦ ∈ Cls(P◦) .

Since Cls(P◦) ⊂ Down(P◦) by (1.1), the compliment U◦ of D◦ in Pop is downwards closed in

P◦

U◦ ∈ Down(Pop).

Finally, again by (1.2), the subset U is open in P

U ∈ Open(P) .

Lemma 52. The downward closed subsets of P are closed under arbitrary unions. That is,

if {Dα}α is a collection of down-closed subsets of P, then
⋃
α

Dα is a downwards closed subset.

Proof. Let {Dα}α∈A be a collection of downwards closed subsets of P indexed by a set A. Let

d be an arbitrary element in
⋃
α∈A

Dα. The poset
⋃
α∈A

Dα is downwards closed if p ∈
⋃
α∈A

Dα and

q ≤ p implies that q ∈
⋃
α∈A

Dα. Since p ∈
⋃
α∈A

Dα, there exists an α such that p ∈ Dα. Since

Dα is downwards closed, then q ∈ Dα, and q ∈
⋃
α∈A

Dα. Therefore
⋃
α∈A

Dα is downwards closed.

This implies that the arbitrary union of closed subsets of a poset is a closed subset.

Lemma 53. Let D ⊂ P be a downwards closed poset. Then there is an equivalence of posets

D =
⋃
d∈D

P≤d .
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Proof. Clearly D is a subset of
⋃
d∈D

P≤d. Therefore we seek to show

⋃
d∈D

P≤d ⊂ D

Let x ∈
⋃
d∈D

P≤d. Then there exits a d ∈ D such that x ∈ P≤d. The element x is in P≤d if and

only if x ≤ d. Finally, since D is downwards closed and d ∈ D, then x ∈ D.

Lemma 54. Let P be a downwards finite poset. The following data is equivalent:

(1) A stratification Z : X → P.

(2) A P-filtration Z : P→ Cls(X) of a space X.

Proof. Let Z : X → P be a stratification. Define a functor

Z : P Cls(X)

p X≤p

.

The continuity of the map Z : X → P ensures that the preimage of the closed subset P≤p,

which is X≤q, is closed. Note that for p ≤ q, there is an inclusion X≤p ↪→ X≤q by the

properties of pullbacks. Therefore this functor is well-defined, and we next check that it is

a P-filtration.

We first seek to check that

⋃
p∈P

Z(p) =
⋃
p∈P

X≤p = X .

Clearly
⋃
p∈P

X≤p ⊂ X since each X≤p ⊂ X. Therefore we seek to show

X ⊂
⋃
p∈P

X≤p .
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Let x be an element of X. The map Z : X → P assigns a value Z(x) ∈ P. Therefore the

element x is in X≤Z(p), which implies that x ∈ X≤Z(x) ⊂
⋃

p∈PX≤p. The element x was

arbitrary, and therefore ⋃
p∈P

Z(x) =
⋃
p∈P

X≤p = X .

Next, we seek to show that that Z satisfies the stratification condition. That is, for

each p, q ∈ P, there is an equality

⋃
r∈P≤p∩q

Z(r) = Z(p) ∩ Z(q) = X≤p ∩X≤q .

First let x ∈ X≤p ∩ X≤q. Then x ∈ X≤p and x ∈ X≤q. Define k := Z(x). By definition of

X≤p and X≤q, the element k is less than or equal to p and q. This implies the element x is

an element of

x ∈ X≤k ⊂
⋃

r∈P≤p∩q

X≤r .

Next assume that x ∈
⋃

r∈P≤p∩q

X≤r. Then there exists an r such that x ∈ X≤r.

Furthermore this r ≤ p and r ≤ q. By the properties of pullbacks there are canonical

inclusions

X≤p ←↩ X≤r ↪→ X≤q

Therefore x ∈ X≤p and X≤q, which implies that x is in their intersection. Therefore the

stratification condition is satisfied

⋃
r∈P≤p∩q

X≤r = X≤p ∩X≤q = Z(q) ∩ Z(p) .

Next, we seek to show the continuity condition. Let D be a downwards closed subposet.
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The poset D is equivalent with the poset

D =
⋃
d∈D

P≤d

by Lemma 53. Taking preimages gives

XD = Z−1(D) =
⋃
d∈D

Z−1(P≤d) =
⋃
d∈D

X≤d .

Since the map Z is continuous, Z−1(D) ∈ Cls(X), which implies

⋃
d∈D

X≤d ∈ Cls(X) .

Therefore the functor Z : P→ Cls(X) is a P-filtration.

Next, we seek to show that a P-filtration Z : P → Cls(X) determines a stratification

Z : X → P. Define the map of sets

Z : X P

x min{p | x ∈ X≤p}
.

We seek to show that this is well-defined. Towards this goal, define the poset Px ⊂ P to be

Px := {p ∈ P | x ∈ Z(p)} .

The map Z : X → P is well-defined if and only if the poset Px has a unique minimal element

to it.

The condition that
⋃
p∈P

Z(p) = X ensures that for each x ∈ X, there exists a p ∈ P

such that x ∈ Z(p), which shows that Px is nonempty. Furthermore, note that a subset of

a downwards finite poset is also downwards finite. Therefore Px ⊂ P is a downwards finite
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poset. Assume that there is no minimal element to the poset Px. As Px is nonempty, there

exists an element p ∈ Px. Since p is not a minimal element by assumption, there exists an

element p0 < p in Px. Now assume there are elements {p, p0, p1, . . . , pn−1, pn} ⊂ Px such that

{pn < pn−1 < · · · < p0 < p}

Since the element pn is not a minimal element, there always exists a pn+1 ∈ Px such that

pn+1 < pn, and therefore by the transitive property of the relation on P,

{pn+1 < pn < pn−1 < · · · < p1 < p0 < p} .

Therefore there exists an infinite sequence of elements that are less than p in Px, which is

to say (Px)≤p is infinite. This is a contradiction to the fact that the poset Px is downwards

finite. Therefore it must be that Px has a minimal element.

Next, we seek to show that the minimal element is unique. Assume that p, q are distinct

minimal elements of Px. The stratification condition implies that

⋃
r∈P≤p∩q

Z(r) = Z(p) ∩ Z(q) .

Note that the right-hand side is nonempty, as the point x ∈ X is in both Z(p) and Z(q) by

definition of Px. Therefore the set

P≤p∩≤q ̸= ∅ .

Moreover, there exists an element l ∈ P≤p∩≤q such that x ∈ Z(l), which implies that l ∈ Px.

This contradicts that p, q are distinct minimal elements of Px, since l ≤ p and l ≤ q.

Therefore there is a unique minimal element of Px. This verifies that the map of sets

Z : X → P is well defined.
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Last, we seek to show that the map Z is continuous. The map Z is continuous if the

preimage of every downward closed set D is a closed subset of X. By Lemma 53

D =
⋃
d∈D

P≤d .

Taking preimages gives

Z−1(D) =
⋃
d∈D

Z−1(P≤d) .

Assuming that Z−1(P≤p) = X≤p = Z(p), then

Z−1(D) =
⋃
d∈D

Z−1(P≤d) =
⋃
d∈D

X≤d =
⋃
d∈D

Z(d) .

By the continuity condition, the last term is closed, and therefore Z−1(D) is closed.

Therefore, what remains to be shown is that

Z−1(P≤p) = X≤p .

Let x ∈ Z−1(P≤p). Applying the map Z gives

Z(x) = min{r ∈ P|x ∈ Z(r)} ∈ Z ◦ Z−1(P≤p) = P≤p .

Therefore since Z(x) = r ≤ p, applying the functor Z gives

x ∈ Z(r) ↪→ Z(p) .

Therefore x ∈ Z(p).

Next assume that x ∈ Z(p). We seek to show that x ∈ Z−1(P≤p). Applying the

continuous function Z to x reports the minimum r ∈ P such that x ∈ Z(r). Again, consider
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the poset

Px = {s ∈ P | x ∈ Z(s)} .

The element r is the unique minimal element of this poset, and p ∈ Px. Therefore r ≤ p

since p is also in this poset by assumption. Therefore x ∈ Z−1(Px) ⊂ Z−1(P≤p).

Examples of Stratifications

Example 55. Recall that by Lemma 54, a stratification

Z : X → [n]

determines, and is determined by a [n]-filtration

Z : P Cls(X)

p X≤p

.

Note that for a linearly ordered poset, the stratification condition and the continuity

condition on a functor Z : P → Cls(X) is automatically satisfied. Furthermore, the poset

[n] has a terminal element, and as such
⋃

k∈[n]
Z(k) = Z(n) = X. Therefore, a functor

F : [n − 1] → Cls(X) uniquely determines a [n]-filtration by extending the functor F to

[n], by sending the element n ∈ [n] to X ∈ Cls(X). In the case of n = 1, this is to say that

a [1]-filtration of a topological space X is the data of a closed subset of X.

Example 56. Consider a sequence of closed embeddings

X0 ↪→ X1 ↪→ · · · ↪→ X := Xn .

This gives a canonical functor
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[n] Cls(X)

i Xi

which is the same data as a stratification

Z : X [n]

x max{i | x ∈ Xi}

by Lemma 54.

Convention 57. Frequently in what follows, we will name a sequence of closed embeddings

into a space X that are indexed by a poset P in order to define a P-filtration or stratification

just as in Example 56 . An explicit example of this is the next example.

Example 58. Define O(1) := {−1, 1} to be the group of units of the ring Z. Define the

action of O(1) on Sn to be the antipodal group action

O(1)× Sn Sn

(λ, x1, . . . , xn+1) (λx1, . . . , λxn+1)

Define the real projective space RPn to be the quotient of Sn by this group action

RPn := (Sn)/O(1) .

The canonical [n]-filtration

S0 ↪→ S1 ↪→ · · · ↪→ Sn

respects this O(1)-action. Therefore it induces a [n]-filtration on the quotient spaces

RP0 ↪→ RP1 ↪→ · · · ↪→ RPn .
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In the case of n = 2, we get a stratification of RP2 pictured below. To visualize this

stratification, restrict S2 to the northern hemisphere, so RP2 is pictured as a disk, with

antipodal points on the boundary identified

.

The green points are identified and are the 0-stratum, which is the the space RP0 ≃ ∗. The

blue lines are identified as indicated to get the 1-stratum, which is the space to get the space

RP1\RP0. The red disk is the 2-strataum, which is the space RP2\RP1. Note that this

decomposes the space RP2 into the union of contractible strata.

Example 59. Let ZX : X → P and ZY : Y → Q be stratifications of topological spaces.

Taking the products in Top induces a product stratification

ZX × ZY : X × Y → P× Q .

A particular case of interest is with Q = ∗ which induces a product stratification

X × Y → P× ∗ ≃ P .

Here the stratification map can be factored as the projection onto the X coordinate,

composed with the stratification map ZX .

Example 60. There is a [n]-filtration of the odd dimensional spheres

S1 ↪→ S3 ↪→ · · · ↪→ S2n+1 .
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given by inclusion into the first coordinates. The case of n = 1 determines a [1]-filtration

S1 ↪→ S3 pictured as follows

.

The sequence of closed embeddings (S1 → S3 → · · · → S2n+1) determines a [n]-filtration.

Therefore by Lemma 54, this determines a stratification of the (2n+1)-sphere by the poset

[n]. Throughout this paper, define S2n+1 ∈ StTop to be this stratification.

Definition 61. Define the infinite sphere S∞ to be the union of spheres

S∞ := colim
(
S1 ↪→ S3 ↪→ . . .

)
=
⋃
n∈Sn

S2n+1 .

The stratifications S2n+1 extends to a stratification

colim(S1 ↪→ S3 ↪→ . . . ) = S∞ → colim([0] ↪→ [1] ↪→ . . . ) = Z≥0

by taking colimits. Define S∞ to be this stratification of the infinite sphere.

Example 62. This example is the main example of a stratification used in this paper. Each

sphere S2n+1 is canonically considered as a subset of Cn+1 by the identification of the spaces

Cn+1 ≃ R2n+2. Consider the diagonal action of T on Ci+1

T× Ci+1 C× Ci+1 C
(p, (x1, . . . , xi)) (p, (x1, . . . , xi)) (px1, . . . , pxi) .

scale

The scale map is the canonical scaling map that defines a complex vector space structure on
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Ci. This action restricts to an action on S2i+1. Define the complex projective space CPi

to be the quotient

CPi := S2i+1
/T

by this T action. Furthermore, let Span be the quotient map

Span : S2i+1 CPi .

The inclusion maps S2i+1 ↪→ S2j+1 for i ≤ j are T-equivariant with respect to the T-action,

which induces a sequence of closed embeddings of the quotient spaces

S1 S3 . . . S2n+1

CP0 CP1 . . . CPn

.

Again by Example 56, this determines a stratification of the topological space CPn by the

poset [n] . Define CPn to be this stratification of CPn. Explicitly, the stratification is given

by the map of topological spaces

Z : CPi [i]

Span(t0, . . . , ti) max{k | tk ̸= 0}
.

Just as in Example 60, the stratification of CPi extends to a stratification

Z : CP∞ := colim
(
CP0 → CP1 → . . .

)
→ colim ([0]→ [1]→ . . . ) = Z≥0

upon taking colimits. Throughout this paper, CP∞ will refer to this stratified space.
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Cones of Stratified Spaces

There are particular constructions in the category StTop that will be used frequently

throughout this paper. One in particular that is prevalent in the theory of conically stratified

spaces of [10] and conically smooth stratified spaces [5] is that of the cone of a stratified space.

We introduce this construction now.

Notation 63. Define the open cone of a topological space X as the pushout

X × {0} X × R≥0

{0} C(X)

! ⌟

.

Define the closed cone of a topological space X as the pushout

X × {0} X × [0, 1]

{0} C(X)

!

⌟

.

Observation 64. A map of topological spaces f : X → Y determines a canonical map

C(X)→ C(Y ) induced by the map

R≥0 ×X
id×f−−−→ R≥0 × Y .

Therefore the cone can be considered as a functor

C(−) : Top→ Top .

Similarly, the closed cone defines a functor

C(−) : Top→ Top .
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Notation 65. Define Cn(X) to be the topological space obtained by applying the cone

functor n times. Similarly, define Cn(X) to be the topological space obtained by applying

the closed cone functor n times.

Example 66. Note the commutative diagram

Sn−1 × {0} ∗

Sn−1 × R≥0 Rn

!

0

scale

,

where the scale map is given by canonically including Sn−1 × R≥0 into Rn × R, and then

scaling using the canonical vector space structure on Rn. This induces a homeomorphism

from the cone on Sn−1 to Rn

C(Sn−1) Rn

[(x1, . . . , xn), t] (tx1, . . . , txn)

≃

.

Here is a picture of the identification C(S1) ≃ R2

.

The blue circle is the inclusion of S1 into the cone and into R2, and the black point is the

cone point mapping to (0, 0) ∈ R2.

Notation 67. Let P be a poset. Define the left cone P◁ to be the poset determined by
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adjoining a minimal element − to P. The category P◁ is presented by the pushout

P× {0} P× [1]

∗ P◁

⌟

in Poset.

Observation 68. Consider the stratification of R≥0 induced via Lemma 54 by the [1]-

filtration

{0} ↪→ R≥0 .

For a stratification Z : X → P there is a canonical stratification of C(X)

X × {0} X × R≥0

P× ∗ P× [1]

{0} C(X)

∗ P◁

induced by the product stratification X×R≥0 → P×[1] as in Example 59. This stratification

is refered to as the conical stratification . Conical stratifications define a functor

C(−) : StTop→ StTop .

Similarly the closed cone defines a functor

C(−) : StTop→ StTop .
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Example 69. Consider the stratification RP1 → [1] in Example 58, where the 0-strata is

given by the subspace RP0 ∼= ∗. The conical stratification of the stratification on RP1 gives

a stratification

C(RP1)→ [1]◁ ≃ [2]

that is depicted in the following diagram

.

Here the green point is the cone point, which is the 0-stratum, the blue line9 is the 1-stratum,

and the red is the preimage of 2-stratum.

Cosimplicial Stratified Spaces

We construct the standard cosimplicial stratified space and extended standard cosimpli-

cial stratified space functors in this section. These two functors will be used in the definitions

of the ∞-category of conically smooth stratified spaces and in the construction of the exit

path ∞-category.

Definition 70. The k-simplex is the topological space

∆k :=


{0, . . . , k} α−→ [0, 1]

∣∣∣∣ ∑
i∈{0,...,n}

α(i) = 1


9Note the two blue lines in the picture are identified in the space C(RP1).
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Given a map [k]
φ−→ [j] between posets, define the map

φ∆ : ∆k ∆j(
{0, . . . , k} α−→ [0, 1]

)
({0, . . . , j} [0, 1])

l


∑

i∈φ−1(l) α(i) φ−1(l) ̸= ∅

0 φ−1(l) = ∅

φα

.

Definition 71. Define the standard cosimplicial topological space to be the functor

∆ Top

[k] ∆k(
[k]

φ−→ [j]
) (

∆k φ∆−→ ∆j
) .

Observation 72. There is a canonical inclusion of the (n− 1)-simplex into the n-simplex

∆n−1 ∆n

({0, . . . , n− 1} α−→ [0, 1]) ({0, . . . , n− 1}
∐
{n} α

∐
0−−−→ [0, 1])

that extends a map {0, . . . , n − 1} to the set {0, . . . , n} by sending n to 0 ∈ [0, 1]. The

extension by zero map is the unique extension that satisfies the property of being an element

of ∆n:
{0, . . . , n− 1} {0, . . . , n}

[0, 1]

α ext0

The inclusions ∆i−1 → ∆i induces a [n]-filtration of ∆n

∆0 ↪→ ∆1 ↪→ · · · ↪→ ∆n .
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The explicit map for this stratification is

st(n) : ∆n [n](
{0, . . . , n} α−→ [0, 1]

)
max{i|α(i) ̸= 0}

.

Furthermore, for each ϕ : [k]→ [j], the cosimplicial maps ϕ∆ : ∆k → ∆j are stratified maps.

Notation 73. Let ∆k be the stratified space st(k) =
(
∆k → [k]

)
.

Observation 74. There is an homeomorphism of spaces C(∗) ∼= ∆1 given by

C(∗) = [0, 1]× ∗ ∆1

(t, ∗) (1− t, t)
.

Note that we use the canonical identification of C(∗) ∼= [0, 1]× ∗ by inspecting the pushout

diagram of the cone. Furthermore, there is a homeomorphism of topological spaces between

C(∆n−1) ∼= ∆n implimented by the map

C(∆n−1) ∆n

[((α1, . . . , αn), t)] (1− t, tα1, . . . , tαn)
.

Together, these two isomorphisms imply the equivalence

Cn(∗) ∼= ∆n

in StTop.
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Example 75. The stratified space ∆2 is

x
y

z

1 1

1

.

Definition 76. The standard cosimplicial stratified space is the functor

st : ∆ StTop

[k] ∆k(
[k]

φ−→ [j]
) (

∆k φ∆−→ ∆j
) .

Furthermore there is a homeomorphism of topological spaces.

Definition 77. The extended k-simplex ∆k
e is defined to be the topological space

∆k
e :=


{0, . . . , k} α−→ R

∣∣∣∣ ∑
i∈{0,...,n}

α(i) = 1


This can be thought of as a thickening of the k−simplex.

Definition 78. The extended cosimplicial topological space is the functor

∆ Top

[k] ∆k
e(

[k]
φ−→ [j]

) (
∆k

e

φ∆e−−→ ∆j
e

) .

Definition 79. There is a canonical fully faithful functor

Top→ StTop
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by sending a topological space X to the constant stratification X → ∗. The extended

cosimplicial stratified space together with the trivial stratification determines a functor

ste : ∆ Top StTop

k ∆k
e

(
∆k

e → ∗
)

Define the stratfied extended k-simplex as

∆k
e := ste(k) = (∆k

e → ∗) .

Conically Smooth Stratified Spaces

The theory of conically smooth stratified spaces was developed in [5]. One benefit of

conically smooth stratified spaces is that they admit an∞-category of exit paths. Exit-path

categories are developed in [4]. We give a brief recollection of these topics here, with a special

focus on the results that will be used in the remainder of this paper.

C0 Stratified Spaces

Definition 80. Define the category of C0-stratified spaces to be the smallest full subcategory

of StTop such that

(1) The empty set ∅ is a C0 stratified space, stratified by the empty poset.

(2) If X → P is a C0 stratified space and X and P are compact, then the conical

stratification

C(X)→ P◁

is a C0 stratified space.
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(3) If X → P and Y → Q are C0 stratified spaces, then the product stratification

X × Y → P× Q

is a C0 stratified space.

(4) If X → P is a C0 stratified space, and there is an open embedding of stratified spaces

U X

Q P

open

⌟
,

(5) If X → P is a stratified topological space admitting an open cover by C0 stratified

spaces, then X → P is a C0 stratified space.

Example 81. The stratified space

R≥0 −→ [1] , x 7→


0 x = 0

1 x ̸= 0

,

is a C0 stratified space, since C(∗) ∼= R≥0.

Example 82. Consider the 1-stratum of the previous example

R>0 R≥0

{1} [1]

⌟
.

Since R>0 ↪→ R≥0 is an open embedding, the stratification R>0 → {1} is a C0-stratification.

By identifying R>0
∼= R, then R→ ∗ is a C0 stratification. By taking products, the product
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stratification

Rn → ∗

is a C0-stratification.

Example 83. A C0-manifold M is stratified by a point is an example of a C0-stratified

space, since it admits an open cover by Euclidean spaces.

Definition 84. A C0-basic is a C0 stratified space of the form Rn × C(L) → P◁ where

n ≥ 0, L→ P is a compact C0 stratified space, and the stratification of Rn × C(L)→ P◁ is

the product of the trivial stratification Rn → ∗ and the conical stratification C(L)→ P◁.

Definition 85. The depth of a stratified space X → P is defined to be the depth of its

image in the stratifying poset P (Definition 14).

Lemma 86. Let X → P be a C0-stratified space. The p-stratum Xp is a topological manifold.

Proof. This is Corollary 2.3.5 of [5].

Definition 87. Let Z : X → P be a nonempty C0-stratified space. The local dimension

of x ∈ X is the Lebesgue covering dimension of X at x ∈ X. Denote this value as dimx(X).

The dimension of Z : X → P is the supremum of the local dimensions

dim(X) = sup
x∈X

dimx(X) .

Definition 88. Let Z : X → P be a C0-stratified space. The local topological depth at

x ∈ X is defined to be the difference in local dimensions

depthx(X) = dimx(X)− dimx(XZ(x))
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The topological depth of Z : X → P is defined to be the supremum of the local depths

depth(X) := sup
x∈X

depthx(X) .

Example 89. Let Rn × C(Z) be a C0-basic. Then

dim(Rn × C(Z)) = dim(Z) + 1 + n

and

depth(Rn × C(Z)) = depth(Z) + 1 .

Conically Smooth Stratified Spaces

We now endow the notion of C0 stratified spaces with more regularity: that of conically

smooth stratified space. We recall the definition of a conically smooth stratified space, and

then give some explanation of the terms involved. See [5] for a thorough explanation of

conically smooth stratified spaces.

Definition 90 (Heuristic (see [5] for details)). We simultaneously define the notion of a

conically smooth stratified space and of a conically smooth map between such.

(1) A conically smooth stratified space is

• A C0-stratified space X → P .

• A conically smooth atlas , which is a collection

U :=
{(
nα, Zα,Rnα × C(Zα)

φα−→ X
)}

α

in which each nα ≥ −1 is an integer, each Zα is a compact conically smooth

stratified space, and each φα is an open embedding between stratified spaces.
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These data are required to satisfy three conditions:

• The collection U is an open cover of X.

• The transition maps in U are conically smooth .

• A is maximal with respect to the above two conditions.

A conically smooth stratified space (X → P,U) is often simply denoted as its

underlying topological space X if the other data are understood.

(2) Let X and Y be conically smooth stratified spaces. A map between stratified spaces

X
f−→ Y is conically smooth if it is with respect to each member of the atlases of X

and of Y . In turn, a map between basics Rn×C(I)
f−→ Rm×C(J) is conically smooth if

it is away from cone loci and the limit of the difference quotient along each cone locus

exists and is conically smooth.

What may appear as a circular definition is, in fact, an inductive definition: induction

on depth. See [5] for all details.

Example 91. The notion of a conically smooth stratified space is inductive. The base case

of a conically smooth stratified space is the C0-stratification

∅ → ∅ .

This space is defined to have a unique conically smooth atlas.

Example 92. Let M be a smooth manifold. M is canonically regarded as a stratified space

by taking the trivial stratification

M → ∗ .
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The stratification M → ∗ has a canonical conically smooth atlas by taking the smooth atlas

of M .

The regularity of a conically smooth stratified space X is precisely to enable the

definition of a link . Its construction is a theorem from [5], which we state informally

below, though first make the following.

Observation 93. Let n ≥ −1 be an integer. Let L be a compact conically smooth stratified

space. There is a diagram among conically smooth stratified spaces:

Rn × L inclusion0 //

pr

��

Rn × R≥0 × L
quotient
��

Rn // Rn × C(L) .

(1.3)

The next theorem from [5] references the notion of a conically smooth stratified

space with boundary , and proper constructible bundles , also defined in [5].

Theorem 94 ([5]). Let X0 ⊆ X be a closed stratum in a conically smooth stratified space.

The collection of diagrams (1.3) indexed by the basics in the atlas for X that intersect X0

patch together as a diagram

LinkX0(X) inclusion //

π

��

BlX0(X)

��
X0

// X,

(1.4)

in which BlX0(X) is a conically smooth stratified space with boundary LinkX0(X), and the

downward maps are proper constructible bundles

Example 95. Let W ↪→ M be a properly embedded smooth submanifold of a smooth
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manifold. Consider the stratification

(W ⊆M) :=



M [1]

x


0 x ∈ W

1 x ̸= W


.

The smooth structure of M conically supplies a conically smooth structure on this stratified

space (W ⊆M). As so, W ⊆ (W ⊆M) is a closed stratum. In this case, the diagram (1.4)

can be identified as the diagram

S(NW⊆M) inclusion //

��

BlW (M)

��
W // (W ⊆M),

in which the top right term is the (real) blow-up of M along W , and the top left term is the

unit normal bundle of the embedding W ↪→M .

Definition 96. Define the category Strat to be the category of conically smooth stratified

spaces, with morphisms consisting of conically smooth maps.

Definition 97. The category Strat can be regarded as a Kan-enriched category Strat as

follows.

+) An object of Strat is defined to be an object of Strat, that is, a conically smooth

stratified space.

+) The Kan complex between two stratified spaces X → Y and Y → Q is defined to be

HomStrat(X, Y ) = HomStrat(X ×∆•
e, Y )
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Remark 98. The simplicial set HomStrat(X × ∆•
e, Y ) is indeed a Kan complex by Lemma

4.1.4 of [5].

Definition 99. Define the ∞-category Strat as the simplicial nerve of Strat.

Definition 100. A conically smooth map X
f−→ Y is a stratified homotopy equivalence if

and only if it fits into a diagram in Strat

X X

X × R X × R

Y X Y X

Y × R Y × R

Y Y

id×const0

id×const1

idY

H′

g f

id×const0

id×const1

id×const1

id×const0

idX

g

id×const0

id×const1

H

In which both H and H ′ lie over R. That is, H and H ′ fit into the following diagrams

X × R Y × R Y × R X × R

R R
π2

H

π2

H′

π2 π2

.

Lemma 101. The natural functor Strat→ Strat induces an equivalence of ∞−categories

Strat Strat

Strat[H−1]
≃

from the localization of the ordinary category Strat with respect to stratified homotopy

equivalences and the ∞-category associated to the Kan-enriched category Strat.

Proof. This is Theorem 2.4.5 in [4].
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Observation 102. Let Rn1 × C(Sd1−1) ↪→ Rn2 × C(Sd2−1) be a map between basics, such

that the canonical map Rn1+d1 ↪→ Rn2+d2 induced by the scaling map is smooth. Then the

transition map between basics is conically smooth.

Exit Path ∞-Categories

This section introduces the exit path ∞-category of a conically stratified topological

space. Before stating formally what the exit path∞-category is, we work through an informal

example to give some geometric intuition.

Given a space X, the fundamental groupoid Π1(X) is the category whose objects are

points in a space X, morphisms are paths in X up to homotopy (rel end-points), and

composition is given by concatenating paths. After fixing a stratification on a space X , we

can consider a subcategory of Π1(X), consisting of those paths that ”exit” lower-dimensional

strata into a higher-dimensional strata. The justification of considering the exit path category

is seen by Theorem 112, which states that the∞-category of constructible sheaves of spaces

(also known as constructible ∞-stacks) is free on the exit-path ∞-category – here, a sheaf

is constructible if its restriction to each stratum is locally constant. Furthermore, given a

conically smooth staratified space X → P, we can recover the underlying space X from its

exit path∞-category by formally inverting all of the morphisms in the exit path∞-category

(See Theorem 3.3.12 of [4]).

Recall the stratification RP2 → [2] of Example 58

.
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To get some intuition for the exit path ∞-category, we informally seek to identify the ∞-

category Exit(RP2). We begin by noting that each stratum is contractible, since the i-stratum

is an i-dimensional disk for each i ∈ [2]. Therefore

Obj(Exit(RP2)) ≃ {0, 1, 2} .

Starting at the 0-stratum. There are two ways to exit into both the 1-stratum and the

2-stratum picture in black

.

There is also essential two ways to exit from the 1-stratum to the 2-stratum up to homotopy,

which again are pictured in black

.

Through careful identification of the exiting paths, the exit path category of RP2 can be

identified as

Exit(RP2) =
1

0 2

O(1)O(1)

O(1)

where the composition is given by group operation on O(1). This discusion introducing
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the exit path ∞-category was meant to be informal, and give some geometric intuition for

the exit path ∞-category. We now proceed to give a formal introduction to the exit path

∞-category.

Definition 103. The exit path ∞-category functor is the restricted yoneda functor

Exit : Strat
yoneda−−−→ PShv(Strat)

st∗−→ PShv(∆) .

where st is the standard cosimplicial stratified space functor of Definition 76.

The following lemma identifies the spaces of 0-simplicies and the space of 1-simplices

of the simplicial space Exit(X) for a conically smooth stratified space X → P.

Lemma 104. Let X → P be a conically smooth stratified space. The space of 0-simplices of

Exit(X) is canonically identified

Exit(X)([0]) =
∐
p∈P

Xp

as the coproduct of the underlying spaces of the strata of X. For each p, q ∈ P, the space of

1-simplices from Xp to Xq is canonically identified

(Xp ×Xq) ×
Exit(X)({0}⨿{1})

Exit(X)([1]) ≃ LinkXp(X)q

as the underlying space of p′-stratum of the link of the p-stratum.

Proof. This is Lemma 3.3.5 of [4] .

Corollary 105. The functor Exit(Strat)→ PShv(∆) takes values in complete Segal spaces,

and therefore presents an ∞-category.

Proof. This is Corollary 3.3.6 of [4].
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Observation 106. Let X → P be a conically smooth stratification. There is a canonical

functor between ∞-categories Exit(X)→ P presented by

Exit(X)([n]) := HomStrat (∆
n, X) HomPoset ([n],P)

((∆n → [n])→ (X → P)) ([n]→ P)

Corollary 107. Let X → [n] be a closed [n]-filtration. The simplicial space Exit(X) is a

complete Segal space, and therefore presents an ∞-category.

Constructible Sheaves

We recall here one of the main theorems of [4] and [11] regarding the relation of the

exit path ∞-category to constructible sheaves (Theorem 112) . We first work up to stating

what a constructible sheaf is, before giving the theorem.

Definition 108. Consider the functor

Spaces Shv(X)

Z Maps(−, Z)
.

The essential image of this functor is the constant sheaves on X.

Definition 109. The locally constant sheaves on a space X is the full ∞-subcategory

of sheaves on X

Shvloc(X) ⊂ Shv(X)

on those presheaves F such that there exists an open cover {Uα}α∈A of X such that for all

α ∈ A

F|Uα ∈ Shv(Uα)

is constant.
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Definition 110. For a stratified space X → P, the constructible sheaves on X is the

full ∞-subcategory of sheaves on X

Shvcbl(X) ⊂ Shv(X)

on those sheaves F such that for all p ∈ P, the restriction of F to the p-stratum

F|Xp ∈ Shv(Xp)

is a locally constant sheaf.

Remark 111. See Lemma 2.2.1 of [4] for equivalent conditions of a sheaf being constructible.

Theorem 112. Let X → P be a conically stratified space. Then there is an equivalence of

∞-categories

Fun(Exit(X), Spaces) ≃ Shvcbl(X)

between the ∞-category of copresheaves on Exit(X) and those sheaves on X which are

constructible with respect to the stratification X → P.

Proof. See Lemma 3.3.9 of [4], Section A.9 of [11].

Observation 113. Theorem 112 only requires a stratification X → P to be conical, instead

of conically smooth. However, the exit path ∞-category of a conically smooth stratified

space is often much easier to identify, as seen by Lemma 104. This can be seen in particular

examples such as in Proposition 162 and Theorem 165 which identify the exit path categories

of conically smooth stratifications of S∞ and CP∞ respectively.
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Closed P-filtrations are Conical

Recall the Z≥0-filtration of Example 62

colim(CP0 → CP1 → . . . ) = CP∞ .

More generally consider the following class of stratifications.

Definition 114. A P-filtration Z : P→ Cls(M) is a closed P-filtration if:

-) M is a smooth manifold.

-) The poset P is downwards closed and linearly ordered.

-) For each p ≤ q ∈ P, the inclusion

Z(p) ↪→ Z(q)

is a closed embedding of smooth manifolds.

This section seeks to show that there is a notion of an exit path∞-category of a closed

P-filtration X → P. The proof relies on induction on the depth of the poset P. In the case

that P is finite, we show that the stratification X → P is conically smooth. In [4], it is

shown that the exit path∞-category exists for a conically smooth stratified space. Consider

however the P-filtration of CP∞

(
CP0 ↪→ CP1 ↪→ . . .

)
= CP∞ .

Conically smooth stratified spaces have the property that the space is locally finite

dimensional, which fails in the case of CP∞. Therefore this space is not conically smooth.
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However, the closed P-filtration and functorality of Exit(−) gives a sequence

(
Exit(CP0) ↪→ Exit(CP1) ↪→ . . .

)
.

Therefore one can consider the colimit of these exit path ∞-categories in order to define

Exit(CP∞). Therefore the main goal is a well defined notion of an exit path ∞-category for

closed P-filtrations.

A piece of this work involves showing that finite depth closed P-filtrations are conically

smooth. When constructing a basic about a given point in a stratification X → P, we will

end up needing to contemplate a stratified space of the form C(W )× C(V ). We construct a

space W ≬ V , so that there is an equivalence of stratified spaces

C(W )× C(V ) ∼= C(W ≬ V ) . (1.5)

A feature about this stratification on the left is that it will not arise as the product

of conical stratifications with W and V . However the right side of (1.5) arises as a conical

stratification from a stratification on W ≬ V . Therefore we introduce the notion of joins

before proving finite depth closed P-filtrations are conically smooth.

Join Construction for Topological Spaces and Posets

Definition 115. The categorical join of two ∞-categories C and D is the ∞-category

C⋆D fitting into a colimit diagram in Cat(∞,1):

C×D× {1} D

C×D× {0} C×D× [1]

C C⋆D

.
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Observation 116. Let P and Q be posets regarded as ∞-categories. Their join P⋆Q is

also a poset, which is readily seen by inspecting the colimit diagram in Definition 115 .

Observation 117. There is a canonical inclusion C⨿D ↪→ C⋆D that is fully faithful. Also,

for each c ∈ C and d ∈ D, the space of morphisms is contractible

HomC⋆D(c, d) ≃ ∗ .

The join can in fact be characterized as the smallest ∞-category satisfying these two

properties.

Example 118. The join of [n] and [m] is isomorphic to the poset [n+m+ 1].

[n]⋆[m] = {0n ≤ 1n ≤ n ≤ 0m ≤ 1m ≤ 2m ≤ . . .m} .

Here the subscripts keep track the image of the inclusion [n]
∐
[m] ↪→ [n]⋆[m].

Example 119. Consider the poset

+

Q := 0 1

−

.

The join Q⋆Q is the poset

+ +

0 1 0 1

− −

.
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Here the colors reflect the two fully faithful embeddings of Q.

Observation 120. The categorical join C0⋆C1 of two ∞-categories C0 and C1 is equivalent

to the coend (Definition 333) of the two functors

L : sd([1]) Cat(∞,1)

I ⊂ [1] I

R : sd([1])op Cat(∞,1)

I ⊂ [1]
∏
i∈I
Ci

.

This allows for a more general categorical join.

Definition 121. We define a more general version of the join as follows. Consider a collection

of ∞-categories {Cα}α∈P indexed by a poset P. The categorical join is the ∞-category

⋆
k∈P

Ck defined to be the coend of the two functors

L : sd(P) Cat(∞,1)

{p0 ≤ · · · ≤ pn} ⊂ P (p0 → · · · → pn)

R : sd(P)op Cat(∞,1)

{p0 ≤ · · · ≤ pn}
∏

i∈{p0,...,pn}
Ci

.

Note in the case that P = [1] this recovers the usual definition of the categorical join.

Definition 122. Let X and Y be topological spaces. The topological join X ≬ Y is the
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colimit in Top:

X × Y × {1} Y

X × Y × {0} X × Y × [0, 1]

X X ≬ Y

πX

πY

.

Observation 123. Let [0, 1] be stratified via Lemma 54 using the [1]-filtration

{0} ↪→ [0, 1] .

Let X → P and Y → Q be stratified spaces. The canonical map from the topological join

diagram to the categorical join diagram

X × Y × {1} Y

X × Y × {0} X × Y × [0, 1] P× Q Q

X P× Q× {0} P× Q× [1]

P

induces a canonical stratification

X ≬ Y → P⋆Q .

Remark 124. While this is the canonical stratification on joins, this is not the stratification

used frequently in this paper on the joins.

Observation 125. The join X0 ≬ X1 is homeomorphic to the coend (Definition 333) of the
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two functors

L : sd([1]) Top

I ⊂ [1] ∆I

R : sd([1])op Top

I ⊂ [1]
∏

i∈I Xi

.

This homeomorphism is the canonical map induced by the map of topological spaces

X × Y ×∆1 X × Y × [0, 1]

(x, y, (α0, α1)) (x, y, α1)
.

Definition 126. We define a more general version of the join as follows. Consider a collection

of topological spaces {Xα}α∈P indexed by a poset P The join is the topological space ≬
k∈P

Xk

defined to be the coend of the two functors

L : sd(P) Top

{p0 ≤ · · · ≤ pn} ⊂ P ∆{p0,...,pn}

R : sd(P)op Top

{p0 ≤ · · · ≤ pn} ⊂ P
∏

i∈{p0,...,pn}
Xi

.

Note in the case that P = [1] this recovers the usual definition of the join.

Observation 127. Let {Xi}i∈[n] be a collection of non empty topological spaces. The

coend construction identifies the join ≬
i∈[n]

Xi as the quotient of the space ∆
n×

∏
i∈[n]

Xi by the

equivalence relation generated by

(t0, . . . , ti = 0, . . . tn, x0, . . . , xi, . . . xn) ∼ (t0, . . . , ti = 0, . . . , tn, x0, . . . , x
′
i, . . . , xn) .
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A point (t0, . . . , tn, x0, . . . , xn) is sometimes written (See [8]) as a sum

∑
i∈[n]

tixi := (t0, . . . , tn, x0, . . . , xn)

where the equivalence relation on ∆n ×
∏
i∈[n]

Xi states that if ti = 0, the term tixi may be

omitted from the sum.

Example 128. The join ≬
i∈[n]
∗ is the n-simplex

≬
i∈[n]
∗ ∼= ∆n .

Observation 129. Consider the join of n+1 topological spaces ≬
i∈[n]

Xi. There is a canonical

map

≬
i∈[n]

Xi → ≬
i∈[n]
∗ = ∆n .

For any non-empty subset I ⊂ [n], there is a pullback

≬
i∈I
Xi ≬

i∈[n]
Xi

∆I ∆n

⌟ .

Notation 130. The closed embeddings

≬
i∈I

Xi ↪→ ≬
i∈[n]

Xi

induce a canonical [n]-filtration of ≬
i∈[n]

Xi. These closed embeddings give a canonical

stratification of ≬
i∈[n]

Xi by considering the [n]-filtration

X0 ↪→ X0 ≬ X1 ↪→ · · · ↪→ ≬
i∈[n]

Xi .
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Denote the stratification induced by this [n]-filtration as

≬
i∈[n]

Xi := ≬
i∈[n]

Xi → [n]

Example 131. The join of two spheres Si and Sj is a sphere of dimension i+ j + 1

Si ≬ Sj Si+j+1

((t0, t1), x, y)
(t0x,t1y)

∥(t0x,t1y)∥

≃

.

Definition 132. Let

{0, . . . , n} Top∗/

i (∗i ∈ Xi)

be a selection of n + 1 pointed topological spaces. There is a pointed stratification on

the product ∏
k∈[n]

Xk [n]

(x0, . . . , xn) {max(i)|xi ̸= ∗i}
.

Example 133. The cone on a topological space X can be canonically considered as a

pointed set by taking the cone point as the selected basepoint. Therefore given a collection

of topological spaces {Xi}i∈[n] there exists a pointed stratification

∏
i∈[n]

C(Xi)→ [n] .

Define
∏
i∈[n]

C(Xi) to be the pointed stratification.

Example 134. For any group G, the identity element is a canonical choice of a basepoint,

which gives a forgetful functor from the category of groups to the category of pointed

topological spaces.

Groups→ Top∗/
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In particular, we take 0 ∈ Rm to be the canonical basepoint. For a [n]-indexed collection of

Euclidean spaces {Rmi}i∈[n], denote
∏
i∈[n]

Rmi as the pointed stratification of the product of

the Euclidean spaces.

Lemma 135. Let X and Y be compact topological spaces. The map of spaces

(X × R>0)× (Y × R>0) (X × Y × [0, 1])× R>0

((x, tx), (y, ty)) ((x, y, ty
tx+ty

), tx + ty)

induces a map on the stratified spaces

J : C(X)× C(Y ) C(X ≬ Y )

([x, tx], [y, ty]) [(x, y, ty
tx+ty

), tx + ty]

which is an isomorphism in StTop.

Proof. First consider the map on underlying topological spaces. Corollary 3.4.10 of [5] gives

that this map is a homeomorphism of topological spaces, therefore it suffices to check this

map is a map of stratified spaces. The stratification on the left hand side is represented by

the [2]-filtration

(∗X , ∗Y ) := ([x0], [y0]) ↪→ C(X)× ∗Y → C(X)× C(Y ) .

The stratification on the right hand side is represented by taking the conical stratification

of the [1]-filtration

X ↪→ X ≬ Y.

J by definition sends the 0-stratum of C(X)× C(Y ), which is the point ([x, 0], [y, 0]),

to the cone point [(x, y, 0), 0] by definition. The 1-stratum of the space C(X)× C(Y ) is



61

identified as

(
C(X)× C(Y )

)
1
:= {([x, tx], [y, ty]) ∈ C(X)× C(Y )|ty = 0 and tx ̸= 0}

by Definition 132. The map J restricted to the 1-stratum of C(X)× C(Y ) is

(
C(X)× C(Y )

)
1

C(X ≬ Y )

([x, tx], [y, 0]) [(x, y, 0
tx+0

), tx]

.

The image of this map clearly is C(X) without the cone point, which is the 1-stratum of

C(X ≬ Y ). Similarly, for points in the 2-stratum of C(X)× C(Y )

(
C(X)× C(Y )

)
2
:= {([x, tx], [y, ty]) ∈ C(X)× C(Y )|ty ̸= 0}

the map J restricts to a map

(
C(X)× C(Y )

)
2

C(X ≬ Y )

([x, tx], [y, ty]) [(x, y, ty
tx+ty

), tx + ty]

that lands in the 2-stratum of C(X ≬ Y ) since ty
tx+ty

̸= 0 and tx + ty ̸= 0 since ty > 0.

Closed P-filtrations are Conically Smooth

Lemma 136. Let V be a k dimensional vector space, and let V0 ↪→ V be the inclusion of a

k0 dimension vector subspace.

(1) The inclusion of V0 ↪→ V is isomorphic with the canonical inclusion of vector spaces

Rk0 i−→ Rk .
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(2) About each point x ∈ V0, there exists a basic of the form

Rk0 × C(Sk−k0−1) .

(3) About each point x ∈ V1, there exists a basic of the form

Rk × C(∅) ↪→ V1

(4) The canonical stratification V → [1] induced by Lemma 54 by the [1]-filtration V0 ↪→ V

is conically smooth.

Proof. We begin by proving (1). Choose an inner product on the vector space V . Using this

inner product, select an orthonormal basis of the subspace V0, which is the data of a linear

isometry

ϕ0 : V0
≃−→ Rk0 .

Extend this orthonormal basis of V0 to an orthonormal basis of V , which extends the linear

isometry of V0 ≃ Rk0 to a linear isometry

ϕ : V
≃−→ Rk

Define k1 := k − k0. The linear isometry ϕ : V → Rk provides a canonical linear isometry

ϕ1 : V
⊥
0

≃−→ Rk1 .
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Together this compiles into a diagram

V0 V0 ⊕ V0⊥ Rk

Rk0 Rk0 ⊕ Rk1 Rk

ϕ0 ϕ0⊕ϕ1

i0

∼=

∃!∼=

∼=

.

Here the isomorphisms Rk0 ⊕Rk1 → Rk is the canonical isomorphism that includes Rk0 into

the first k0 coordinates and Rk1 into the last k−k0 = k1 coordinates. This verifies claim (1).

Next we seek to show about each x ∈ V0, there exists a basic of the form Rk×C(Sk−k0−1).

Note that the vector space V is isomorphic to V0⊕Rk1 , by considering the splitting V0⊕V0⊥

of the vector space V , and noting there is an isomorphism

V0 ⊕ V0⊥
id⊕ϕ1−−−→ V0 ⊕ Rk1 .

Finally, using that C(Sk1−1) ∼= Rk1 using the canonical scaling map [0,∞) × Sk1−1 → Rk1

gives the result

V0 × C(Sk1−1) = V0 × C(Sk−k0−1) .

The stratification

V0 ⊕ C(Sk−k0−1)
∼=−→ V → [1]

agrees with the canonical stratification on V0 ⊕ C(Sk−k0−1) induced by considering the

conical stratification determined by the trivial stratification Sk−k0−1 → {1}. Moreover, this

stratification Sk−k0−1 → {1} is conically smooth, since Sk−k0−1 has a canonical structure of

a smooth manifold. Therefore, the identification of V with Rk ⊕ C(Sk−k0−1)
∼=−→ witnesses a

basic about the point x ∈ V0.

We next seek to show that about each point x ∈ V1, there exists a basic about x of the

form Rk × C(∅). The subset V1 identified as an open subset Rk through the isomorphism
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ϕ : V → Rk. Therefore, since an open subset of Rk canonically inherits the structure of a

smooth manifold, there exists a smooth embedding of Rk ↪→ V1 such that x is in the image.

Finally noting that Rk ∼= Rk × C(∅) gives the desired result.

Finally, we seek to show V → [1] is conically smooth. By (2) and (3), there exists an

atlas of V by basics. Moreover, this atlas is a smooth atlas, since the transition maps are

clearly smooth, which implies that this is a conically smooth atlas. This conically smooth

atlas extends to a maximal conically smooth atlas on V in the same way that a smooth atlas

on a manifold extends to a maximal smooth atlas. Therefore V → [1] is a conically smooth

stratified space.

Notation 137. LetM0 ↪→M1 be an closed embedding of smooth manifolds. Define N(M0 ↪→

M1) to be the total space of th normal bundle of the embedding M0 ↪→M1. Note there is a

canonical section

M0 ↪→ N(M0 ↪→M1)

which is the zero section.

Lemma 138. Let M → [1] be a closed P-filtration of a smooth manifold M .

(1) Let x ∈M0, and k0 := dim(M≤0). There exists a basic about x ∈M of the form

Rk0 × C(Sk1−1) ↪→M

such that the inclusion is a smooth embedding with respect to the canonical smooth

structure on Rk0 × C(Sk1−1) ≃ Rk0+k1 . Here k0 is the dimension of the connected

component of M0 containing x, and k1 is the dimension of the connected component of

M≤1 containing x.
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(2) Let x ∈M1, there exists a basic of the form

Rk × C(∅) ↪→M

such that the inclusion is a smooth embedding. Here k is the dimension of the connected

component of M1 containing x.

(3) The stratification M → [1] is conically smooth.

Proof. We begin by proving (1). Let x ∈M0. Since M0 is a smooth manifold, there exists a

smooth open embedding

Rk0 ↪→M0

about the point x. By the tubular neighborhood theorem, there exists a smooth extension

to the total space of the normal bundle

Rk0 M

N(Rk0 →M)

.

Furthermore, since the base space of the normal bundle is contractible, the total space normal

bundle is isomorphic to the trivial bundle of rank k1

N(Rk0 →M) ∼= Rk0 ⊕ Rk1 .

Note Rk1 ∼= C(Sk1−1). Moreover the stratification of Rk1 × C(Sk1−1) induced by the

stratification of Sk1 → {1} agrees with the stratification

Rk0 × C(Sk1−1) ↪→M → [1] .
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Therefore Rk0 × C(Sk1 − 1) is a basic about x that smoothly embeds into M .

Next, we seek to show there exists a basic of the form Rk×C(∅) about a point x ∈M1,

such that Rk × C(∅) smoothly embeds into M . The 1-stratum M1 is an open subset of M .

Therefore M1 has the structure of a smooth submanifold of M of dimension k. Therefore

there exists a sequence of smooth embeddings

Rk ↪→M1 ↪→M

such that x is in the image of the smooth embedding. By considering Rk ∼= Rk × C(∅), we

can realize the embedding Rk ↪→ M as a basic about the point x that smoothly embeds

about the point x ∈M1.

Finally, we seek to show that M → [1] is conically smooth. The collection of basics in

(1) and (2)

{Rk0 × C(Sk1−1) ↪→M}x∈M0 ⨿ {Rk1 × C(∅) ↪→M}x∈M1

form a smooth atlas of the manifold M , and therefore the collection is also a conically

smooth atlas. This atlas extends to a unique maximal conically smooth atlas. Therefore the

stratification M → [1] is conically smooth.

Lemma 139. Let M → [n] be a closed [n]-filtration.

(1) Let p ∈ {1, . . . , n}. For each point x ∈Mp, there exists a basic of the form

Rkp × C

(
≬

i∈{p+1≤···≤n}
Ski−1

)
↪→M .

This basic is a smooth embedding into M .
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(2) For each point x ∈M0, there exists a basic of the form

Rk0 × C

(
≬

i∈{1≤···≤n}
Ski−1

)
↪→M .

This basic is a smooth embedding into M .

(3) The stratification M → [n] is conically smooth.

Proof. We seek to show this by induction on [n]. The base case is [1], which is Lemma 138 .

Therefore, assume Lemma 139 is true for closed [n − 1]-filtrations. The induction step will

be used twice. Once to determine the basic in the statement of (1), and once to show that

≬
i∈{1,...,n}

Sni is conically smooth.

We begin by proving (1). Let p ∈ {1, . . . , n}, and let x ∈Mp. This p defines a restriction

of the stratification M → [n] to the submanifold M≥p

M≥p → {p ≤ · · · ≤ n} .

The depth of this stratification n − p, which is stricly less than n. Therefore the restricted

stratification is conically smooth by the inductive step. In particular, there is a basic centered

at x ∈Mp of the form

Rkp × C

(
≬

i∈{p+1...n}
Ski−1

)
↪→M≥p .

This embedding extends to an open embedding into the manifold M

Rkp × C

(
≬

i∈{p+1...n}
Ski−1

)
↪→M≥p ↪→M.

This embedding realizes Rkp×C

(
≬

i∈{p+1...n}
Ski−1

)
↪→M as a basic about the point x ∈Mp.
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Let x ∈M0. SinceM0 is a smooth manifold, there exists a smooth embedding Rk0 ↪→M0

such that x is in the image of this smooth embedding. Consider the composition

Rk0 ↪→M0 ↪→M≤1 .

The tubular neighborhood theorem gives a smooth embedding of the normal bundle N(Rk0 →

M≤1) . Since this is a vector bundle over a contractible space Rk0 , the total space N(Rk0 ↪→

M≤1) is trivial. Continuing in this way, we get a diagram by considering the restricted

stratification to the poset {0 ≤ 1 ≤ 2}

Rk0 M≤1 M≤2

N(Rk0 →M≤1) N(Rk0 × Rk1 →M≤2) N(Rk0 × Rk1 × Rk2 ↪→M≤3)

Rk0 × Rk1 Rk0 × Rk1 × Rk2 Rk0 × Rk1 × Rk2 × Rk3

∼=

i

∼=

i

∼=

.

Here the dashed arrows are the open embeddings guaranteed by the tubular neighborhood

theorem, and the bottom isomorphisms are the identifications of the normal bundles being

trivial. Continuing in this way, we end up with an open embedding

Rk0 M

N(Rk0 →M≤1)

∏
i∈[n]

Rki

∼=

.

Recall the marked stratification on Rk0 × Rk1 × · · · × Rkn is the continuous function to the
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poset [n] ∏
i∈[n]

Rki [n]

(x0, . . . , xn) max{i|xi ̸= 0}

.

Here it is understood the value of 0 ∈
∏
i∈[n]

Rki is also sent to 0 ∈ [0], as in this case there is

no maximum value xi that is non-zero. The scaling maps on Rki provide isomorphisms

C(Ski−1)→ Rki ,

which in turn provide an isomorphism

Rk0 ×
∏

i∈{1≤···≤n}

C(Ski−1)
∼=−→
∏
i∈[n]

Rki .

Denote the cone point of C(Ski−1) as ∗i. Note that since the scaling map sends ∗i ∈ C(Ski−1)

to 0 ∈ Rk0 , the homeomorphism of topological spaces Rk0 ×
∏

i∈{1≤···≤n}
C(Ski−1)

∼=−→
∏
i∈[n]

Rki is

also an isomorphism in StTop between the marked stratifications

Rk0 ×
∏

i∈{1≤···≤n}

C(Ski−1) ∼= Rk0 ×
∏

i∈{1≤···≤n}

Rki

By Lemma 135, there is a isomorphism of stratified spaces

Rk0×C( ≬
i∈{1≤···≤n}

Ski−1)
∼=−→ Rk0 ↪→ Rk0×C(Sk1−1) ↪→ · · · ↪→ Rk0×C(Sk1−1)×· · ·×C(Skn−1) .

Here the stratification on Rk0 × C

(
≬

i∈[n]
Ski−1

)
is the canonical stratification induced by
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[n− 1] filtration

Sk1−1 Sk1−1 ≬ Sk2−1 . . . ≬
i∈{1,...,n}

Ski−1

Sk1−1 Sk1+k2−1 . . . Sk1+···+kn−1

∼= ∼= ∼= ∼=
.

Theorem 140. Let M → P be a closed P-filtration.

(1) For each p ∈ P, the stratified space

M≤p → P≤p

is conically smooth.

(2) The stratification M → P is conically stratified.

Proof. (1) follows from Lemma 139 after the observation that P≤p is finite and linearly

ordered since P is downwards finite and linearly ordered.

We seek to show thatM → P is conically stratified. Note the closed P-filtration ensures

that X is the union of smooth manifolds

colim(M≤0 ↪→M≤1 ↪→M≤2 ↪→ . . . ) =M .

Note that there is no requirement that M is a smooth manifold. Let x ∈ M . Then there

exists a minimal p ∈ P such that x ∈M≤p. Since Mp is an open subset of M≤p, there exists

an open embedding of Rkp for some positive integer kp about the point x ∈ Mp. Note that

x is in the p-stratum by the assumption that we are in the minimal M≤p that contains x.

By the tubular neighborhood theorem, there exists an extension to the normal bundle of the
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inclusion Rkp ↪→M≤p+1

Rkp M≤p+1

N(Rkp ↪→M≤p+1)

Rkp × Rkp+1

∼=

where kp+1 is the unique positive integer such that kp + kp+1 = dim (M≤p+1). Continuing in

this way we get a sequence of smooth embeddings.

Rkp M≤p+1 M≤p+1 . . .

N(Rkp ↪→M≤p+1) N(Rkp × Rkp+1 ↪→M≤p+2) . . .

Rkp × Rkp+1 Rkp × Rkp+1 × Rkp+2

∼= ∼=

.

This constructs an stratified open embedding

Rkp × C(S∞) ↪→M .

Here the stratification on S∞ is the stratification induced by the P-filtration

(Skp+1−1 ↪→ Skp+1+pp+2−1 ↪→ . . . ) = S∞ .

For q ∈ P such that p ≤ q, by construction there is a canonical restriction of stratified spaces

Rkp × C(Skp+1+···+kq−1) Rkp × C(S∞)

M≤q X
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where each of the maps are the canonical maps.

Exit Path ∞-Category of a Closed P-filtration

A P-filtration for P finite is indeed a conically smooth stratified space by Lemma 139.

However, for P not finite, such as the poset P≥0, a P-filtration need not be conically smooth.

We seek to show in this subsection that in the case of P not finite that there still admits an

exit path ∞-category that can be identified in a similar manor to Lemma 104.

Definition 141. Let K be an ∞-category. The ∞-category K is filtered if for any finite

∞-category D, and functor

D→ K,

there exists an extension to D▷

D K

D▷

.

Lemma 142. Let K be a filtered ∞-category. Let

K→ CSS ↪→ PShv(∆) .

be a functor. Then the colimit

colim (K→ PShv(∆))

takes values in complete Segal spaces.

Proof. Denote the functor K
F−→ CSS. Denote the colimit X := colim (K→ PShv(∆)) ∈

PShv(∆).

Observe that the Segal and the univalence-completeness conditions on a simplicial space

Z state that Z carries certain finite diagrams in ∆op to limit diagrams in Spaces. So let
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I
D−→ ∆op be such a certain diagram in which I is a finite ∞-category. We must prove the

the canonical morphism between simplicial spaces

colim
k∈K

(
lim
i∈I
F ◦D(i)

)
−→ lim

i∈I

(
colim
k∈K

F ◦D(i)

)

is an equivalence. This is so if and only if this morphism is value-wise an equivalence between

spaces. Using that limits and colimits in PShv(∆) are computed value-wise, we are reduced

to observing that, for each [n] ∈∆, the canonical map between spaces

colim
k∈K

(
lim
i∈I
F ◦D(i)([n])

)
−→ lim

i∈I

(
colim
k∈K

F ◦D(i)([n])

)

is an equivalence. Now, a characteristic feature of filtered colimits is that they commute

with finite limits. In other words, this canonical morphism is an equivalence, as desired.

Lemma 143. Let X → Z≥0 be a closed Z≥0-filtration. Define the presheaf Exit(X) to be

Exit(X) := colim
(
Exit

(
M0

)
↪→ Exit

(
M1

)
↪→ . . .

)
.

(1) The simplicial space Exit(X) is a complete Segal spaces, and therefore presents an

∞−category.

(2) The space of objects of Exit(X) is

Obj(Exit(X)) =
∐

p∈Z≥0

Mp .

(3) Let x and y be objects of Exit(X) with x in the p stratum and y in the q stratum. The
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space of morphisms in Exit(X) from x to y is identified

HomExit(X) (x, y) = HomExit(M≤q) (x, y) = LinkMp(X)q .

Proof. (1) follows from Lemma 142 after noting that the poset P is filtered. P is filtered

since every finite subset of P admits an upper bound (Example 5.3.1.8 of [10]).

The second statement follows from the fact that colimits of presheaves are computed

pointwise. That is, the space of objects of Exit(X) is computed as the colimit of spaces

Obj (Exit(X)) := colim
(
Obj

(
Exit

(
M0

))
↪→ Obj

(
Exit

(
M1

))
↪→ . . .

)
.

By Lemma 104, the objects of Exit
(
M≤p

)
is the disjoint union of strata

Obj
(
Exit

(
M≤p

))
=

∐
i∈{0≤···≤p}

Mi .

Therefore the colimit defining the objects of Exit(X) is

Obj (Exit (X)) =

∐
i∈{0}

Mi ↪→
∐

i∈{0≤1}

Mi ↪→
∐

i∈{0≤1≤2}

Mi ↪→ . . .

 =
∐

i∈Z≥0

Mi .

Statement (3) follows in a similar fashion of (2), since the space of morphisms is the

colimit of the spaces of morphisms of Exit(M≤p), and that the space of morphisms from p to

q is given by the link by Lemma 104.
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EXIT PATH ∞-CATEGORY OF CP∞

Recall the Z≥0-filtration of CP∞

(CP0 ↪→ CP1 ↪→ . . . ) = CP∞ .

Lemma 143 defines the exit path ∞-category Exit(CP∞), as well as states how to identify

the space of objects and morphisms of the exit path ∞-category Exit(CP∞). This section

works out this identification, and Theorem 165 is the explicit identification of this exit path

∞-category. We arrive at this theorem by recognizing CP∞ as the quotient of S∞, and

identify the exit path ∞-category of the closed Z≥0-filtration

(S1 ↪→ S3 ↪→ . . . ) = S∞ .

The identification of Exit(S∞) from this closed Z≥0-filtration is simplier to identify, ultimately

because the stratification is canonically embedded into a vector space.

Example 144. Recall that for each n ∈ Z≥0 the map of spaces

S2n+1 → CPn

is a principal T bundle. This viewpoint is useful in identifying Exit(CP∞), as is seen by the

following proposition.

Proposition 145. Let G be a group, and let X̃ → X be the quotient of a free G-action on

X̃, and let X → P be a closed P-filtration. The quotient map together with the P-filtration

gives a stratification of X̃

X̃ → X → P .
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Then the following statements are true.

(1) The action of G on X̃ determines an action of G on the exit path ∞-category Exit(X̃).

(2) The functor Exit(X̃)→ Exit(X) is G-invariant.

(3) The resulting functor Exit(X̃)/G→ Exit(X) is an equivalence of ∞-categories.

Proof. An action of G on Exit(X̃) is defined to be a functor

BG→ Cat(∞,1)

that on the level of objects selects out Exit(X̃), which we will show is canonically determined

by the action of G on X̃. The data of the action on X̃ as a topological space gives an action

on X̃ in Strat

BG→ Strat

that on the level of objects selects out the stratified space X̃ → P. We can post compose

this functor with the inclusion functor of Strat into Psh(∆)

BG→ Strat→ Strat
Exit−−→ Cat(∞,1) ↪→ Psh(∆) ,

which gives an action on Exit(X̃) ∈ Psh(∆). The functor Exit(X̃)→ Exit(X) is G invariant,

since the map of spaces X̃ → X is G invariant, so we get a functor

BG▷ → Cat(∞,1) .

The colimit of the functor BG → Cat(∞,1) is the left Kan extension of this functor along

BG▷, which is the quotient of of Exit(X̃) by G, which will be denoted Exit(X̃)/G. The value
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of Exit(X̃)/G is the following colimit

Exit(X̃)/G := colim
(
BG/+∞ → BG→ Cat(∞,1)

)
.

We lastly need to check that the map

colim(BG/+∞ → BG→ Cat(∞,1))→ Exit(X)

is an equivalence.

We first reduce to the case that X̃ → X is a trivial bundle using covering sieves. Define

U := {(A f−→ X) ∈ Strat/X | f ∗X̃ → A is trivializable} ⊂ Strat/X

Similarly, define

Ũ := {(f ∗A→ X̃) ∈ Strat/X̃ | (A→ X) ∈ U} ⊂ Strat/X̃ .

U and Ũ both contain an open cover of X and X̃ respectively, so U and U∗ are covering

sieves. Covering sieves have the property that

colim(U→ Strat) ≃ X

colim(Ũ→ Strat) ≃ X̃ .

By Proposition 3.3.8 of [4], the functor

U▷ → Strat
Exit−−→ Cat(∞,1)
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preserves colimits of covering sieves. Therefore, there is a commutative diagram of ∞-

categories

Exit(X̃) colim
(f∗A→X̃)∈Ũ

(
Exit(f ∗A)

)

Exit(X) colim
(A→X)∈U

(Exit(A))

Exit(X̃)/G

(
colim

(f∗A→X̃)∈Ũ
(Exit(f ∗A))

)
/G

≃

≃

≃

.

Therefore if the morphisms

(
colim

(f∗A→X̃)∈Ũ

(
Exit(f ∗A)

))
/G −→ colim

(A→X)∈U
(Exit(A))

is an equivalence, then the morphism

Exit(X̃)/G −→ Exit(X)

is an equivalence. Since the quotient by the action of G is a colimit and using the fact that

colimits commute, there is an equivalence

(
colim

(f∗A→X̃)∈Ũ

(
Exit(f ∗A)/G

))
−→

(
colim

(f∗A→X̃)∈Ũ

(
Exit(f ∗A)

))
/G .

Therefore we have reduced the problem to showing that

Exit(f ∗A)/G→ Exit(A)

is an equivalence. By definition of Ũ, f ∗A → A is a trivial G bundle. Therefore there is a



79

isomorphism of bundles

A×G f ∗A

A A

≃

πA

where the left vertical map is given by projection. Therefore the stratification map A×G→ P

factors through P× ∗.
A×G A

P× ∗ P

Z|A×!

πA

Z|A

πP

By Observation 3.3.3 of [4], there is an equivalence of ∞-categories,

Exit(A×G) ≃ Exit(A)× Exit(G)

Since G is stratified by a point, then

Exit(G) ≃ G

Therefore, we have an equivalence between (∞, 1)-categories

Exit(A×G) ≃ Exit(A)×G . .

Furthermore, this equivalence witnesses Exit(A × G) as a free (right) G-module on the ∞-

category Exit(A), since the action of G on A×G is given by
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(A×G)×G A×G

(a, g1, g2) (a, g1g2)

.

The action of G on Exit(A)× Exit(G) only acts on Exit(G), so there is an equivalence

(Exit(A)× Exit(G)) /G ≃ Exit(A)× (Exit(G)/G) .

Altogether we have the following equivalences

Exit(A×G)/G ≃−→ (Exit(A)× Exit(G)) /G
≃−→ Exit(A)× (Exit(G)/G)

≃−→ Exit(A)× (G/G)

Exit(A)× (G/G)
≃−→ Exit(A)

Therefore (
colim

(f∗A→X̃)∈Ũ

(
Exit(f ∗A)

))
/G −→ colim

(A→X)∈U
(Exit(A))

is an equivalence, which shows that

Exit(X̃)/G→ Exit(X)

is an equivalence.

Therefore the case of identifying the exit path ∞-category of the stratification CP∞ is

reduced to calculating the exit path ∞-category of S∞. The next section recalls a theorem

of [7], called the Décollage Theorem, which we will use to identify the ∞-category Exit(S∞).
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The Décollage Theorem

Given a conically smooth stratified space X → P, there exists an ∞-category Exit(X)

consisting of those paths that “exit” into a higher strata. There is a canonical functor

Exit(X) → P induced by inclusion of the exiting paths together with the stratificaiton

X → P. The functor Exit(X)→ P has the following property.

Definition 146. A functor F : C→ D is conservative if it reflects isomorphisms. That is,

for a morphisms f : c → c′ in C, if F(f) : F(c) → F(c′) is an isomorphims then f : c → c′ is

an isomorphism.

Lemma 147. Let X → P be a conically smooth stratified space. Then the canonical map

Exit(X)→ P

is conservative.

Proof. Recall the canonical map from Observation 106. Consider a morphism in Exit (X)

∆1 X

[1] P

α

α

.

This morphisms in Exit (X) gets sent to the bottom arrow of the diagram, [1] → P. This

map is an isomorphism if and only if it is the constant map at an element of P, since P is

skeletal by the antisymmetric property of the poset P. Assume then the image of α is the

element p ∈ P. Then ∆1 must factor through the fiber of i in X, which is the i-stratum Xi.

Therefore taking the inverse path of α in Xi gives the inverse morphism of α.
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Definition 148. Define the ∞-category

(
Cat(∞,1)/P

)cons
:= {F : C→ P ∈ Cat(∞,1)/P

|F is conservative in Cat(∞,1)} .

to be the ∞-category of conservative functors over P .

Definition 149. Let K→ P be a conservative functor in
(
Cat(∞,1)/P

)cons
, and I a subposet

of P. We define Hom/P(I,K) to be the following pullback in Cat(∞,1).

Hom/P(I,K) Hom(I,K)

∗ Hom(I,P)
⟨I↪→P⟩

⌟ .

For a conservative functor K → P, the fibers over each p ∈ P are a space. Therefore

the ∞-category FunP(I,K) is a space.

Definition 150. A presheaf F : sd(P)op → Spaces on the poset sd(P) (Definition 26) is a

spatial décollage if the canonical map of spaces

F ({p0 ≤ p1 ≤ · · · ≤ pn)→ F ({p0 ≤ p1}) ×
F (p1)

F ({p1 ≤ p2}) ×
F (p2)

. . . )× ×
F (pn−1)

F ({pn−1 ≤ pn})

is an equivalence.

Definition 151. The ∞-category DécP(Spaces) is the full ∞-subcategory of Psh(sd(P))

consisting of those presheaves that are also spatial décollages.

Observation 152. There is a functor

Γ :
(
Cat(∞,1)/P

)cons
→ DécP(Spaces)

that sends a conservative functor X → P to the presheaf
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Γ(X → P) : sd(P)op Spaces

I Hom/P(I, X)

In [7], it is shown that this presheaf is indeed a spatial décollage.

Notation 153. Let isd(P) : sd(P)→ Cat(∞,1) be the canonical functor that regards a subposet

of P as a category, and the inclusion maps as an order preserving map between them.

Observation 154. The functor isd(P) : sd(P)→ Cat(∞,1) induces a functor

− ⊗
Cat(∞,1)

isd(P) : DécP(Spaces)
(
Cat(∞,1)/P

)cons
Ś

(
Ś ⊗

Cat(∞,1)

isd(P) → P

) ,

where Ś ⊗
Cat(∞,1)

isd(P) is the coend (Definition 334) of functors Ś and isd(P).

Theorem 155 (Décollage Theorem). The pair of functors

(
Cat(∞,1)/P

)cons
DécP(Spaces)

Γ

− ⊗
Cat(∞,1)

isd(P)

is an equivalence of ∞-categories.

Proof. This is the statement of Theorem 2.7.4 of [7].

Exit Path ∞-Category of S∞

This section seeks to identify the the exit path ∞-category of S∞. We identify the

∞-category Exit(S∞) by identifying its associated spacial décollage

Γ (Exit(S∞)) : sd(Z≥0) Spaces

I ⊂ Z≥0 Hom/Z≥0
(I,Exit(S∞))

.
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Therefore the majority of this section is to provide identifications of the space

Hom/Z≥0
(I,Exit(S∞)). The following homotopy equivalence will be used in this goal of

identifying the spaces named in the spacial d’ecollage of Exit(S∞).

Lemma 156. Let i ∈ Z≥1 . The map of spaces

S2i+1\S2i−1 T

(z1, . . . , zi)
zi

∥zi∥

is a homotopy equivalence.

Proof. Note first that the map S2i+1\S2i−1 → T is well defined since the last coordinate zi

must be nonzero.

The homotopy inverse map is given by the inclusion of T into the last coordinate

T S2i+1\S2i−1

z (0, 0, . . . , 0, z)

The composite map defined on T is given by

T S2i+1\S2i−1 T

z (0, 0, . . . , 0, z) z
∥z∥

,

which is the identity since ∥z∥ = 1.

The second composite defined on S2i+1\S2i−1 is

S2i+1\S2i−1 T S2i+1\S2i−1

z := (z1, . . . , zi)
zi

∥zi∥ (0, 0, . . . , 0, zi
∥zi∥)

We next define our homotopy between this composition and the identity map
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S2i+1\S2i−1 × I S2i+1\S2i−1

(z, t)
tz+(1−t)(0,...,

zi
∥zi∥

)

∥tz+(1−t)(0,...,
zi

∥zi∥
)∥

.

We need to check that for all t ∈ I, that tz+ (1− t)(0, . . . , zi
∥zi∥) ̸= 0. Note that

tz+ (1− t)(0, . . . , zi
∥zi∥

) = (tz1, . . . , tzi−1, tzi + (1− t) zi
∥zi∥

)

Assume that the point (tz1, . . . , tzi−1, tzi + (1 − t) zi
∥zi∥) = 0. Then either t = 0 or

(z1, . . . , zi−1) = 0. If t = 0 then the last coordinate is

0 ∗ zi + (1− 0)
zi
∥zi∥

=
zi
∥zi∥

which is nonzero since zi
∥zi∥ ∈ S1. If (z1, . . . , zi−1) = 0, then ∥zi∥ = 1. Therefore since

∥zi∥ = 1, the last coordinate becomes

tzi + (1− t) zi
∥zi∥

= tzi + (1− t)zi = zi

Therefore we have that S2i+1\S2i−1 ≃ T.

Lemma 157. The spacial décollage associated to the ∞-category Exit(S∞) evaluates on

{i} ⊂ Z≥0 as T ∈ Spaces .

Γ(Exit(S∞))({i}) = Hom/Z≥0
({i},Exit(S∞)) ≃ T

Proof. The space of objects of Exit(S∞) is the disjoint union of all of the strata, by Lemma

104. By the Yoneda Lemma, and Lemma 104 which gives the spaces of objects are identified
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with the coproducts of strata,

Hom({i},Exit(S∞)) ≃
∐
i∈P

S2i+1\S2i−1 .

Similarly, we have that

Hom({i},Z≥0) ≃
∐

i∈Z≥0

{i} .

Therefore our pullback is given by

Hom/Z≥0
({i},S∞)

∐
i∈P

S2i+1\S2i−1

{i}
∐
i∈P
{i}

⌟

,

which is the fiber over {i}. The fiber over {i} is just the i-stratum, which is the space

S2i+1\S2i−1. Finally, the homotopy equivalence of Lemma 156 gives

Hom/Z≥0
({i},Exit(S∞)) ≃ T .

Lemma 158. The spacial décollage associated to the ∞-category Exit(S∞) evaluates on

{i ≤ j} ⊂ Z≥0 as T× T ∈ Spaces .

Γ(Exit(S∞))({i ≤ j}) = Hom/Z≥0
({i ≤ j},Exit(S∞)) ≃ T× T

Proof. The space Hom/Z≥0
({i ≤ j},Exit(S∞)) is the space of morphisms from the ith strata

to the jth strata. Therefore by Lemma 104, the space of morphisms is given by

Hom/Z≥0
({i ≤ j},S∞) ≃ Mor(Exit(S∞)ij ≃ LinkS2i+1\S2i−1(S∞)j .



87

The link Link/S2i+1\S2i−1(S∞)j is defined to be

LinkS2i+1/S2i−1(S∞)j ≃ Sfib
(
N(S2(i)+1 ↪→ S2(j)+1)

)
|S2i+1\S2i−1 .

Over a given point p ∈ S2i+1, the normal bundle N(S2i+1 ↪→ S2j+1) is the quotient of the the

tangent space TS2j+1 by the image of the tangent bundle TS2i+1

(
N(S2(i)+1 ↪→ S2(j)+1)

)
p
=
(
TS2j+1/TS2i+1

)
p
.

The tangent bundle of a sphere S2i+1 over a given point p ∈ S2i+1 is given by

T(S2i+1)p = (p,Homlin
(
Span{p},Ci ⊥ p

)
) .

where Homlin(Span{p},Ci ⊥ p) is all R-linear maps from the Spanp to Ci ⊥ p. Therefore the

normal bundle over a point p is the quotient

N(S2i+1 ↪→ S2j+1)p =
(p,Homlin(Span{p},Cj ⊥ p))

(p,Homlin(Span{p},Ci ⊥ p))
.

Using the isomorphism Homlin(Span{p}, V ) ≃ Homlin(R, V ) ≃ V , the quotient space is

given by

=
(p,Cj−i ⊕ Ci ⊥ p)

(Ci ⊥ p)
,

= (p,Cj−i)

Therefore the fiber over p does not depend on the point p. This gives an vector bundle

isomorphism of the normal bundle with the trivial bundle over S2i+1. Therefore when we
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restrict the normal bundle over S2i+1\S2i−1, there is an isomorphism

Sfib
(
N(S2i+1 ↪→ S2j+1)

)
|S2i+1\S2i−1

≃ S2i+1\S2i−1 × Tj−i

Finally the homotopy equivalence of Lemma 156 gives the desired result

Sfib
(
N(S2i+1 ↪→ S2j+1)

)
|S2i+1\S2i−1

≃ T× T

Lemma 159. Through the equivalences of Lemma 157 and Lemma 158, the source map and

target maps for Exit(S∞) are given as follows.

(1) The source map Exit(S∞)({i} → {i ≤ j}) is given by projection onto T

Hom/Z≥0
({i ≤ j},Exit(S∞)) ≃ T× T Hom/Z≥0

({i},Exit(S∞)) ≃ T

(x, p) x
.

(2) The target map Exit(S∞)({j} → {i ≤ j}) is given by projection onto the last coordinate

HomZ≥0
({i ≤ j},Exit(S∞)) ≃ T× T HomZ≥0

({j},Exit(S∞)) ≃ T

(x, p) p
.

Proof. The source map is given by the restriction of the bundle map

N(S2i+1 ↪→ S2j+1)→ S2i+1

to the link LinkS2i+1\S2i−1(S2i+1)j over S2i+1\S2i−1. By Lemma 158, the normal bundle is
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trivial. Therefore the source map through our homotopy equivalence of 156 is given by

S2i+1\S2i−1 × T T× T

S2i+1\S2i−1 T

π1πS2i+1\S2i−1 .

The target map is given by restricting a tubular neighborhood to the sphere bundle.

Consider the map

S2i+1\S2i+1 × Cj−i Cj+1

(s, p)
√
2
2
(s, p)

The link LinkS2i+1\S2i−1 ≃ S2i+1\S2i−1 × T includes into S2i+1\S2i−1 × Cj−i, by the

canonical inclusion of S2i+1S2i−1, and the inclusion of T into the last copy of C in Cj−i.

S2i+1\S2i−1 × T S2i+1\S2i−1 × Cj−i Cj+1

(x, p) (x, 0, . . . , 0, p)
√
2
2
(x, 0, . . . , p)

Note that the composite map from LinkS2i+1\S2i−1(S∞)j to Cj+1 factors through

S2j+1\S2j−1 since

∥
√
2

2
(x, 0 . . . , 0, p)∥ = 1

2
(
√
∥x∥+

√
∥p∥) = 1

2
(1 + 1) = 1

and also the last coordinate p is nonzero, since p ∈ T. Therefore since the space of

embeddings of the normal bundle S2i+1\S2i−1 × Cj−i into S2j+1\S2j−1 is contractible, this

embedding gives the target map

S2i+1\S2i−1 × T S2j+1\S2i−1

(x, p)
√
2
2
(x, 0, . . . 0, p)

.

The next step is to identify the target map through our homotopy equivalence. The target
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map from T× T→ T is the filler

S2i+1\S2i−1 × T S2j+1\S2j−1

T× T T

.

Let (x, p) ∈ S2i+1\S2i−1 × T ⊂ Ci+1 × T and xi+1 be the last coordinate of x ∈ Ci+1. Then

applying the target maps and homotopy equivalences, the point (x, p) is sent to the following

(x, p)
√
2
2
(x, 0 . . . , 0, p)

( xi

∥xi∥ , p)

√
2

2
p

∥
√
2

2
p∥

= p

.

Therefore the filler map should send
(

xi

∥xi∥ , p
)
to the point p. Therefore the target map

after applying the homotopy equivalence in Lemma 156 is the projection onto the second

coordinate

π2 : T× T→ T .

Lemma 160. The spacial décollage associated to the ∞-category Exit(S∞) evaluates on

I = {i0, . . . , in} ⊂ Z≥0 as TI ∈ Spaces .

HomZ≥0
(I,Exit(S∞)) ≃

(
TI
)

Proof. By the Décollage Theorem, the functor

ΓExit(S∞) := Γ (Exit(S∞)) : HomZ≥0
(−,Exit(S∞)) : sd(P)op → Spaces

is a spacial décollage. In particular, since the spacial décollage satisfies the Segal condition,
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the space Hom/Z≥0
(I,Exit(S∞)) can be computed as the limit of the diagram

. . . ΓExit(S∞)({in−1 < in})

ΓExit(S∞)(i1 < i2) ΓExit(S∞)(i2)

ΓExit(S∞)({i0 < i1}) ΓExit(S∞)({i1})

which can be computed as a series of pullbacks. The arrows in the diagram are the canonical

morphisms indicated by the indexing. By Lemma 159 this is equivalent to computing the

the limit of the diagram

T× T

. . . T

T× T T

T× T Tπ2

π1

π2

π1

π2

π1

.

This limit upon inspection is the space TI.

Observation 161. The spacial décollage Γ (Exit(S∞)) is the presheaf

Γ(Exit(S∞))op : sd(Z≥0) Spaces

I TI

.

Proposition 162. There is an equivalence of ∞-categories

Exit(S∞) ≃ ⋆
k∈Z≥0

T .
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Proof. Consider the composite functor

E•T : ∆op Finop Spaces

I = {i0 ≤ · · · ≤ in} {i0, . . . , in} T{i0,...,in}

fgt T−

The canonical inclusion sd(Z≥0)
op ↪→ ∆op induces a spacial décollege

TDéc := sd (Z≥0)
op ∆op Finop Spaces

Z≥0 ⊃ I = {i0 ≤ · · · ≤ in} I {i0, . . . , in} T{i0,...,in}
.

Note that this functor TDéc is identified with the functor R in Definition 121 where each

∞-category is the space T. In particular, the restriction of TDéc to the non-negative integers

Z≥0 is the constant functor at T ∈ Spaces, and the functor TDéc is the right Kan extension

therefrom:

Obj (Z≥0) Spaces

sd(Z≥0)
op

constT

TDéc

.

Therefore, using the equivalence of ∞-categories in Theorem 155, the problem reduces to

showing that there is an equivalence of spacial décollages

Γ(Exit(S∞)) ≃ TDéc .

Towards this goal, by Lemma 157, the functor Γ(Exit(S∞)) restricts along Obj(Z≥0) as

the constant functor at T
Obj (Z≥0) Spaces

sd(Z≥0)
op

constT

Γ(Exit(S∞))

.

The spacial décollage Γ(Exit(S∞)) also restricts on singleton subsets of Z≥0 as the
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constant functor at T. Therefore there is a canonical choice for a natural transformation

κ : Γ (Exit(S∞))→ TDéc

implemented by the universal property of the right Kan extension

Obj (Z≥0) Spaces

sd(Z≥0)
op

constT

TDéc

Γ(Exit(S∞))

This natural transformation κ is clearly an equivalence on Obj(Z≥0), the singleton subsets

of Z≥0. The natural transformation κ : Γ (Exit(S∞)) → TDéc is also an equivalence on

cardinality 2 subsets of Z≥0 by Lemma 158. Finally, because both Γ(Exit(S∞)) and TDéc send

pushouts in sd(Z≥0) to pullbacks in Spaces, the natural transformation κ is an equivalence

κ : Γ (Exit(S∞))
≃−→ TDéc .

Exit Path ∞-Category of CP∞

Notation 163. Define the ∞-category

E∞ := Exit(CP∞)

to be the exit path ∞-category of the stratification of CP∞ induced by Lemma 54 and the

closed Z≥0-filtration (
CP0 ↪→ CP1 ↪→ CP2 ↪→ . . .

)
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Theorem 164. The exit path ∞-category E∞ is identified as follows.

(1) E∞ is equivalent with the quotient of Exit(S∞) by the action of T

E∞ ≃ Exit(S∞)/T

(2) The space of objects of E∞ is canonically identified with the non negative integers

Hom/Z≥0
({i},E∞) ≃ {i} .

(3) Through the canonical identification of the objects of E∞ with Z≥0, the space of

morphisms from i ≤ j ∈ Z≥0 is given by T

Hom/Z≥0
({i ≤ j},Exit(S∞)) ≃ HomE∞(i, j) ≃ T .

(4) The composition rule is the given by the group operation on T

HomE∞(j, k)× HomE∞(k, l) HomE∞(j, l)

T× T T

◦

≃

µ

≃ .

Proof. The first statement is immediate from Proposition 145.

The second statement follows through the equivalences

Hom/Z≥0
({i},E∞) ≃

Proposition 145
Hom/Z≥0

({i},Exit(S∞))/T ≃
Lemma 157

(T)/T ≃ ∗ .

The last equivalence is since the action of T on T given by the group operation is free. The
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last statement reduces to showing there exists two homotopy equivalences

(T× T× T)/T (T× T)/T

T× T T

≃

π1×π3

≃

µ

. (2.1)

We begin by noting that the action of T on T×T×T is free, since it is free in each coordinate.

For a free action of a group on a topological space, the homotopy quotient agrees with the

quotient of topological spaces. Therefore we seek to identify the quotients of T3 and T2

respectively. First, consider the map

ϕ : T× T× T T× T

(x, y, z) (x−1y, y−1z)

This map induces a map from the quotient space (T× T× T)/T since for all α ∈ T

ϕ1(αx, αy, αz) = ((αx)−1(αy), (αy)−1(αz) = (x−1y, y−1z)

where the last equality comes from the fact that (αx)−1 = x−1α−1. The map on the quotient

will also be defined as [ϕ]

[ϕ] : (T× T× T)/T T× T

[x, y, z] (x−1y, y−1z)

. Similarly, there is a map

ψ : T× T T

(x, z) (x−1z)
,

and the map descends to a map on the quotient [ψ] : (T× T)/T → T.

The square (2.1) canonically
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commute, since the top composite is given by

(T× T× T)/T (T× T)/T T

[x, y, z] [x, z] (x−1z)

and the bottom composite is given by

(T× T× T)/T (T× T) T

[x, y, z] (x−1y, y−1z) (x−1yy−1z) = (x−1z)
.

Finally, we seek to show ϕ is a homotopy equivalence

ϕ : (T× T× T)/T
≃−→ T× T .

First, we show [ϕ] is surjective. Let (x, z) ∈ T×T. The element (x−1, 1, z) ∈ T×T×T

gets sent through ϕ to ((x−1)−1, z) = (x, z) ∈ T×T. Therefore since the map ϕ : T×T×T→

T× T is surjective, the map ϕ : (T× T× T)/T is surjective.

Next, we show [ϕ] is injective. Let (g, h) ∈ T× T. Consider the diagram

ϕ−1(g, h) [ϕ−1](g, h) ∗

T× T× T (T× T× T)/T T× T

⟨(a,b)⟩ .

Note that the outer square, and the right square are pullbacks by definition, which

implies that the left square is a pullback. Note that T acts on π−1(g, h), and that

ϕ(g, h)/T ≃ [ϕ]−1(g, h) .

Let (x, y, z) ∈ T× T× T be such that

ϕ(x, y, z) = (g, h) .
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By the definition of ϕ, the following two equations are true.

x−1y = g y−1z = h .

Note that if we fix y, then x = yg−1 and z = yh are uniquely determined. Fixing x

uniquely determines y, which in turn uniquely determines z, and similarly the other direction.

Therefore

α ϕ−1(g, h) ≃ T ∗

(g−1α, α, αh) T× T× T T× T

!

⟨g,h⟩
⌟

is a pullback. The action of T on ϕ−1(g, h) ≃ T is given by the group multiplication, so

[ϕ]−1(g, h) = ϕ−1(g, h)/T ≃ T/T = ∗.

Therefore ϕ−1(g, h) is injective.

Theorem 165. The∞-category conservatively over the poset Z≥0, E∞ → Z≥0, is the collage

of the composite functor

sd(Z≥0)
op (I⊂Z≥0)7→I
−−−−−−→∆op Bar•T−−−−→ Spaces .

Proof. Recall again the functor

E•T : ∆op Finop Spaces

I = {i0 ≤ · · · ≤ in} {i0, . . . , in} T{i0,...,in}

fgt T−
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The canonical inclusion sd(Z≥0)
op ↪→ ∆op induces a spacial decollege

TDéc := sd (Z≥0)
op ∆op Finop Spaces

Z≥0 ⊃ I = {i0 ≤ · · · ≤ in} I {i0, . . . , in} T{i0,...,in}
.

Proposition 162 witnesses the equivalence

Γ(Exit(S∞)) ≃ TDéc .

It is classically known that

(E•T)/T ≃ Bar•T .

Therefore there is the sequence of equivalences

Exit (CP∞) ≃
Theorem 164

(Γ(Exit(S∞)))/T ≃
Proposition 162

(TDéc)/T .

where (TDéc)/T is the spacial décollage

sd(Z≥0)
op (I⊂Z≥0) 7→I
−−−−−−→∆op Bar•T−−−−→ Spaces .
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BACKGROUND ON STABLE ∞-CATEGORIES

Introduction to Stable ∞-Categories

Suspension and Loop Functors

The goal of this chapter is to supply facts about stable ∞-categories that will be used

in chapter 4. First, before moving on to stable ∞-categories, we introduce the suspension

and loop functors which are defined on a pointed∞-category with finite limits and colimits.

This serves two purposes. The suspension functor arises when talking about T-modules

in chapter 4, as well as the loop functor is used to generate many examples of stable ∞-

categories, including the ∞-category of Sp.

Definition 166. An ∞-category K is zero-pointed if there exists an object 0 that is both

initial and terminal. The object 0 is called a zero object .

Definition 167. Let K be a pointed ∞-category with pushouts. Let X be an object of K.

The suspension of X is the object ΣX defined to be the pushout in K

X 0

0 ΣX

!

!

!

!

⌟

.

Definition 168. Let K be a pointed ∞-category with pullbacks. Let X be an object of K.

The loops of X is the object ΩX of K that is defined by the pullback in K

ΩX 0

0 X

!

!

!

!

⌟
.

Convention 169. Throughout the remainded of this section, the∞-category K will denote

a pointed ∞-category that admits pushouts and pullbacks.
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Observation 170. The suspension defines a functor between ∞-categories

Σ : K→ K .

Similarly, the loop space defines a functor between ∞-categories

Ω : K→ K .

Observation 171. The suspension and loop space functors can be iterated by composition.

Denote Σn as the composition of the functor Σ n times. Similarly, denote Ωn as the

composition of the functor Ω n times.

Remark 172. See [11] for more details on the suspension functor.

Observation 173. The suspension and loop functors define an adjunction

K K

Σ

Ω

⊣ .

The unit morphism of this adjunction on an object X of K is given by the canonical diagram

X

ΩΣX 0

0 ΣX

⌟

.
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Similarly, the counit morphism on an object X of K is given by

ΩX 0

0 ΣΩX

X

⌟

.

Note that in particular, for objects X and Y of K, the adjunction Σ ⊣ Ω gives a canonical

equivalence of spaces

HomK (ΣX, Y ) ≃ HomK (X,ΩY ) . (3.1)

A particular instance of a pointed ∞-category is the pointed ∞-category of spaces

Spaces∗ := Spaces∗/ .

Recall that the category of spaces is the localization (Definition 337) of topological spaces

on the weak homotopy equivalences1 Weak homotopy equivalences participate in a Quillen

model structure on the category Top. Therefore, by Corollary 4.2.4.8 of [10] , (co)limits

in the ∞-category of Spaces can be computed as homotopy (co)limits in Top. A homotopy

colimit in Top can be computed as the ordinary colimit after cofibrant replacement. For

instance:

hocolim

 X ∗

∗

 ≃ colim


X C(X)

C(X)

 .

In particular, for X = S0, C(S0) ≃ [−1, 1] and ΣS0 ≃ S1, as indicated by the picture

1See [13] and [9], which show Kan complexes and the category of topological spaces restricted to CW
complexes are quillen equivallent.
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.

More generally, there is an equivalence

Σ
(
Sn−1

)
≃ Sn (3.2)

by noting that C(Sn−1) is homeomorphic to a n-disk. Together, this gives

ΣnS0 ≃ Sn .

For X and Y based topological spaces, define the space Map∗(X, Y ) to be the hom space

Map∗(X, Y ) := HomSpaces∗(X, Y )

Recall that the k-th homotopy group of a based space X is defined to be

πk(X) := Map∗(Sk, X) .

Therefore using the adjunction (3.1), there is an adjunction

πk(Ω
pX) = Map∗(Sk,ΩpX) ≃

3.1
Map∗(Σ

pSk, X) ≃
3.2

Map∗(Sk+p, X) = πk+p(X) .
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Stable ∞-categories

The material of this section is found in [11]. We recall some facts of stable∞-categories

that will be used in what follows.

Definition 174. An ∞-category V is a stable ∞-category if it satisfies the following

conditions:

-) The ∞-category V is zero-pointed (Definition 166). In a stable ∞-category, denote 0

as the zero object.

-) For all morphisms f : A→ B, the following pushout and pullback of f exist

fib(f) A A B

0 B 0 cofib(f)

f
⌟

f

⌟

.

The pullback, as the notation suggest, is the fiber of f : A → B. Similarly, the

pushout is the cofiber of f : A→ B.

-) Consider a diagram in V of the form

A B

0 C

f

g

is a pullback diagram if and only it is a pushout diagram

Remark 175. A stable ∞-category plays the role in ∞-category theory of an abelian

category in ordinary category theory. One important distinction between these notions,

however, is that, while an abelian category is an ordinary category with additional structure,

a stable∞-category is an∞-category satisfying conditions. This makes working with stable
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∞-categories a more manageable task.

Remark 176. The final category {0} is the only stable ∞-category that is an ordinary

category. However, there are many ∞-categories that are stable. We will see that any

pointed ∞-category with finite limits and colimits determines a stable ∞-category.

Lemma 177. Let V be a pointed ∞-category. Then V is stable if and only if:

-) The ∞-category V admits finite limits and colimits.

-) Consider a diagram

A B

C D

in V. This diagram is a pushout if and only if it is a pullback diagram.

Proof. This is Proposition 1.1.3.4 of [11].

This lemma gives important properties of stable ∞-categories. Note that clearly the

set of conditions of Lemma 177 clearly imply the conditions of Definitoin 174, since fibers

and cofibers are examples of pushouts and pullbacks. The conditions of Lemma 177 will be

used frequently in what follows. The next lemma gives another important fact about stable

∞-categories, as well as provides an easily checkable condition if a category V is stable.

Lemma 178. An ∞-category V is stable if and only if the following conditions are satisfied.

-) The ∞-category V is pointed.

-) The ∞-category V admits finite limits and colimits.

-) The endofunctor Σ : V → V, or equivalently the endofunctor Ω : V → V, is an

equivalence.
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Proof. This is Proposition 1.4.2.11 of [10].

Remark 179. Because the functors Σ and Ω are adjoint to one another, Σ ⊣ Ω, if one is an

equivalence then so is the other.

Notation 180. In a stable ∞-category V, we denote the loop functor as Σ−1

Σ−1 := Ω : V→ V .

Lemma 181. Let V be a stable ∞-category, and let K be an arbitrary ∞-category. Then

the ∞-category Fun (K,V) is stable.

Proof. This is Proposition 1.1.3.1 of [11].

The Stable ∞-Category of Chain Complexes

We introduce one of the main examples of a stable∞-category, which is the∞-category

of chain complexes.

Definition 182. Let k be a commutative ring. A chain complex over k is

+) A set of k-modules {Mi}i∈Z indexed by the set Z.

+) For each {i− 1 < i} ⊂ Z, a k linear map

di :Mi →Mi−1 .

such that:

-) The image of di is contained in the kernel of di−1.

im(di) ⊂ ker(di−1) .
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Equivalently, the composition of di with di−1 is 0

di−1di = 0

Definition 183. LetM• andN• be chain complexes. A map of chain complexes α :M• → N•

is

+) For each n ∈ Z, a k linear map

αi :Mn → Nn .

such that:

-) The maps αn fits into a commutative diagram

. . . Mn+1 Mn Mn−1 . . .

. . . Nn+1 Nn Nn−1 . . .

αn+1 αn αn−1 .

Definition 184. Chain complexes and maps of chain complexes organize into an ordinary

category Chaink.

Definition 185. For each n ∈ Z, the homology of a chain complexM in degree n is defined

to be

Hn(M•) := ker(fn)/im(fi+1) .

Observation 186. A chain map α :M• → N• induces a map on homology

Hn(M•)→ Hn(M•) .
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Definition 187. A map of chain complexes α : M• → N• is a quasi-isomorphism if for

each n in Z, the induced map on homology

Hn (M•)→ Hn (N•)

is an isomorphism.

Definition 188. Define the category Q to be the subcategory of Chaink consisting of all

objects of Chaink with quasi-isomorphisms as morphisms.

Definition 189. The ∞-category of chain complexes Chaink is defined to be the category

of chain complexes localized (Definition 337) on quasi-isomorphisms

Chaink := Chaink[Q
−1]

Example 190. The suspension of a chain complex M• is the chain complex

(ΣM•)n :=Mn−1

with differentials given by

(ΣM•)n+1 =Mn
−dn−−→Mn−1 = (ΣM•)n .

Note that clearly this suspension is invertible, and is given by shifting in the opposite

direction and taking the negative of the differential map. Note that the fact that this

satisfies the condition of Definition 167 is not obvious, and can be found in [11].

Corollary 191. The ∞-category Chaink is a stable ∞-category.
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Stabilization and Spectra

Lemma 178 states V is stable if and only if the loop functor Ω : V→ V is an equivalence.

Therefore, a technique to produce new stable ∞-categories from previous ∞-categories.

Namely, if we can formally invert the functor Ω, then we can produce stable ∞-categories

from existing ∞-categories. This is the idea of stabilization that is introduced here. One

key example of the stabilization of an∞-category is the∞-category of spectra, which is the

stabilization of the ∞-category of Spaces.

Definition 192. Let K be a be a pointed ∞-catergory that admits finite limits. The

stabilization is defined to be the limit in Cat(∞,1)

Stab (K) := lim
(
. . .

Ω−→ K
Ω−→ K

)
.

Definition 193. The ∞-category of spectra is defined to be the stabilization of the ∞-

category of Spaces∗

Sp := Stab (Spaces∗) .

Remark 194. Note that if a pointed∞-category K is already stable, the functor Ω : K→ K

is an equivalence by Lemma 178. Therefore the canonical map

K→ Stab (K)

is an equivalence of ∞-categories.

An object in the ∞-category Stab (K) is presented by a sequence of spaces indexed by

the non negative integers
(
{Ei}i∈Z≥0

)
, together with an equivalence in K for each i ∈ Z>0

Ei
≃−→ ΩEi−1 .
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Definition 195. There is a canonical forgetful functor from the stabilization of Stab (K) to

the ∞-category K presented by

Ω∞ : Stab (K) K

E colim (Ω1E1 → Ω2E2 → . . . )

Lemma 196. Let K be a presentable pointed∞-category. Then the functor Ω∞ : Stab(K)→

K admits a left adjoint

K Stab(K)
Σ∞

Ω∞

⊣ .

A spectrum in the image of the functor Σ∞ is a suspension spectrum.

Proof. This is the content of section 1.4 of [11].

Example 197. Let K ∈ K. The value of Σ∞K is the sequence of objects of K

{ΣiK}i∈Z≥0

together with the identify map

Σ(Σi−1K)
id−→ ΣiK .

Observation 198. The forgetful functor

Spaces∗ → Spaces

admits a left adjoint given by adjoining a disjoint basepoint

(−)+ : Spaces Spaces∗

X X+ := X ⨿ ∗
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Definition 199. The sphere spectrum S is the suspension spectrum of S0

S := Σ∞S0 .

Remark 200. The ∞-category of Spaces is the free ∞-category on a point. Similarly, the

∞-category of Sp is the free stable ∞-category on a point.

Products and Coproducts of Stable ∞-categories

Lemma 201. Let K be a pointed ∞-category with finite limits and colimits. Then the

diagram

U ⨿ V U

V 0

0⨿id

id⨿0

⌟

is a pushout.

Proof. Note that there is a canonical diagram where each square is a pushout

0 V 0

U U ⨿ V U

0 V

⌟ ⌟

⌟

.

Therefore the the colimit

colim

 U ⨿ V U

V

 = 0 .

Corollary 202. Let V be a stable ∞-category. Then finite coproducts agree with finite
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products.

Proof. Let U and V be objects in V. Since the stable ∞-category V is zero-pointed, the

diagram

U ⨿ V U

V 0

0⨿id

id⨿0

⌟

is a pushout diagram. In a stable ∞-category, pushout diagrams are pullback diagrams by

Lemma 177. Applied to coproduct diagram above, this gives the diagram

U ⨿ V U

V 0

⌟

is a pullback diagram. This is true in a zero-pointed ∞-category if and only if U
∐
V

witnesses the product of U and V . Therefore, finite coproducts agree with finite products

in the stable ∞-category V.

Notation 203. We will denote the coproduct

U ⊕ V := U ⨿ V

in a stable ∞-category. This is to remind us that this coproduct is also the product.

Morphisms in Stable ∞-categories

We now discuss how morphisms in a stable∞-category. The fact that finite coproducts

agree with products endows the spaces of morphisms between any two objects therein with a

structure aking to that of an abelian group. Furthermore, we show how morphisms between

objects in a stable ∞-category can formally be represented as a matrix, with composition

given by matrix multiplication.
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Definition 204. Let U and V be objects of V, and f, g morphisms in HomV(U, V ). We

define the sum f + g to be the following morphism in HomV(U, V )

f + g : U
(id,id)−−−→ U ⊕ U f⊕g−−→ V ⊕ V (id,id)−−−→ V .

Lemma 205. Let I and J be finite sets. Let
⊕

i∈I Vi
⊕

j∈J Wj be objects of V. Then

HomV(
⊕
i∈I

Vi,
⊕
j∈J

Wj) ≃
⊕

(i,j)∈I×J

HomV (Vi,Wj)

Proof. This follows from the fact that a finitely indexed direct sum is both the product and

the coproduct in V. First, since the direct sum is the product, a morphism with target
⊕
j∈J
Wj

is given by a map for each j ⊕
i∈I

Vi → Wj .

Therefore we have

HomV(
⊕
i∈I

Vi,
⊕
j∈J

Wj) ≃
⊕
j∈J

HomV(
⊕
i∈I

Vi,Wj) .

The direct sum is also the coproduct, so for a fixed j ∈ J , a morphism
⊕

i∈I Vi → Wj

is determined by a morphism for each i ∈ I

Vi → Wj .

For each i ∈ I and j ∈ J , we refer to the function Vi → Wj as a component function .

Thus the universal property gives that HomV(
⊕

i∈I Vi,Wj) splits

HomV(
⊕
i∈I

Vi,Wj) ≃
⊕
i∈I

HomV(Vi,Wj)
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Altogether we have

HomV(
⊕
i∈I

Vi,
⊕
j∈J

Wj) ≃
⊕
j∈J

HomV(
⊕
i∈I

Vi,Wj) ≃
⊕

(i,j)∈I×J

HomV (Vi,Wj) .

Notation 206. Consider an arbitrary map

F :
⊕
i∈I

Vi →
⊕
j∈J

Wj

with each component function (Lemma 205) denoted

F i
j : Vi → Wj .

Then we define the following J × I matrix to be F .

[F i
j ]

i∈I
j∈J = F .

Notation 207. For a matrix [F i
j ]

i∈I
j∈J , if the I and J are clear from context, we denote

[F i
j ] := [F i

j ]
i∈I
j∈J .

Lemma 208. Let I, J , and K be finite sets, and let
⊕

i∈I Ui,
⊕

j∈J Vj, and
⊕

k∈K Wk be

objects of V. For two maps,

F = [F i
j ]

i∈I
j∈J :

⊕
i∈I

Ui →
⊕
j∈J

Vj

G = [Gj
k]

j∈J
k∈K :

⊕
j∈J

Vj →
⊕
k∈K

Wk ,



114

their composition G ◦ F is given by

[(G ◦ F )ik]i∈Ik∈K = [
∑
j∈J

Gj
kF

i
j ]

i∈I
j∈J

This means that the composition map is just given by multiplication of matrices

[(G ◦ F )ik]i∈Ik∈K = [Gj
k]

j∈J
k∈K ◦ [F

i
j ]

i∈I
j∈J

Proof. Consider a sequence of composable morphisms

⊕
i∈I

Ui

[F i
j ]−−→
⊕
j∈J

Vj
[Gj

k]−−→
⊕
k∈K

Wk

Note then that a given (G ◦ F )ik is given by precomposing with the inclusion map with

Ui →
⊕

i∈I Ui and postcomposing with the projection map
⊕

k∈K Wk → Wk.

(G ◦ F )ik : Ui ↪→
⊕
i∈I

Ui

F=[F i
j ]−−−−→
⊕
j∈J

Vj
G=[Gj

k]−−−−→
⊕
k∈K

Wk → Wk

Recall, that the morphism
∑

j∈J(G
j
kF

i
j ) is defined to be the following sequence of

morphisms. ∑
j∈J

Gj
kF

i
j : Ui

(id)j∈J−−−−→
⊕
j∈J

Ui

(Gj
kF

i
j )j∈J−−−−−−→

⊕
j∈J

Wk

(id)j∈J−−−−→ Wk

Consider the diagram, which we will need to check commutes

⊕
i∈I Ui

⊕
j∈J Vj

⊕
k∈K Wk

Ui

⊕
j∈J Ui

⊕
j∈J Wk Wk

(id)j∈J (Gj
kF

i
j )j∈J

(F i
j )j∈J (Gj

k)j∈J

(id)j∈J

GF

Note that the top composite is (G ◦ F )ik, and the bottom composite is
∑

j∈J(G
j
kF

i
k).
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Therefore if the diagram commutes the two maps are equivalent. We begin by checking

commutativity of the square

⊕
i∈I Ui

⊕
j∈J Vj

Ui

⊕
j∈J Ui

F

(F i
j )j∈J

(id)j∈J

Since we are mapping from Ui into a product
⊕

j∈J Vj, we need to only check if each

coordinate function matches.

Let us first inspect the top composite. The inclusion of Ui →
⊕

i∈I Ui is given by the

identity map on the ith coordinate, and the zero map on every other coordinate. First by

going around the top, we get each coordinate function for each j given by

Ui ↪→
⊕
i∈I

Ui
F−→
⊕
j∈J

Vj → Vj

This is just the definition of F i
j . Now consider the coordinate function given by the bottom

composite:

Ui

(id)j∈J−−−−→
⊕
j∈J

Ui

(F i
j )j∈J−−−−→

⊕
j∈J

Vj → Vj .

The maps {F i
j ◦ idUi

: Ui → Vj}j∈J assemble into a morphisms Ui →
⊕

j∈J Vj that factors

through
⊕
j∈J
Ui:

Ui Vj

⊕
j∈J
Ui

⊕
j∈J
Vj

(id)′j∈J

F i
j idUi

.

Since the map F i
j ◦ idUi

: Ui → Vj is defined as a composition, it factors through Ui:
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Ui

Ui Vj

⊕
i∈I
Ui

⊕
j∈J
Vj

F i
j id

(id)j∈J

(F i
j )j∈J

id F i
j

.

Going around the outside and collapsing the identity then gives that the coordinate

function

Ui

(id)j∈J−−−−→
⊕
j∈J

Ui

(F i
j )j∈J−−−−→

⊕
j∈J

Vj → Vj

is F i
j . Therefore we have the commutativity of

⊕
i∈I
Ui

⊕
j∈J
Vj

Ui

⊕
j∈J
Ui

F

(F i
j )j∈J

(id)j∈J

since the coordinate functions of the top and bottom composite are both given by F i
j .

We now check the commutativity of the triangle

⊕
j∈J
Vj

⊕
j∈J
Ui

⊕
j∈J
Wk

(F i
j )j∈J (Gj

k)j∈J

(Gj
kF

i
j )j∈J

.

The coordinate functions of the top composite is just given by the Gj
kF

i
j and so are the

coordinate functions of the bottom composite, therefore this triangle commutes.

Finally we check the commutativity of the right square.
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⊕
j∈J
Vj

⊕
k∈K Wk

⊕
j∈J
Wk Wk

(Gj
k)j∈J

G

(id)j∈J

.

This follows by using the same methods as checking the left square. Precompose by Ui

to find the ith coordinate function, and we see that going along the top composite and the

bottom composite both give Gj
k as the coordinate function. Therefore we have that

⊕
i∈I
Ui

⊕
j∈J
Vj

⊕
k∈K

Wk

Ui

⊕
j∈J
Ui

⊕
j∈J
Wk Wk

(id)j∈J (Gj
kF

i
j )j∈J

(F i
j )j∈J (Gj

k)j∈J

(id)j∈J

GF

.

commutes, and therefore (GF )ij =
∑

j∈J G
j
kF

i
j .

Notation 209. Define the map σ : T → T to be the inverse map for the natural group

structure on T
σ : T T
x x−1

.

Definition 210. Let f : U → V be an arrow in V. Define −f to be the morphism

−f = Σ−1
(
ΣU

σ−→ ΣU
Σf−→ ΣV

)
.

Observation 211. Let f : U → V be a morphism in V. Then f + −f = 0. To see this,

note that

ΣS id+−id−−−−→ ΣS = 0 ,
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which follows from the fact that the composite

S1 pinch−−−→ S1 ∨ S1 id∨σ−−→ S1 ∨ S1 fold−−→ S1

is nullhomotopic, and that Σ∞S1 = ΣS after choosing a basepoint of S1. Since Σ is invertible

in a stable ∞-category, this implies that

(
S idS +−idS−−−−−→ S

)
=
(
S 0−→ S

)

Using the monoidal structure on Sp, with S the unit, this implies that for an arbitary

W ∈ Sp, that

(
W ≃ S⊗W (idS +−idS)⊗idW−−−−−−−−−→ S⊗W ≃ W

)
≃
(
S 0−→ S

)
.

Furthermore, using that an arbitrary stable ∞-category V is tensored over Sp, this yields

that for an arbitrary U ∈ V

(
U

idU +−idU−−−−−−→ U
)
≃
(
U

0−→ U
)
.

Lastly, by inspecting the definition of the addition of morphisms (Definition 204), it follows

that

f +−f = f ◦ (idU +− idU) = f ◦ 0 = 0

Lemma 212. Consider the following pushout diagram in V.

A C

B D

⌟
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Then we have the following equivalence

coker(A→ B) ≃ coker(C → D)

Proof. Since the cokernal is a pushout as well, we have the following diagram

A C 0

B D coker(C → D)

⌟ ⌟ .

Since each square in the diagram is a pushout, that implies that the outer square is a pushout.

A 0

B coker(C → D)

Finally, since colimits are unique up to unique isomorphism then we have

coker(A→ B) ≃ coker(C → D)

Co/Tensors

Definition 213. Let X be a space, and V ∈ K and object in a ∞-categorythat admits

colimits. The tensor (sometimes called copowering) of X with V is the following object

of V:

X ⊙ V := colim
(
X

!−→ ∗ ⟨V ⟩−−→ K
)
.

Definition 214. Let X be a space, and V ∈ K and object in an ∞-category that admits

limits. The cotensor (Sometimes called powering) of X with V is the following object of
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V:

V ⋔X := lim
(
X

!−→ ∗ ⟨V ⟩−−→ K
)
.

Lemma 215. Let V = be an object in a presentable stable ∞-category V.

(1) The functor

−⊙ V : Spaces→ V

is the unique colimit preserving functor from Spaces to V such that the value on ∗ is

V .

(2) The functor

V ⋔− : Spacesop → V

is the unique limit colimit reflecting functor from Spaces to V whose value on ∗ is V .

Proof. The first statement follows from the fact that Spaces is freely generated by ∗ under

colimits. The second follows as the dual of the first statement by taking opposites, and by

noting that if V is stable, then Vop is stable.

Example 216. We give without proof the following examples of tensors and cotensors in

specific stable infinity categories V

V X ⊙ V V ⋔X

Sets V
∐

π0(X) HomSets(X, V )
Spaces X × V Map(X, V )

Chain Complexes C∗(X, V ) C∗(X, V )
Spectra (Σ∞

+X) ∧ V Map
Spectra

(Σ∞
+X, V )
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Hopf Map

Definition 217. The Hopf fibration is the quotient map of the action of the diagonal

action of T ⊂ C on S3 ⊂ C× C

η : S3 CP1 := S3
/T

C× C ∋ (x1, x2) Span (x1, x2)
.

The space CP1 is homeomorphic to S2. Indeed, CP1 can be identified as the one

point compactification of the complex plane, and S2 can be identified as the one point

compactification of R2. Therefore the Hopf fibration can be viewed as a map

η : S3 → S2 .

The map η can be considered as a based map, and therefore as an element

η ∈ π3(S2) ≃
3.1
π1
(
Ω2S2

)
.

Notation 218. Let S be a set. Define Z⟨S⟩ to be the free abelian group on the set S.

Lemma 219. The Hopf map η generates π1 (Ω
2S2).

π3
(
S2
)
≃ Z ≃ Z⟨η⟩ .

Observation 220. Note that the hopf map η : S3 → S2 induces a map on spectra

Σ∞η : Σ3S→ Σ2S.
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Desuspending twice then gives a map of spectra

Σ−2Σ∞η : ΣS→ S.

We will refer to this map of spectra as η as well. Note that tensoring by an object V ∈ V

also yields a morphism in V

η : ΣV ≃ V ⊗ ΣS→ V ⊗ S ≃ V.

Similarly, using the suspension functor, we can compose the morphism η by

η2 := Σ2V
Ση−→ ΣV

η−→ V .

In a similar way, for n ∈ Z≥2 define ηn to be the composite

ηn := ΣnV
Σn−1η−−−→ Σn−1V

Σn−2η−−−→ . . .
Ση−→ Σ

η−→ V .

Lemma 221. The composition of η4 is equivalent to the zero map

η4 ≃ 0 .

Proof. See [12].

Recollection of Stratified Noncommutative Geometry

Recalled in this section are the key results from [6] that will be used in identifying the

category Fun(Exit(CP∞,V). In the paper [6], there is a reconstruction theorem (Theorem

A) and a “reflected” reconstruction theorem (Theorem F). The proof of Theorem 310 only
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relies on the reflected side, so we will only recall the reflected version, however see [6] for the

full theory of stratifications of presentable stable ∞-categories.

In [6], Ayala, Mazel-Gee, and Rozenblyum develop a theory of stratifications for

presentable stable ∞-categories. A main result from that work is that a stratification of

a presentable stable ∞-category X can be used to reconstruct the ∞-category X in two

ways. A key example is worked out in the Ret-modules section 3. Another useful instance of

the reconstruction theorem gives an equivalence between filtered objects in V and downward

finite chain complexes over V

Fun(Z≥0,V) ≃ Chain≥0(V) .

This is an ∞-categorical version of the Dold-Kan theorem (Theorem 1.2.3.7 of [11]) See

Example 1.10.6 of [6] and Theorem 1.2.4.1 of [11]

Definition 222. A closed ∞-subcategory of X is

+) a full presentable stable ∞-subcategory Z ⊆ X

such that:

-) The inclusion iL admits a right adjoint y, which admits a further right adjoint iR:

Z X

iL

iR

y

⊣
⊣ .

Definition 223. Define Cls(X) to be the poset of closed subcategories of X ordered by

inclusion.

Note that if Z1 ≤ Z2 in Cls(X), then the inclusion Z1 ↪→ Z2 factors as

Z1
iL−→ X

y−→ Z2
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and this inclusion is fully faithful.

Definition 224. An arbitrary map of posets

Z• : P→ Cls(X)

is a prestratification .

Notation 225. Let Z• : P → Cls(X) be a prestratification, and let D be a subposet of P.

Define ZD to be the colimit

ZD := colim
(
Obj (D) ↪→ P

Z•−→ Cls(X)
)
,

where we regard Obj (D) as the discrete category on the elements of the poset D. This colimit

is the least upper bound (Lemma 24) of the elements of D. Furthermore, define

Z≤q := ZP≤q

Z<q := ZP<q

Z≤p∩≤q := ZP≤q∩≤p

.

Definition 226. A stratification of X over P is:

+) A functor

Z• : P Cls(X)

p Zp

.

such that:
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-) The colimit ZP is the ∞-∞-category X.

ZP = X .

-) For any p, q ∈ P, there exists a factorization

Z≤p∩≤q Zp

Zq X
iL

y

iL

.

This condition is the stratification condition .

Observation 227. Let P→ Cls(X) be a prestratification, and let p ≤ q in P. The colimit

Z≤p∩≤q is a closed ∞-subcategory Z≤q. Therefore there exists factorizations

Zq Zp Zq Zq

Zq X Zp X
iL

yid

y◦iL

y◦iL

iL

id

y .

Therefore a prestratification by a linearly ordered poset P always satisfies the stratification

condition. If a linearly ordered poset P is finite, then it suffices to check that the maximal

element of the poset P is sent to X ∈ ClsX in order to verify the prestratification is a

stratification.

Notation 228. Throughout the remainder of this section, fix a P-stratification of the

presentable stable ∞-category X:

Z• : P→ Cls(X) .
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Definition 229. A recollement is a diagram of presentable stable ∞-categories

Z X U

iL pL

iR

y

pR

ν

⊣
⊣

⊣
⊣ ,

such that ker (pL) = im(iL), ker (y) = im(ν), and ker (pR) = im (iL)

Definition 230. Define the p-stratum Z• : P→ Cls(X) to be a stratification

Xp := (Zp/Z<p)

Observation 231. Given an element p ∈ P, there is a canonical recollement

Z<p Zp Xp

iL pL

iR

y

pR

ν

⊣
⊣

⊣
⊣ .

Definition 232. For p ∈ P, define λp and Ψp as the composites

λp : Xp Zp X : Ψp

ν iL

pR y

⊣⊣ .

The functor Ψp is called the geometric colocalization functor.

Definition 233. For all p, q ∈ P, the corresponding glueing functor is the composite

Γ̌p
q := Xp

λp−→ X
Ψq−→ Xq .

Definition 234. The reflected gluing diagram is full ∞-subcategory of X× Pop

Ǧ (X) := {(X, p◦) | X ∈ λp(Xp)} ⊆ X× Pop .
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The reflected gluing diagram has a canonical functor to Pop given by projection.

Notation 235. We will refer to an object

(x, p◦) ∈ Ǧ (X)

as λp(xp), since the object x lies in the essential image of Xp.

In what follows, we make use of (locally) cartesian fibrations. For more details on

cartesian fibrations see [2]. For how caretesian fibration fit into the theory of presentable

stable ∞-categories, see [6].

Example 236. The map of posets

sd(P)op
Maxop−−−→ Pop

is a locally cartesian fibration. In the example of P = 2, the non-identity cartesian morphisms

of sd([2])op are highlighted in red

1

01 012 12

0 02 2

.

See [6] for details.

Lemma 237. The canonical projection functor

Ǧ (X)→ Pop

is a locally cartesian fibration.
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Proof. The functor Ǧ (X) → Pop is a locally cartesian fibration if for each morphism

[1]
⟨i◦→j◦⟩−−−−→ Pop and object λj(xj) ∈ Ǧ (X) in the fiber over j◦ ∈ Pop, the restriction

Ǧ (X)|i◦→j◦ → {i◦ → j◦}

is a cartesian fibration. By Lemma 2.16 of [2], the restriction over the morphism i◦ → j◦ is

a cartesian fibration if there exists a final lift

{1} Ǧ (X)|i◦→j◦

[1] {i◦ → j◦}
⟨i◦→j◦⟩

⟨λj(xj)⟩

. (3.3)

There is a canonical choice of lift given by the counit of the adjunction λi ⊣ Ψi

λiΨiλj(xj)
κi:=counit−−−−−−→ λj(xj) .

Therefore, it suffices to show that for any other filler λi(xi)
f−→ λj(xj) in the diagram 3.3,

there is a unique filler

λi(xi)

λiΨiλj(xj) λj(xj)

f

κi

∃! . (3.4)

Applying the composite functor λiΨi to the morphism λi(xi)→ λj(xj) gives a morphism

λiΨiλi(xi)→ λiΨiλj(xj) .

Furthermore, since λi is fully faithful, the composite Ψiλi is equivalent with the identity
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functor on Xi. Therefore we get a morphism

λi(xi)→ λiΨiλj(xj) ,

which is clearly a filler in the diagram (3.4) . Therefore what remains to show is that this

filler is unique. Assume there is a filler g : λi (xi)→ λiΨiλj (xj)

λi(xi)

λiΨiλj(xj) λj(xj)

g

κi

.

We seek to factor g by morphisms which do not depened on g. Therefore any other filler g′

is identified in this same way, and so the filler is essential unique.

Applying the functor λiΨi to triangle above, and applying the counit κi gives

λiΨiλi(xi) λiΨiλj(xj)

λiΨiλiΨiλj(xj)

λi(xi) λj(xj)

λiΨiλj(xj)

g κi

f

κi

λiΨi(g) λiΨi(κi)

λiΨi(f)

κi κi

Here any application of κi on the ∞-subcategory λi(Xi) must be equivalences, since the
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functor λiΨi is idempotent. Therefore the morphisms indicated are equivalences

λiΨiλi(xi) λiΨiλj(xj)

λiΨiλiΨiλj(xj)

λi(xi) λj(xj)

λiΨiλj(xj)

g κi

f

≃

λiΨi(g) ≃

λiΨi(f)

≃ κi

Note then this witnesses g as a composition of morphisms, all which only depend on f or

κi.

Before the statement of the next theorem, recall Example 236, which states sd(P)op
Max−−→

Pop is a locally cartesian fibration.

Theorem 238 (Reflected Reconstruction Theorem). Let P be a down-finite poset.

(1) (macrocosm) For each P-stratified presentable stable ∞-category X ∈ StratstrictP , the

equivalence in (1) determines an equivalence

Funcart/Pop

(
sd(P)op, Ǧ (X)

)
X

colim(−)

ǧ

≃
.

where ǧ is given by a unit map of a particular adjunction in Theorem F of [6].

(2) (microcosm) For each object X ∈ X, there is an equivalence in X

colim(ĝ(X))
≃−→ X .

determined by the equivalence of ∞-categories in (1).
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This is a part of Theorem F of [6].

Ret-Modules: The Key Example

This section seeks to apply the reflected reconstruction theorem to look at retractions

in a presentable stable ∞-category V. We begin by recalling the definition of retractions.

Definition 239. The category Ret is the ordinary category

E Bsr

r

s

where the composition rule is uniquely determined by s ◦ r = sr, and r ◦ s = idB.

Definition 240. A retraction in an ∞-category V is a functor

Ret→ V .

The ∞-category of retractions in V is the ∞-category

VRet := Fun(Ret,V) .

We seek then to stratify the ∞- category Fun (Ret,V) and apply the reflected

reconstruction theorem. The end result is the following theorem (Theorem 249), which

says that retractions in a stable ∞-category functorially split.

Theorem. The functor

VRet V× V

F (F(B), ker(F(r))

is an equivalence of ∞-categories.
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Lemma 241. Recall∞-category Ret (Definition 239). The categories {B}/E and {B}E/ are

equivalent with the terminal category:

{B}/E ≃ ∗ ≃ {B}E/ .

Proof. We show {B}/E ≃ ∗. Recall, that the the categories {B}/E and Ret/E are defined

(Definition 346) to be the following pullbacks

{B}/E ∗

Ret/E Fun([1],Ret) Ret

∗ Ret
⟨E⟩

ev1

⟨B⟩

ev0

⌟

⌟

.

The limit of the outer ladder diagram is HomRet(B,E), and therefore

{B}/E ≃ HomRet(B,E) ≃ {s}

due to the fact

(sr) ◦ s = s ◦ (rs) = s ◦ idB = s.

A similar argument shows {B}E/ ≃ HomRet(E,B) ≃ {r}.

Lemma 242. The inclusion functor {B} → Ret induces a pair of adjunctions

V{B} VRety

iL

iR

⊣
⊣

where y is the restriction functor along {B} → Ret and iL and iR are left and right Kan
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extensions along {B} → Ret respectively.

Proof. This is a particular instance of Lemma 321.

Lemma 243. The left Kan extension functor

iL : V{B} → VRet

extends a functor F ∈ V{B} to the constant functor at F(B):

iL(F)(E) ≃ F(B) .

Proof. The left Kan extension evaluated on E is given by

iL(F)(E) = colim
(
{B}/E → {B}

F−→ V
)
.

By Lemma 242, the category {B}/E is contractible, so the colimit is equivalent to the value

F(B).

colim
(
{B}/E → {B}

F−→ V
)
≃ colim(∗ ⟨F(B)⟩−−−→ V) ≃ F(B) .

Lemma 244. The right Kan extension functor

iR : V{B} → VRet

extends a functor F ∈ Fun({B},V) to the constant functor at F(B)

iR(F)(E) = F(B) .
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Proof. The proof follows by the same logic as Lemma 243, after noting the right Kan

extension is computed as

lim
(
{B}E/ → {B} F−→ V

)
,

and that by Lemma 242, the category {B}E/ is contractible.

Lemma 245. The closed ∞-subcategory V{B} of VRet determines a recollement with V{E} :=

Fun ({E},V)

V{B} VRet V{E}

iL

iR

y

pL

pR

ν ,

where pL is determined by the formula

νpL = cofib
(
iLy

iL⊣y−−→ id
)

and pR is determined by the formula

νpR = fib
(
id

y⊣iR−−→ iRy
)
.

Here the morphisms in the cofiber and fiber are the counit and unit morphisms respectively.

The functor ν is given by extension by zero.

Proof. A closed ∞-subcategory always determines a recollement

V{B} VRet ker(y)

iL

iR

y

pL

pR

ν ,

where pL is determined by the formula

νpL = cofib
(
iLy

iL⊣y−−→ id
)
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and pR is determined by the formula

νpR = fib
(
id

y⊣iR−−→ iRy
)
.

Here the morphisms in the cofiber and fiber are the counit and unit morphisms respectively.

Therefore what remains is to show that the equivalence

V{E} ≃ ker(y) .

The equivalence follows after showing that {B} ⊂ Ret is Reedy closed (Definition 260).

We first check that {B} ⊂ Ret satisfies Condition A of Definition 260. Note that

{E} = Obj(Ret)\{B}, and that Fact{B}(E,E) ≃ ∗ ≃ {sr}, since the morphism sr factors as

E E

B

s r

sr

.

Therefore, {B} ⊂ Ret satsifies Condition A.

The subcategory {B} ⊂ Ret satisfies Condition B, since

|{B}E/
/E| → Fact{B}(E,E) ≃ {sr}

is an equivalence. Therefore by Theorem 276, there is a recollement

V{B} VRet V{E}

iL

iR

y

pL

pR

ν ,

and ν is given by extension by zero.
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Observation 246. The inclusion A1 ↪→ A determines a restriction functor

Fun(A, Sp) ↪→ Fun(A1, Sp)

which admits a left adjoint given by left Kan extension by Lemma 321. Denote the left Kan

extension functor

ĵ : Fun(A1, Sp) ↪→ Fun(A, Sp)

Lemma 247. The functors pL and pR are identified as follows.

(1) The functor pL sends a functor Ret
F−→ V to the functor {E} → V that selects the cofiber

of the morphism F(s)

pL : VRet V{E}

F ⟨cofib
(
F(B)

F(s)−−→ F(E)
)
⟩
.

(2) The functor pR sends a functor F : Ret → V to the functor {E} → V that selects the

fiber of the morphism F(r)

pR : VRet V{E}

F ⟨fib
(
F(E)

F(r)−−→ F(B)
)
⟩

Proof. Let F : Ret → V. We seek to compute pL(F). Recall from Lemma 245 that functor

pL is computed by the formula

νpL = cofib(iLy → id) .

The functor ν is given by extension by zero by Lemma 245 which gives νpL(F(B)) = 0.
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Therefore, it suffices to compute by Lemma 245

cofib(iLyF→ F)(E) .

The composite iLy sends a functor F to the constant functor at F(B).

cofib(iLyF→ F)(E) = cofib(constF(B) → F)(E)

The evaluation at E functor is a left adjoint, so it preserves colimits. Therefore, the cofiber

in VRet evaluated on the object E is the cofiber

cofib(constF(B)(E)→ F(E)) = cofib
(
F(B)

F(s)−−→ F(E)
)
.

Therefore, pL is the functor that selects the cofiber of F(s).

The computation of pR follows a similar argument after noting by Lemma 245 that

νpR ≃ fib(id
iL⊣y−−→ iRy)

Lemma 248. The glueing functor and reflected glueing functor for the recollement

V{B} VRet ker(y)

iL

iR

y

pL

pR

ν ,

are identified as follows:

(1) The gluing functor Γ = pLiR is equivalent to the zero functor

V{B} V{E}

V V

Γ

≃

0

≃ .
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(2) The reflected gluing functor Γ̌ := pRiL is equivalent to the zero functor

V{B} V{E}

V V

Γ̌

≃

0

≃ .

Proof. We begin by showing Γ = pLiR = 0. Let ⟨V ⟩ : {B} → V select an object V . By

Lemma 247, the functor Γ applied to ⟨V ⟩ is

Γ(⟨V ⟩) = ⟨cofib
(
iR(⟨V ⟩)(B)

iR(⟨V ⟩)(s)−−−−−−→ iR(⟨V ⟩)(E)
)
⟩ .

The functor iR is right Kan extension along the inclusion {B} ↪→ Ret, so Γ(⟨V ⟩) is the

functor that selects the cofiber of the morphism

lim
(
{B}B/ → {B} ⟨V ⟩−−→ V

)
→ lim

(
{B}E/ → {B} ⟨V ⟩−−→ V

)
,

that is induced by the map {B}B/ −◦r−−→ {B}E/ . This map is an equivalence, since each

category is contractible by Lemma 241 . Therefore, the map between the limits is an

equivalence, so its cofiber is 0:

〈
cofib

(
lim
(
{B}B/ → {B} ⟨V ⟩−−→ V

)
≃−→ lim

(
{B}E/ → {B} ⟨V ⟩−−→ V

))〉
= ⟨0⟩ .

A dual argument follows for the computation of pR.

Theorem 249. The functor

VRet V× V

F (F(B), ker(F(r))
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is an equivalence of ∞-categories.

Proof. By Theorem 238, the adjunction

Fun (Ret,V) liml.lax

(
[1]

⟨Fun({B},V)
Γ̌=0−−→Fun({E},V)⟩−−−−−−−−−−−−−−−−−→ Prst

)
ǧ

colimsd([1])op

is an equivalence of ∞-categories. The functor sd([1])op
maxop−−−→ [1]op is a cartesian fibration

(See [6]), and that the left lax limit is defined to be all functors sd ([1])op → Ǧ (Fun (Ret,V))

over [1]op that preserve cartesian morphism:

liml.lax

(
[1]

⟨Fun({B},V)
Γ̌=0−−→Fun({E},V)⟩−−−−−−−−−−−−−−−−−→ Prst

)
:= Funcart/[1]◦

(
sd([1])op, Ǧ (VRet)

)
.

Note that the only non-identity cartesian morphism of sd([1])op is the morphism

{0, 1}◦ → {0}◦ .

Therefore, for each F0 ∈ V{B}, this morphism in sd([1])op must be sent to a morphism in VRet

of the form

νpRiL(x0)
counit(ν⊣pR)−−−−−−−→ iL(F0) .

By Lemma 248, the domain νpRiL = νΓ is zero, and therefore, this is the zero morphism.

Therefore, the composite functor between ∞-categories

Funcart/[1]◦

(
sd([1])op, Ǧ (VRet)

)
Ǧ (VRet)|{0}◦ × Ǧ (VRet)|{1}◦ V{B} × V{E}(ev0◦ ,ev1◦ )

Lemma 245
≃

is an equivalence. Indeed, there is a canonical inverse given by

V{B} × V{E} VRet × VRet Funcart/[1]◦

(
sd([1])op, Ǧ (VRet)

)iL×ν ext0 ,
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where the map ext0 is the functor

ext0 : V
Ret × VRet Fun (sd([1])op,V)

(F0,F1) F1

F0 0

.

Evaluated on objects in Fun({B},V) × Fun ({E},V) ⊂ VRet × VRet, the functor ext0 indeed

takes values in Funcart/[1]◦

(
sd([1])op, Ǧ (VRet)

)
.

In summary, we have a composite equivalence between ∞-categories:

VRet ≃−→
Thm 238

Funcart/[1]◦

(
sd([1])op, Ǧ (VRet)

) ≃−→
(245)

V{B} × V{E} ≃ V× V ,

given by

F 7→


νpR(F)

iLy(F) νpRiLy(F)

 7→ (yiLy(F), pRνpR(F)) ≃
Lemma 247

(F(B), ker(F(r))) .

Remark 250. Using the Reconstruction Theorem of [6], there is also an equivalence

VRet V× V

F (F(B), coker(F(s))
.

Corollary 251. Let B be a retract of E in a stable ∞-category V

E B
r

s

.
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Then the following diagram commutes

B

B ⊕ ker(r) E B ⊕ coker(s)

B
[1 0]

≃ ≃

[1 0]
r

[
1

0

] [
1

0

]
s
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REEDY CLOSED

Introduction

Notation 252. The following notation is fixed throughout this chapter.

• A is an arbitrary ∞-category.

• A0 ⊂ A is a full ∞-subcategory.

• i : A0 → A is the inclusion functor from A0 into A.

• Let F : C → D be an arbitrary functor between ∞-categories. F!, F
∗, and F∗ refer to

the left Kan extension functor, restriction functor, and right Kan extension functors

respectively:

Fun(C, Spaces) Fun(D, Spaces)

F!

F∗

F∗

⊣
⊣ .

• The classifying space of an ∞-category C is denoted |C|.

• Spaces is the ∞-category of spaces. Spaces can be presented as the localization of the

ordinary category of topological spaces that are homotopy equivalent to CW complexes,

localized at homotopy equivalences.

• The ∞-category Spaces∗/ is the ∞-category of pointed Spaces.

• For an object c in an arbitrary∞-category C, we will denote the object c in the opposite

∞-category Cop as c◦.

• Let V be an arbitrary presentable stable ∞-category.
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The theory of stratifications has been used in many different contexts. In the paper

[6], a theory of stratifications for presentable stable ∞-categories is developed. A host of

important examples are provided by considering the ∞-category Fun(A, Sp) of A-modules

in Sp. Given a full ∞-subcategory A0, there is a pair of adjunctions

Fun(A0, Sp) Fun(A, Sp)

i!

i∗

i∗ . (4.1)

This situation is a particular instance of a closed ∞-subcategory , in the sense of Definition

1.3.1 of [6], where Fun(A0, Sp) is a closed∞-subcategory of Fun(A, Sp). For U := ker(i∗), the

inclusion functor ν : U → Fun(A, Sp) admits two adjoints pL and pR, such that ker(pL) =

im(i!) and ker(pR) = im(i∗). Altogether the data fits into a recollement

Fun(A0, Sp) Fun(A, Sp) U .

i!

i∗

i∗

pL

pR

ν

⊣
⊣⊣

⊣

.

In favorable situations, which we will refer to as A0 ⊂ A being Reedy Closed , the ∞-

category U = ker(i∗) has a description as A1-modules, where A1 is an ∞-subcategory of

A\A0 that is entirely determined by A0 ⊂ A. In what follows in this chapter, we will

articulate checkable conditions on A0 ⊂ A that ensure this favorable situation.

Reedy Closed Condition

The goal is to identify conditions on a closed ∞-subcategory A0 ⊂ A (Definition 222)

that ensures ker(i∗) = Fun (A1,V) for a suitable compliment A1 of A0 ⊂ A. A naive thought

is to take A1 ⊂ A to be the full ∞-subcategory on those objects in A that are not in A0.

However, consider the following example.
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Example 253. Consider i : ∆op
≤0 ↪→ ∆op

≤1. Consider the restriction functor

i∗ : Fun(∆op
≤1,V)→ Fun(∆op

≤0,V) .

By definition, the kernel of this restriction functor consists of those functors ∆op
≤1 → V that

evaluate on [0] as 0 ∈ V. Using that 0 ∈ V is a zero-object, evaluation at [1] ∈ ∆op
≤1 defines

an equivalence:

ev[1] : ker(i
∗)

≃−−→ V ≃ Fun({[1]◦},V) .

However, the full ∞-subcategory A′ ⊂ ∆op
≤1 consisting of those objects not in ∆op

≤0 has

the single object [1]◦ and two distincts non-identity idempotents. Therefore, ker(i∗) ≃

Fun({[1]◦},V) ̸≃ Fun(A′,V). Observe that the morphisms in A′ that are not in {[1]◦} are

those that factor through ∆op
≤0.

Definition 254. Let f : q → p be a morphism in A. The morphism f factors through

A0 if there exists an a0 ∈ A0, and a triangle

q p

a0

f

in A. Define the subspace

FactA0 ⊂ Mor(A)

to be the subspace consisting of those morphisms in A that factor through A0.

For a fixed p, q in A, define FactA0(q, p) to be the subspace of HomA(q, p) on those

morphisms q → p that factor through A0. Similarly, we say that a morphism q → p does

not factor through A0 if the morphism q → p is in the compliment of FactA0(q, p).

This leads us to the first condition needed on A0 ⊂ A, which is a condition on the
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morphisms that do not factor through A0.

Condition A. Let q
f−→ r

g−→ p be a pair of composable morphisms in A. If neither f nor g

factors through A0, then the composite morphism gf : q → p does not factor through A0.

Observation 255. Consider a pair of composible morphisms q
f−→ r

g−→ p in A. If f factors

through A0, then the composite gf must also factor through A0. Indeed, we can choose a

factorization of f through A0

a0 b

a c

k

j

f g

gf

,

which gives a triangle
a0

a c
gf

k gj

in A such that a0 is in A0. A similar argument follows using a factorization of g. Therefore

gf factors through A0.

This leads to a construction of the ∞-subcategory A1. Condition A, ensures that A1

is well defined.

Definition 256. Suppose A0 ⊂ A satisfies Condition A. The ∞-subcategory A1 ⊂ A is

characterized by the following identities:

Obj(A1) := A\A0 ;

Mor(A1) := Mor(A)\FactA0 .

Therefore for p, q ∈ A\A0

HomA1(q, p) := HomA(q, p)\FactA0(q, p).
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Denote the inclusion of A1 into A as

j : A1 → A .

Lemma 257. Suppose A0 ⊂ A satisfies Condition A. The ∞-subcategory A1 exists.

Proof. As A is a complete Segal space, the Segal condition states that the [p] points are

determined by the [1] and [0] points. Therefore, by naming subspaces of the [1] and [0] spaces

such that the composition rule is still satisfied determines all of the [p] points. Therefore, all

that needs to be checked is that the composition rule for A1 is well defined. This is precisely

Condition A on A0 ⊂ A.

Observation 258. There is a canonical colimit preserving functor from Fun(A1, Sp) to U

given by

Fun(A1, Sp)
ĵ−→ Fun(A, Sp)

pL−→ U ,

where ĵ is given by left Kan extension.

The goal is to show that under a second condition on A0 ⊂ A that functor

Fun(A1, Sp)
pLĵ−−→ U

is an equivalence. The following definitions are to set up the statement of this condition.

Definition 259. Let p, q be objects of A. Then the ∞-category A
q/
/p is defined to be the

pullback

A
q/
/p A/p

Aq/ A

fgt

fgt

⌟ .
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The category A0
q/
/p is defined the be the pullback.

A0
q/
/p A

q/
/p

A0 A

fgt

i

⌟ .

Consider the functor

◦ : A0
q/
/p → Fun([2],A)→ Fun({0 < 2},A)

that sends a pair of composable morphisms to their composite in A. The image of ◦ consists

of arrows in A such that evaluation at 0 is identical with q, and evaluation at 2 is identical

with p. Therefore the functor ◦ factors through HomA(p, q). By the definition of FactA0(q, p),

the functor ◦ also factors through FactA0(q, p)

FactA0(q, p)

HomA(q, p)

A0
q/
/p Mor(A)◦

.

Since each codomain is a ∞-groupoid, the functor ◦ factors through the classifying space of

the ∞-category A0
q/
/p:

A0
q/
/p FactA0(q, p)

|A0
q/
/p|

◦

∃!
.
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Denote the unique morphism given by the universal property of the classifying space

| ◦ | : |A0
q/
/p| → FactA0(q, p) .

By inspection, for an arbitrary A0 ⊂ A, the functor | ◦ | is always surjective. Indeed, given

a morphism f : q → p in FactA0(q, p), there is a factorization of f given by q → a0 → p,

which is an object of A0
q/
/p. However, the functor | ◦ | being surjective will not be sufficient

to ensure pLĵ is an equivalence, and we will need a second condition on A0 ⊂ A to ensure

there is an identification of U as an ∞-category of A1-modules.

Condition B. For each p and q in A1, the functor

| ◦ | : |A0
q/
/p|

≃−→ FactA0(q, p)

is an equivalence.

Definition 260. An∞-subcategory A0 of A is Reedy-Closed if it satisfies both Condition

A and Condition B.

Convention 261. For the rest of this article, we will assume that A0 ⊂ A is Reedy-Closed.

There is an equivalent condition on the morphism | ◦ | being an equivalence that will

at times be conducive to work with.

Lemma 262. The following conditions are equivalent.

(1) | ◦ | : |A0
q/
/p|

≃−→ FactA0(q, p) is an equivalence (Condition B).

(2) For all morphisms f : p→ q ∈ FactA0(q, p), the ∞-category |A0
q/
/f :q→p| is contractible

|A0
q/
/f :q→p| ≃ ∗.
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Proof. The proof is an application of Quillen’s Theorem B (Proposition 349.)

We seek to show the diagram

|A0
q/
/f :q→p| |A0

q/
/p|

∗ FactA0(q, p)

⌟

is a pullback diagram. Let (f : q → p) → (g : q → p) be a morphism in FactA0(q, p). Post-

composition with this morphism determines an equivalence between ∞-overategories

FactA0(q, p)/f
≃−→ FactA0(q, p)/g

by Lemma 345, and therefore (
A0

q/
/p

)
/f
→
(
A0

q/
/p

)
/g

is an equivalence. Therefore, by Quillen’s theorem B and Lemma 347, the diagram

|
(
A0

q/
/p

)
|f
| |A0

q/
/p|

∗ FactA0(q, p)

⌟

is a pullback diagram. Next, note the equivalence

(
A0

q/
/p

)
|f

≃−→ A0
q/
/f :q→p .

On the level of objects, this is readily seen. An object of both the left side and the right side
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is equivalent with a commutative triangle in A

r

q p
f

.

Therefore the diagram

|A0
q/
/f :q→p| |A0

q/
/p|

∗ FactA0(q, p)

⌟

is a pullback diagram. Condition B states that the right arrow in the pullback diagram

is an equivalence. Since the diagram is a pullback, the arrow A0
q/
/f :q→p → ∗ is also an

equivalence. Similarly, if the left arrow in the pullback diagram is an equivalence then this

implies Condition B.

In summary, this section gives two checkable conditions, Condition A and Condition

B, on an ∞-subcategory A0 ⊂ A. There is also a canonical colimit preserving functor

Fun(A1, Sp)
ĵ−→ Fun(A, Sp)

Pl−→ U .

The main goal is to show that this composite morphism pLĵ is an equivalence of∞-categories.

A corollary of this fact is that we then have a recollement

Fun(A0, Sp) Fun(A, Sp) U Fun(A1, Sp)

i!

i∗

i∗

pL

pR

ν ≃

⊣
⊣⊣

⊣

.

The next two sections verify that the functor pLĵ : Fun(A1, Sp) → U is fully faithful and
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surjective, which provides the equivaelnce

Fun(A1, Sp)
≃−→ U .

The next section shows that the functor pLĵ is surjective.

Surjectivity of pLĵ : Fun(A1,V)→ U

The goal of this section is to verify that the functor pLĵ is surjective. The most difficult

part of this is in computing the cofiber of the inclusion of Σ∞
+ |A0

q/
/p| → Σ∞

+HomA(q, p). The

following lemmas are used to build to computing this cofiber.

Lemma 263. The diagram

colim(A0/p → A0 ↪→ A
HomA(q,−)−−−−−−→ Spaces) HomA(p, q)

∗ HomA1(p, q)+

◦

⟨+⟩

is a pushout in Spaces.

Proof. First, we seek to show the colimit

colim

(
A0/p → A0 → A

HomA(q,−)−−−−−−→ Spaces

)
≃ |A0

q/
/p| .

is equivalent with the ∞-category |A0
q/
/p|. The colimit is valued in Spaces, therefore by

Lemma 352, the colimit is computed as the classifying space of the unstraightening of the

composite functor A0/p → Spaces. By Lemma 351 the unstraightening of the functor can be
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computed as a series of pullbacks

A0
q/
/p A0

q/ Aq/ Spaces∗/

A0/p A0 A Spaces
HomA(q,−)

⌟⌟⌟ .

The first pullback is because the over and under categories are the unstraightenings of the

yoneda embeddings. Therefore the colimit is

colim

(
A0/p → A0 → A

HomA(q,−)−−−−−−→ Spaces

)
≃ |A0

q/
/p| .

Next, recall that the morphisms of HomA1(q, p) are defined to be the compliment of

FactA0(q, p) in HomA(q, p). There is then the following equivalences

HomA(p, q) ≃ FactA0(q, p)⨿ HomA1(q, p)≃|A0
q/
/p| ⨿ HomA1(q, p) .

where the last equivalence is given by Condition B. Therefore there is an equivalence between

the two squares

|A0
q/
/p| |A0

q/
/p| ⨿ HomA1(q, p)

|A0
q/
/p| HomA(q, p)

∗ HomA1(q, p)+

∗ HomA1(q, p)+

≃

id

id

id

.

Finally, the back square is a pullback by Lemma 341, which implies the front square is also

a pullback.
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Lemma 264. The diagram

colim(A0/p → A0 ↪→ A
HomA(q,−)−−−−−−→ Spaces

(−)+−−−→ Spaces∗/) HomA(p, q)+

∗ HomA(p, q)+

◦

⟨+⟩

is a pushout in Spaces∗/.

Proof. First note that the functor Spaces
(−)+−−−→ Spaces∗/ preserves colimits, as it is the left

adjoint to the forgetful functor Spaces∗/ → Spaces. Therefore it suffices to show the diagram

colim(A0/p → A0 ↪→ A
HomA(q,−)−−−−−−→ Spaces)+ HomA(p, q)+

∗ HomA1(p, q)+

◦

⟨+⟩

is a pushout in Spaces, which follows from Lemma 342 and Lemma 263.

Lemma 265. The diagram

colim(A0/p → A0 ↪→ A
HomA(q,−)−−−−−−→ Spaces

+−→ Spaces∗/
Σ∞
−−→ Sp) Σ∞

+HomA(p, q)

0 Σ∞
+HomA1(p, q)

◦

⟨+⟩

is a pushout in Sp.

Proof. This follows immediately from Lemma 264, and the fact that Σ∞ : Spaces∗/ → Sp

preserves colimits since it is a left adjoint to Ω∞.

This verifies that

cofib
(
Σ∞

+ |A0
q/
/p| → Σ∞

+HomA(p, q)
)
≃ Σ∞

+HomA1(q, p) .
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Lemma 266. The diagram

A
op
1 Aop Fun(A, Spaces)

Fun(A1, Spaces)

yoneda

j◦ yoneda

j!

witnesses j! as the left Kan extension.

Proof. We first show that the diagram

A
op
1 Aop

Fun(A1, Spaces) Fun(A, Spaces)

yoneda

jop

yoneda

j!

commutes. First, let q◦ ∈ A
op
1 and p ∈ A. The left composite applied to q◦ gives a functor

j!(A1
HomA(q,−)−−−−−−→ Spaces). Evaluating this functor on the point p gives

j!

(
A1

HomA1
(q,−)

−−−−−−−→ Spaces

)
(p) := colim

(
A1/p → A1

HomA1
(q,−)

−−−−−−−→ Spaces

)

since j! is the left Kan extension functor. The colimit is valued in Spaces, so to evaluate the

colimit one can take the classifying space of the unstraightening of the functor by Lemma

352. The unstraightening can be computed as a series of pullbacks by Lemma 351

A1
q/
/p A

q/
1 Spaces∗/

A1/p A1 Spaces
HomA1

(q,)

⌟⌟ .

Therefore there is the equivalence

colim

(
A1/p → A1

HomA1
(q,−)

−−−−−−−→ Spaces

)
≃ |A1

q/
/p| .
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The right composite is equivalent to HomA(q, p), as it is the yoneda functor HomA(q,−)

applied to p ∈ A. Therefore we seek to show that HomA(q, p) is equivalent to |A1
q/
/p|. Note

the equivalence

HomA(q, p) ≃
(
A1/p

)
|q

as both are the limit of the diagram

∗

Fun([1], Spaces) A

∗ A
⟨q⟩

ev0

ev1

⟨p⟩

.

There is also a canonical functor

(
A1/p

)
|q
→
(
A1

q/
/p

)

that extends a f : q → p to f idq : q → q → p. This functor is the left adjoint to the

composition functor ◦ : A1
q/
/p →

(
A1/p

)
|q
. Taking classifying spaces of both sides then gives

the equivalence

|A1
q/
/p| ≃ |

(
A1/p

)
|q
| ≃ HomA(q, p)

since the classifying space functor preserves the adjunctions, and adjunctions in Spaces are

always equivalences.

The next step is to show the functor j! : Fun(A1, Spaces) → Fun(A, Spaces) also

witnesses a left Kan extension. This is to show that for each F : A1 → Spaces and each

p ∈ A the spaces

colim
(
A

op
1 /F → A

op
1 → Aop yoneda−−−→ Fun(A, Spaces)

evp−−→ Spaces
)
≃ j!(F)(p) . (4.2)
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are equivalent. First consider colim
(
A1

op
/F → A

op
1 → Aop yoneda−−−→ Fun(A, Spaces)

evp−−→ Spaces
)
.

By inspection, the composite Aop → Fun(A,V) → Spaces is the functor HomA(−, p). The

unstraightening of HomA(−, p) is (Aop)p
◦/. Therefore the colimit is the classifying space of

the limit of the diagram

(A1
op)p

◦/

A1
op

/F A
op
1

.

By Lemma 355, this is equivalent with the classifying space of the limit

(
A1/p

)op
(
A1

F◦/
)op

A1
op

.

Since the classifying space of an ∞-category C is equivalent with the classifying space of its

opposite Cop, this is equivalent with taking the classifying space of the limit of the opposite

diagram

A1/p

A1
F◦/ A1

.

The value of j!(F)(p) is given by

j!(F)(p) = colim
(
A1/p → A1 → A

F−→ Spaces
)

The unstraightening of A1 → A
F−→ Spaces is A1

F◦/, so the colimit is the classifying space of

the limit of the diagram

A1/p

A1
F◦/ A1

.
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Therefore the two colimits are equivalent.

Notation 267. Define the spectral yoneda functor to be the composite functor

よ := Aop yoneda−−−→ Psh(A)
Σ∞

+−−→ Sp .

Similarly, the spectral yoneda functor for A1 is denoted よA1
.

Lemma 268. The diagram

A
op
1 Fun(A, Sp) U Fun(A, Sp) Fun(A1, Sp)

Fun(A1, Sp)

よ◦j

よA1

pL ν

ĵ νĵ
νpLĵ

j∗

id

.

commutes, and in particular

j∗νpLĵ = id .

Proof. Let q ∈ A
op
1 . The composite νpL is equivalent to the functor

νpL = cofib (i!i
∗ → id) .

We seek to evalute νpL on Σ∞
+HomA(q,−). Let p ∈ A. Evaluating the functor

i!i
∗ (Σ∞

+HomA(q,−)
)
on p gives

i!i
∗ (Σ∞

+HomA(q,−)
)
(p) = colim(A0

op
/p → A0

op → Aop
Σ∞

+ HomA(q,−)
−−−−−−−−→ Sp)

where the colimit arises since i! is the left Kan extension. Therefore

νpL(Σ
∞
+HomA(q,−) = cofib(colim(Aop

0 /p → A
op
0 → Aop

Σ∞
+ HomA(q,−)
−−−−−−−−→ Sp)→ HomA(q, p)) .
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By Lemma 265, this cofiber is Σ∞
+HomA1(q, p). Therefore

j∗νpLĵ = id .

Proposition 269 (Surjective). The functor pLĵ : Fun(A1, Sp)→ U is surjective.

Proof. Let F ∈ ker(y) ⊂ Fun(A, Sp) . Consider the morphisms j∗νF ∈ Fun(A1, Sp). We seek

to show the morphism

pLĵj
∗νF

counit−−−→ pLνF
counit−−−→ F .

is an equivalence. Since ν is conservative, it suffices to show the morphism

νpLĵj
∗νF

counit−−−→ νpLνF
counit−−−→ νF

is an equivalence in Fun(A, Sp). The functor

A0 ⨿A1
(i,j)−−→ A

is surjective, and therefore the functor

Fun(A, Sp)
(y,j∗)−−−→ Fun(A0, Sp)×Fun(A1, Sp)

is conservative. Therefore it suffices to show that the two morphisms

yνpLĵj
∗νF→ yνpLνF→ yνF (4.3)

j∗νpLĵj
∗νF→ j∗νpLνF→ j∗νF (4.4)
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are equivalences. The morphism (4.3) is an equivalence, since yν ≃ 0. The morphism (4.4)

is an equivalence, by Lemma 268 since j∗νpLĵ ≃ id.

Fully Faithfulness of the functor pLĵ : Fun(A1, Sp)→ U

The next section is devoted to showing the functor

plĵ : Fun(A1, Sp)→ Fun(A, Sp)→ U

is fully faithful. Recall that to show ĵpL is fully faithful is to show that for two functors F

and G in Fun(A1, Sp), that the functor between spaces

HomFun(A1,Sp)(F,G)→ HomU(ĵpL(F), ĵpL(G))

induced by ĵpL is an equivalence of spaces. By Lemma 338, this is equivalent with showing

that limits lim(TwAr(A1) → Spaces) and lim(TwAr(A) → Spaces) are equivalent, where the

map between the limits is given by the inclusion of TwAr(A1) into TwAr(A). In order to

show the morphism in Spaces between the two limits is an equivalence, we factor inclusion

of TwAr(A1)→ TwAr(A) through an ∞-subcategory of TwAr(A), which we introduce now.

Definition 270. Define T to be the full∞-subcategory of TwAr(A) on those arrows (q → p)

such that (q → p) is in TwAr(A1), or p is in A0.

Lemma 271. The inclusion functor T → TwAr(A) is initial.

Proof. By Quillen’s Theorem A, the functor T → TwAr(A) is initial if and only if for all

f : q → p ∈ TwAr(A), the classifying space

|T/(q→p) | ≃ ∗
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is contractible. There are 2 cases to consider.

(1) f : q → p is in T.

(2) f : q → p is not in T.

The first case follows since if f : q → p is in T, then T/(q→p) has an initial object. For the

second case, define T0 as the full ∞-subcategory of T/f :(q→p) on the objects

a b

q p
f

such that q → a is an equivalence.

Note that the the canonical map

T0 A0
q/
/f :q→p

a b b

7→

q p q p

β

α

f f

g

admits a right adjoint given by

A0
q/
/f :q→p T0

b q b

7→

q p q p

id

.
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Furthermore, the inclusion of T0 to T/f :q→p admits a left adjoint given by

T/f :q→p T0

a b q b

7→

q p q pf

id

hg

f

g

h

.

Therefore after applying classifying spaces the spaces

∗ ≃
Lemma 262

|A0
q/
/f :q→p| ≃ |T0 | ≃ |T/f :q→p |

are equivalent.

Lemma 272. The functor TwAr(A1)→ T is fully faithful.

Proof. We show that TwAr(A1) → TwAr(A) is fully faithful. Since T → TwAr(A) is fully

faithful by definition, then TwAr(A1)→ T is fully faithful since fully faithful functors must

satisfy a 2 out of 3 property, ie for any triangle in Cat(∞,1) such that 2 of the arrows are fully

faithful, then the

Let (fs : qs → ps) and (ft : pt → qt) be objects of TwAr(A1). A morphism from

(fs → ft) in TwAr(A) is a square

qs ps

qt pt

fs

ft

in A. Since qt → pt is an arrow in A1, then it must not factor through A0. By Observation
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255, it must be that the arrows qt → qs and ps → pt also do not factor through A0, since

otherwise qt → pt would factor through A0. Therefore this square is a square in TwAr(A1).

Therefore the functor is fully faithful.

Lemma 273. The functor TwAr(A1)→ T is a monomorphism.

Proof. First note that monomorphisms must satisfy a 2 out of 3 property. Therefore it

suffices to show that TwAr(A1) → TwAr(A) is a monomorphism. This is immediate since

A1 → A is a monomorphism, so by Lemma 353 the functor TwAr(A1) → TwAr(A) is a

monomorphism.

Lemma 274. The functor TwAr(A1)→ T is a fully faithful right fibration.

Proof. The functor TwAr(A1)→ T is a right fibration if there is a unique lift

∗ TwAr(A1)

[1] T

⟨1⟩

⟨ft⟩

⟨(fs→ft)⟩

∃!

for every commutative square, where where fs : qs → ps is in TwAr(A1) and ft : qt → pt is

in T. An arrow [1]
⟨fs→ft⟩−−−−→ T consists of a diagram

qs ps

qt ptft

fs

(4.5)

in A. There is a lift [1] → TwAr(A1) if the two vertical morphisms in (4.5) do not factor

through A0. Note that the morphism qt → pt lies in TwAr(A1), so it does not factor through

A0. By the same reasoning as Observation 255, if either of the two vertical morphisms

factored through A0, then the morphism ft would factor through A0, which contradicts ft
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being in TwAr(A1). Therefore the two vertical morphism do not factor through A0, and so

diagram (4.5) can be regarded as a morphism in TwAr(A1). Therefore there is a lift.

Proposition 275. The functor

pLĵ : Fun(A1, Sp)→ U

is fully faithful.

Proof. Since ν is fully faithful, it suffices to check that

νpLĵ : Fun(A1, Sp)→ Fun(A, Sp)

is fully faithful. Let F and G be in Fun(A1, Sp). Then by Lemma 338, each hom space is

presented by a limit

HomFun(A1,Sp)(F,G) ≃ lim(TwAr(A1)→ A
op
1 ×A1

Fop×G−−−→ V× V
HomV(−,−)−−−−−−→ Spaces) .

Define H to be the composite TwAr(A1)→ Spaces. Next, note by Lemma 268 that diagram

TwAr(A1) TwAr(A)

A
op
1 ×A1 Aop ×A

Spaces

commutes. It also witnesses an extension by 0 since i∗ν = 0. Factoring through T gives
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TwAr(A1) T TwAr(A)

A
op
1 ×A1 Aop ×A

Spaces

H∗

where H∗ is given by extension by 0. The functor H∗ also witnesses a right Kan extension

by Lemma 350, since TwArA1 → T is a fully faithful right fibration (Lemma 274). Therefore

by Lemma 354,

lim(TwAr(A1)
H−→ Spaces)

≃−→ lim(T
H∗−→ Spaces) .

is an equivalence. Finally, by Lemma 271 the inclusion T → A is initial. Therefore,

lim(T
H∗−→ A) ≃ lim(TwAr(A)→ Spaces) .

Again, by Lemma 338 the limit is equivalent to the HomFun(A,Sp)(pLĵF, pLĵ‘)G) space

lim (TwAr(A)→ Spaces) ≃ HomFun(A,Sp)(νpLĵF, νpLĵG) .

Reedy Closed Recollement

Theorem 276. Let A0
i
↪−→ A be Reedy-closed. Then the category A1

j
↪−→ A given by Definition

256 gives a recollement

Fun (A0,V) Fun (A,V) Fun (A1,V)

i!

i∗

i∗

pL

pR

νA1 .
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where νA1 := νpLĵ is the extension by zero functor.

Proof. The closed ∞-subcategory A0 ⊂ A determines a recollement

Fun(A0, Sp) Fun(A, Sp) U

i!

i∗

i∗

pL

pR

ν .

Lemma 268 and 272 verifies that the functor

pLĵ : Fun(A1, Sp)→ Fun(A, Sp)

is fully faithful and essential surjective, and so there is an equivalence of ∞-categories

Fun(A1, Sp) ≃ U .

Therefore the recollement is given by

Fun(A0, Sp) Fun(A, Sp) Fun(A1, Sp)

i!

i∗

i∗

pL

pR

νA1 .

where the functor νA1 is the composite of νpLĵ. We next seek to verify that the functor

νplĵ is the extension by zero functor. The restriction to the ∞-category A1 is given by

composition with the functor j∗ gives the identity on A1, which is the identity functor by

Lemma 268

j∗νpLĵ = idFun(A1,Sp) .

The restriction to the ∞-category A0 is zero since yν is zero since U is the kernel of y

yνpLĵ = 0plĵ = 0 .
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Therefore νA1 is given by extension by zero. Finally, by tensoring over V, we get the

recollement

Fun (A0,V) Fun (A,V) Fun (A1,V)

i!

i∗

i∗

pL

pR

νA1 .

where νA1 is extension by zero.
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CIRCLE ACTIONS ON PRESENTABLE STABLE ∞-CATEGORIES

Stratification of Exit(CP∞)-modules

Let G be a group object in the ∞-category of Spaces. A G-action on an object V in a

presentable stable ∞-category V is defined as a functor from the classifying space BG of the

group G to V

BG→ V .

The ∞-category of G-modules is defined to be the ∞-category

ModG(V) := Fun (BG,V) .

This section considers the case of G = T, where T is the circle group. Recall that the

classifying space of T is the complex projective space CP∞

BT ≃ CP∞ .

We seek to provide an equivalent, and conceptually simpler description of the ∞-category

ModT(V) := Fun(BT,V) .

The stratification of CP∞ by the submanifolds CPi simplifies the situation. For each

n ∈ Z≥0, the restriction of the stratification CP∞ → Z≥0 to CPn is conically smoooth by

Lemma139. Therefore the exit path ∞-category En := Exit(CPn) exists for each n. This

allows for the definition of E∞ := Exit(CP∞), which is identified in Theorem 164

E∞ ≃
Theorem 164

(
⋆
Z≥0

T

)
/T

.
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Because refinements between conically smooth stratified spaces are carried by Exit(−)

to localizations, for each n ≥ 0, the canonical functor

Exit(CPn) −→ CPn

witnesses an ∞-groupoid completion:

|Exit(CPn)| ≃ CPn . (5.1)

The functor Cat∞ → Spaces given by ∞-groupoid completion is defined as left adjoint to

the canonical inclusion Spaces ↪→ Cat∞. Because left adjoints preserve colimits, we have an

equivalence between spaces:

|Exit (CP∞)| ≃ |colimn≥0Exit (CPn)| ≃←−− colimn≥0 |Exit (CPn)| ≃
(5.1)

colimn≥0CPn ≃ CP∞ .

In particular, the canonical functor

Exit(CP∞) −→ CP∞ ≃ BT (5.2)

is a localization. Appliying Fun(−,V) to this localization results in a fully faithful functor

ModT(V) := Fun(BT,V) ≃ Fun(CP∞,V)
(5.2)∗−−−−→ Fun(Exit(CP∞),V) =: VE∞ ,

whose image consists of those functors E∞ → V that carry each exiting-path to an equivalence

in V.

Applying the functor Exit(−) to the filtration

CP0 ι01−→ CP1 ι12−→ . . . colim(CP0 ι01−→ CP1 ι12−→ . . . ) ≃ CP∞
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of CP∞ gives rise to a filtration in Cat(∞,1).

E0 E1 . . .

(E0 → E1 → . . . ) ≃ E∞

The following lemma gives this induces a canonical stratification on VE∞ .

Lemma 277. The inclusion

CPi ιi−→ CP∞

induces an inclusion given by left Kan extension

VEi
ιi!−→ VE∞ .

This extends to a diagram

VEi VE∞

ιi!

ιi∗

ιi
∗

⊣
⊣

that realizes VEi as a closed ∞-subcategory in the sense of Definition 222.

Proof. The left and right Kan extension functors, if they exist, are the left and right adjoints

to the restriction functor ιi
∗
by Lemma 321.

The ∞-category V is a presentable stable ∞-category. In particular, the ∞-category V

admits all limits and colimits, and for every functor Ei
F−→ V and k ∈ E∞, the colimit

colim
(
Ei/j → Ei

F−→ V
)

and the limit

lim
(
Ei

j/ → Ei
F−→ V

)
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exist. The functors from the slice categories to Ei are the canonical forgetful functor. By

Proposition 321, the existence of these colimits and limits ensures that the left and right

Kan extensions exist respectively. Furthermore, since the inclusion functor ιi : Ei → E∞ is

fully faithful, the left and right Kan extension functors are fully faithful by Lemma 336.

The left and right Kan extensions ensure the∞-category VEi is a closed∞-subcategory

of VE∞ for each i ∈ Z≥0. Therefore the filtration of CP∞ by the submanifolds CPi gives a

canonical stratification of the ∞-category VE∞ by the poset Z≥0.

Lemma 278. The map of posets

Z• : Z≥0 Cls(VE∞)

i VEi

defines a stratification of the ∞-category VE∞.

Proof. For each i ∈ Z≥0, the∞-subcategory VEi is a closed∞-subcategory of VE∞ by Lemma

277. Furthermore, for each i < j, the composition

VEi
ιi!−→ VE∞ ιj

∗

−→ VEj

gives an inclusion of VEi into VEj . This inclusion witnesses a left Kan extension as well.

Therefore the map of posets

Z• : Z≥0 Cls(VE∞)

i VEi

is well defined.

Next, we seek to verify that

colim (Z•) ≃ VE∞ .
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Consider the colimit diagram of categories

colim(E0

ι01−→ E1 → . . . ) ≃ E∞ .

Applying the colimit preserving functor of Observation 323 implies that

colim(VE0
ι01!−→ VE1 → . . . ) ≃ VE∞ .

Finally, the stratification condition is satisfied as Z≥0 is linearly ordered. Therefore the

functor Z• is a stratification of the ∞-category VE∞ by the poset Z≥0.

Lemma 278 verifies that the filtration of E∞

colim (E0 ↪→ E1 ↪→ . . . ) ≃ E∞

induces a canonical stratification of the ∞-category VE∞ . The stratification of the ∞-

category VE∞ allows one to reconstruct the∞-category of E∞-modules in two ways. The one

used in this paper to reconstruct VE∞ is the reflected reconstruction theorem (Theroem 238)

– it is a description of VE∞ in terms of the strata of this stratificaiton and its “(reflected)

gluing functors”.

Our next goal is to identify the strata of the stratificaiton Z•. Recall that a stratification

Z• : Z≥0 → Cls(VE∞)

gives rise, for each i ∈ Z≥0, to a recollement

VEi−1 VEi ker((ιii−1)
∗)

ιi−1
i ! pL

ιi−1
i ∗

ιi−1
i

∗

pR

ν .
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The i-stratum of the stratification defined in Lemma 278 is defined to be this∞-subcategory

ker((ιi−1
i )∗) ⊂ VE∞ . Our next goal is to identify ν, pR and the kernel of the functor

(ιi−1
i )∗ : VEi → VEi−1 .

This situation is simplified by the fact that the∞-subcategory Ei−1 ⊂ VE∞ is Reedy closed in

the sense of Definition 260, which provides a description of the ith stratum as the∞-category

of {i}-modules.

Observation 279. For i ∈ Z≥0, there is a canonical inclusion

Cls(VEi)→ Cls(VE∞)

given by composition of the closed diagrams. That is, for a closed ∞-subcategory Z ⊂ VEi ,

we can compose the maps

Z VEi VE∞

iL

iR

y

ιi!

ιi∗

ιi
∗

in a canonical way, which realizes Z ⊂ VE∞ as a closed ∞-subcategory.

Lemma 280. The canonical functor of [i]→ Z≥0 gives a composite [i]→ Z≥ → Cls
(
VE∞

)
.

This map factors through Cls(VEi), giving a stratification of VEi by the poset [i]

[i] Cls(VEi)

Z≥0 Cls(VE∞)

.

Lemma 281. The closed ∞-subcategory Ei−1 ⊂ Ei is Reedy-closed.

Proof. Recall from Definition 260 that the ∞-category Ei ⊂ E∞ is Reedy-closed if the

following two conditions are met:



173

(1) The ∞-category Ei\Ei−1 ≃ {i} satisfies Condition A.

(2) There is an equivalence

|Ei−1
i/
/i| ≃ FactEi−1

(i, i) ≃ ∅ ,

which implies that Ei−1 ⊂ Ei satisfies Condition B .

By Lemma 165, it follows the space of objects of the complement of Ei−1 in Ei is contractible

Obj(Ei)\Obj(Ei−1) ≃ {i} .

The space of endomorphisms of {i} is also contractible by the calculation of Ei. Therefore a

morphism in HomE∞(i, i) does not factor through Ei−1. Thus, the category {i} satisfies

Condition A and is the subcategory of the compliment of Ei−1 in Ei that contains all

morphisms that do not factor through Ei−1.

Condition B is immediate since

E
i/
i−1 ≃ ∅

since for all k < i ∈ Z≥0

HomEi
(i, k) ≃ ∅ .

by Theorem 165.

Lemma 282. For each i ∈ Z≥0, the stratification of VE∞ (Lemma 278) determines a

recollement

VEi−1 VEi Fun({i},V)
(ιii−1)! pL

(ιii−1)∗

(ιii−1)
∗

pR

ν .

where ν is given by extension by zero.

Proof. This follows from Lemma 281 and Theorem 276.
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Lemma 283. The inclusion {i} ↪→ Ei is a fully faithful left fibration.

Proof. The inclusion {i} → Ei is fully faithful, since

HomEi
(i, i) = HomExit(S2i+1)(i, i)/T ≃ T/T ≃ ∗ .

Therefore it suffices to check the inclusion {i} → E∞ is a left fibration. By Proposition 2.33

of [2] it suffices to show that

[1]
!−→ {i}

is a cocartesian morphism with respect to the inclusion {i} → Ei. The morphisms [1]→ {i}

is cocartesian if the diagram

{i}i/ {i}i/

(Ei)
i/ (Ei)

i/

(5.3)

is a pullback. Each of the categories is contractible, since

HomEi
(j, i) =


∅ j < i

∗ j = i .

Therefore every morphism in (5.3) is an equivalence, and hence the diagram is a pullback.

Lemma 284. Consider the recollement of Lemma 282 .

(1) The functor ν witnesses a left Kan extension along the inclusion {i} → Ei .

(2) The functor pR witnesses restriction along the inclusion {i} → Ei .

Proof. Recall that the functor ν is given by extension by zero, and that by Lemma 283, the

inclusion {i} → Ei is a fully faithful left fibration. Therefore by Lemma 322, the functor ν

witnesses a left Kan extensnion.
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The statemenmt that pR is given by restriction immediately follows, as the right adjoint

to a left Kan extension functor is the restriction functor.

Definition 285. The reflected localization functor Ψi and its left adjoint λi for the

stratification of VE∞ are defined to be the composite functors

λi : Fun({i},V) VEi VE∞ : Ψi

ν ιi!

pR ιi
∗

⊣ ⊣ .

Observation 286. For each i ∈ Z≥0, there is an adjunction

λi : Fun({i},V) VEi VE∞ : Ψi

ν ιi!

pR ιi
∗

⊣ ⊣ .

The reflected localization functor Ψi is given by restriction along {i} → E∞ since ιi
∗
is

restriction along Ei ↪→ E∞, and pR is restriction along {i} → Ei. The inclusion functor λi is

a composite of left Kan extension functors ν (Lemma 284) and ιi!. Therefore the functor λi

witnesses a left Kan extension functor along the inclusion {i} → E∞.

We seek to compute the left Kan extension functor

λi : Fun({i},V) VE∞ .

The functor λi extends a functor {i} ⟨Vi⟩−−→ V to a functor E∞
λi(⟨Vi⟩)−−−−→ V that evaluates on an

object j ∈ Obj(E∞) as the colimit

λi(⟨Vi⟩)(j) = colim
(
{i}/j → {i}

⟨Vi⟩−−→ V
)
.

Consider then the∞- category {i}/j. By definition of the∞-overcategory, it fits in the limit
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diagram among ∞-categories:

{i}/j {j}

Ar(E∞) E∞

{i} E∞

s

t .

Therefore there is an equivalence

{i}/j ≃ HomE∞(i, j) =
Theorem 164


∅ j < i

∗ j = i

T j > i

.

Since the category {i} is contractible, then the colimit evaluates as

colim
(
{i}/j → {i} → V

)
= {i}/j ⊙ Vi ≃ HomE∞(i, j)⊙ Vi .

Next, consider the space of morphisms between two objects j, k in E∞. The functor

λi(⟨Vi⟩) is a map of spaces

HomE∞(j, k)⊙ Vi → HomV(HomE∞(i, j)⊙ Vi,HomE∞(j, k)⊙ Vi) .

This a map between colimits

colim (HomE∞(i, j)→ {i} → V)
HomE∞ (j,k)−−−−−−−→ colim (HomE∞(i, k)→ {i} → V)
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is the morphism in V induced by the map on diagrams

HomE∞(j, k)→ HomSpaces(HomE∞(i, j),HomE∞(i, k))

which is adjoint to the composition map

HomE∞(j, k)× HomE∞(i, j)
◦−→ HomE∞(i, k) .

By Theorem 164, the composition is the map of spaces

T→ HomSpaces(T,T)

that is adjoint to the multiplication map on the circle group

T× T→ T .

Lemma 287. Let i and j be objects of E∞. The reflected glueing functor Γ̌i
j is the functor

Γ̌i
j : Fun({i},V) Fun({j},V)

⟨Vi⟩ ⟨HomE∞(i, j)⊙ Vi⟩

This functor is canonically equivalent to the functor

Γ̌i
j : V V

Vi T⊙ Vi
.

Proof. Recall that the reflected gluing functor is defined to be the composite

Γ̌i
j : Fun({i},V)

λi−→ VE∞
Ψj−→ Fun({j},V) .
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The functor λi is given by left Kan extension, and the functor Ψj is restriction onto the

object j of E∞. Therefore Γ̌i
j is the functor

Γ̌i
j : V

{i} V{j}

⟨Vi⟩ ⟨colim
(
HomE∞(i, j)→ {i} ⟨Vi⟩−−→ V

)
⟩
.

By Theorem 164, there is an identification HomE∞(i, j) ≃ T, and by the canonical

identification Fun({i},V) ≃ Fun({j},V) ≃ V, the functor Γ̌i
j is the endofunctor of V

Γ̌i
j : V V

Vi T⊙ Vi
.

Corollary 288. Let i and j be objects of E∞. The reflected glueing functor Λ̌i
j is identified

as the functor

Γ̌i
j : V V

Vi Vi ⊕ ΣVi

.

Proof. This follows from Lemma 289

T⊙ V ≃ V ⊕ ΣV .

Lemma 289. Let V be a stable ∞-category and let V ∈ V. Then we have the following

equivalence

T⊙ V ≃ V ⊕ ΣV .
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Proof. First note the following retraction in Spaces.

{1} T
!

.

Since retractions are preserved by functors, then we have the following is a retraction in V:

1⊙ V T⊙ V

By Theorem 249, we have that

T⊙ V ≃ ∗ ⊙ V ⊕ coker(∗ ⊙ V → T⊙ V ) .

Therefore what remains is to identify the cokernel:

coker(∗ ⊙ V → T⊙ V ) ≃ ΣV .

Consider the following diagram, which witnesses T as the suspension of S0 in the∞-category

of Spaces

S0 ∗

∗ T

⌟

.

By Lemma 215, the diagram

S0 ⊙ V ∗ ⊙ V

∗ ⊙ V T⊙ V

⌟

is a pushout diagram. By Lemma 212, there is an equivalence

coker(S0 ⊙ V → ∗⊙ V ) ≃ coker(∗ ⊙ V → T⊙ V ) .
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Since S0 ≃ ∗
∐
∗ and the functor −⊙ V preserves coproducts, then

S0 ⊙ V ≃ V ⊕ V .

Note the following commutative diagram

V ⊕ V V

V ⊕ V V

[1,1]

[1]

[
1 1

0 1

]

[1,0]

.

Since both vertical arrows are equivalences, then we have the identification between the

cokernels

coker(V ⊕ V [1,1]−−→ V ) ≃ coker(V ⊕ V [1,0]−−→ V )

Finally, we can compute the cokernel of the projection map:

coker(V ⊕ V [1,0]−−→ V ) ≃
(
coker(V

id−→ V )⊕ coker(V
0−→ V )

)
≃ 0⊕ ΣV ≃ ΣV .

Therefore, we have that

T⊙ V ≃ V ⊕ ΣV .

Lemma 290. Let 0 ≤ i < j < k. The counit of the adjunction λj ⊣ Ψj induces a natural

transormation Γ̌j
kΓ̌

i
j → Γ̌i

k that is equivalent to the natural transformation µ⊙

Γ̌j
kΓ̌

i
j Γ̌i

k

T× T⊙− T⊙−

≃

µ⊙

≃ .
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Proof. Recall that the gluing functors Γ̌j
kΓ̌

i
j are defined to be ΨkλjΨjλi, and is computed as

Γ̌j
kΓ̌

i
j ≃ HomE∞(i, j)× HomE∞(j, k)⊙− ≃ T× T⊙− .

Similarly, the endofunctor Γ̌i
k is defined to be Ψkλi and by Lemma 287 the glueing functor

is computed as

Γ̌i
k ≃ HomE∞(i, k)⊙− ≃ T⊙− .

The natural transformation from the endofunctor Γ̌j
kΓ̌

i
j to the endofunctor Γ̌i

k is induced by

the adjunction λj ⊣ Ψj, where λj is the left Kan extension and Ψj is restriction along the

inclusion {j} ↪→ Ej. Therefore by unpacking an adjunction between the left Kan extension

and the restriction functor, this natural transformation evaluated on an object Vi ∈ V is

determined by a map

HomE∞(i, j)→ HomV (HomE∞(i, k)⊙ Vi,HomE∞(j, k)⊙ Vi)

induced by the map of spaces

HomE∞(i, j)→ HomSpaces (HomE∞(i, k),HomE∞(j, k))

which through the tensor-hom adjunction is identified as the map of spaces

HomE∞(i, j)× HomE∞(j, k) HomE∞(i, k)

T× T T

≃

◦

≃

µ

.
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The next goal is to identify the filler in the diagram

T× T⊙ V T⊙ V

V ⊕ ΣV ⊕ ΣV ⊕ Σ2V V ⊕ ΣV

≃

µ⊙

≃

The morphism

V ⊕ ΣV ⊕ ΣV ⊕ Σ2V → V ⊕ ΣV

is represented by a 4 by 2 matrix. The most technical computation involved is the

computation of the map

Σ2V → ΣV .

Working toward the goal of this computation we introduce the J-homomorphism.

The J-Homomorphism

Definition 291. The orthogonal group O(n) is the group of isometries of Rn equipped

with the standard inner product on Rn. The stable orthogonal group O is defined to be

the colimit

O := colim(O(1)→ O(2)→ . . . )

where the inclusion O(i) → O(k) is given by extending by the identity on the orthogonal

complement of the inclusion Ri ↪→ Rk of the first i coordinates.

Definition 292. The J-Homomorphism is the map of spaces

J : O := colim(O(1) ↪→ O(2) ↪→ O(3))→ colim(Ω1S1 ↪→ Ω2S2 ↪→ . . . ) =: Ω∞S
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that is the colimit of the homomorphisms

O(n) ΩnSn

T (T+ : (Rn)+ → (Rn)+)

that extends the isometry T of Rn to a map T+ on the one point compactification of Rn,

which is Sn.

By definition of the J-homomorphism, there is a commutative diagram among spaces

O(2) //

��

Ω2S2

��
O // Ω∞S.

In this diagram, the rightward maps carry the identity element 1 to the identity maps

Sn id−→ Sn. Regarding such elements as base points, the diagram (5.4) is one among based

spaces. Applying π1 results in a commutative diagram among groups

π1(O(2);1) //

��

π1(Ω
2S2; id)

��
π1(O;1) // π1(Ω

∞S; id).

(5.4)

The following well-know result is a consequence of Whitehead’s work [14] in which the

J-homomorphism was introduced, as it generalizes the “Hopf Construction”, which in turn

generalizes the construction of the Hopf map S3 η−→ S2.

Lemma 293. The horizontal homomorphisms in (5.4) are isomorphisms. In particular, the

homomorphism

π1(O(2)) −→ π1(Ω
2S2; id) ∼= π1(Ω

2S1; ∗) = π3(S2)
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carries a generator to the Hopf map S3 η−→ S2.

Lemma 294. Consider the multiplication map µ : T× T→ T on the group T. The

(1) Σ(µ) is a morphism in Spaces

S2 ∨ S2 ∨ S3 → S2

(2) The restriction of Σ(µ) to S2∨S2 → S2 is given by the identity map on each component.

(3) The restriction of Σ(µ) to S3 → S2 is given by the Hopf fibration.

Proof. The space T× T is presented as the following pushout in Spaces∗

T 0

T× {1} ∨ {1} × T T× T

⌟
,

where the vertical map T→ T× {1} ∨ {1} × T is the map that represents the commutator

aba−1b−1 in π1(T × {1} ∨ {1} × T) ≃ F⟨a, b⟩, which is a free group on two generators. The

reduced suspension Σ is a left adjoint, so it preserves colimits, and in particular pushouts.

Therefore the diagram

ΣT ≃ S2 Σ(0) ≃ 0

Σ(T× {1} ∨ {1} × T) Σ(T× T)

⌟

is a pushout. Since the vertical map S2 → Σ(T×{1}∨{1}×T) is given by the suspension of

the commutator map, and π2(T×{1}∨{1}×T) is abelian, the map S2 → Σ(T×{1}∨{1}×T)

is nullhomotopic. Therefore we can compute Σ(T× T) as the pushout
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Σ(T) 0

0 Σ(ΣT) ≃ S3

Σ(T× {1} ∨ {1} × T) ≃ S2 ∨ S2 Σ(T× T) ≃ S3 ∨ S2 ∨ S2

⌟

⌟

.

Note the equivalence Σ(T × {1} ∨ {1} × T) ≃ S2 ∨ S2, which follows from the fact that ∨

is the coproduct in Spaces∗, and since Σ is colimit preserving, it commutes with ∨. The

top square is a pushout by definition of Σ. The bottom square then is a pushout since in

any ∞-category with a zero object, a pushout with zero in the upper left agrees with the

coproduct. Therefore, there is an equivalence in Spaces∗:

Σ(T× T) ≃ S2 ∨ S2 ∨ S3 .

Next, we seek to show that the restriction of Σ(µ) to S2 ∨ S2 gives

S2 ∨ S2 id∨ id−−−→ S2 .

This follows by observing the commutative triangle in Spaces

T× T

T× {1} ∨ {1} × T T
id∨ id

µ

using that 1 is the unit for T. Therefore applying Σ gives the result.

Next we seek to show that the restriction of Σ(µ) to S3 is the hopf fibration η. Consider

the adjoint map of µ under the tensor-hom adjunction

T µ−→ HomSpaces(T,T) .
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Note that the suspension functor S on Top determines a functor

HomSpaces(T,T)
S−→ HomSpaces∗(ST, ST)

where the base point is chosen to be one of the two cone points in the suspension.

Furthermore, there is an inclusion

T SO(2) O(2)

p = eiθ
[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
≃

.

Together this compiles to a commutative square in Spaces

T HomSpaces(T,T)

O(2) HomSpaces(ST, ST)

µ

S

J

Rot− .

Applying the functor π1 yields commutative square

π1(T) π1(HomSpaces(T,T))

π1(O(2)) π1(HomSpaces∗(ST, ST))

µ

S

J

Rot− .

The bottom composite is an equivalence by Lemma 293, which implies that the top

composite is and equivalence. Therefore the composite

Sµ : π1(T)
≃−→ π1(HomSpaces∗(ST, ST))

is an equivalence. Note π1(HomSpaces∗(ST, ST)) ≃ π1(Ω
2S2) ≃ π3(S2), and the Hopf map η
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generates π3(S2) ≃ Z. Therefore

[T→ HomSpaces(T,T)→ Ω2S2] ≃ [η] ∈ π3(S2) .

Lemma 295.
T× T⊙ V T⊙ V

V ⊕ ΣV ⊕ ΣV ⊕ Σ2V V ⊕ ΣV

µ⊙

≃

[
1 0 0 0

0 1 1 η

]
≃

Proof. This follows from Lemma 294, and from the fact that S generates Sp by colimits.

Groupoid Completion Condition of CP∞-modules

The ∞-category CP∞ witnesses the groupoid completion of the ∞-category of E∞. A

map

E∞ → V

factors through the groupoid completion, if every morphism in E∞ is sent to an equivalence

in V. This states that for each {i ≤ k} in V, that the map

(T⊙ Vi → Vj) ,

which through the tensor-hom adjunction is equivalent to a map

T→ HomV(Vi,Vj)
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factors as
Hom≃

V (Vi, Vj)

T HomV(Vi, Vj)
F

∃

where Hom≃
V (Vi, Vj) is the subspace of the equivalences from Vi to Vj .

The composition rule in E∞ gives that it is sufficient to check for j = i + 1. The next

lemma simplifies the groupoid completion condition further.

Lemma 296. Let Vi and Vi+1 be objects of V and consider a map of spaces

F : T→ HomV(Vi, Vi+1)

There exists a lift

Hom≃
V (Vi, Vi+1)

T HomV(Vi, Vi+1)
F

∃

if and only if there exists a lift

Hom≃
V (Vi, Vi+1)

∗ T HomV(Vi, Vi+1)⟨1⟩
F

∃ .

Proof. The forward direction is immediate by precomposing the lift by ∗ ⟨1⟩−→. Therefore

assume that there exists a lift

Hom≃
V (Vi, Vi+1)

∗ T HomV(Vi, Vi+1)⟨1⟩
F

∃ .
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The result follows if for every p ∈ T, there is a lift

Hom≃
V (Vi, Vi+1)

∗ T HomV(Vi, Vi+1)⟨p⟩
F

∃ .

Choose a path γ in T from 1 to p. The path γ determines a diagram in Spaces

{1} {p}

T

γ .

Applying the functor − ⊙ Vi to the diagram gives a commutative diagram in V, where the

arrows mapping into Vi+1 are determined by the data of the map T → HomV(Vi, Vi+1).

Furthermore the arrow {1} ⊙ Vi → Vi+1 is an equivalence by the assumption of the lift of

{p} → HomV(Vi, Vi+1). Therefore since the map {1} ⊙ Vi → {p} ⊙ Vi is an equivalence as

well, then by the 2-of-3 property the arrow

{p} ⊙ Vi → Vi+1

is an equivalence, which implies there is a lift

Hom≃
V (Vi, Vi+1)

∗ T HomV(Vi, Vi+1)⟨p⟩
F

∃ .

Notation 297. Define the ∞-category Fun≃(Z≥0,V) to be the full ∞-subcategory of



190

Fun(Z≥0,V) on those functors F such that F(i)
≃−→ F(i+ 1)

Fun≃(Z≥0,V) := {F ∈ Fun(Z≥0,V) | F(i)→ F(i+ 1)}

Lemma 298. Consider the map of posets

⟨0⟩ : ∗ → Z≥0

which induces an adjunction

Fun (∗,V) Fun (Z≥0,V)
⟨0⟩!

⟨0⟩∗

⊣ .

The functor ⟨0⟩! is fully faithful with image Fun≃ (Z≥0,V)

Proof. The functor ⟨0⟩ is the inclusion of an initial object, since 0 is the minimal object of

Z≥0. Therefore the functor ⟨0⟩ admits a left adjoint

∗ Z≥0

⟨0⟩

!

⊣ .

Applying the functor Fun(−,V) gives

⟨0⟩! = (!)∗ .

The image of (!)∗ consists of those functors Z≥0 → V that admit a factorization through ∗ .

Lastly, note that the consecutive morphisms i < i+1 in Z≥0 generate all morphisms in Z≥0.

Therefore for any functor F : Z≥0 → V that sends consecutive morphisms to equivalences,
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the functor F factors through Z≥0[Z≥0
−1] ≃ ∗

Z≥0 V

∗

F

∃!

.

Therefore the image of (!)∗ = ⟨0⟩ is Fun≃(Z≥0,V) .

Construction 299. We seek to construct a section of the conservative functor

E∞ → Z≥0 .

Consider for each n ∈ Z≥0 the map of spaces

Fn : HomCat([n],Z≥0) HomCat(∞,1)
([n],E∞)

([n] Z≥0) (∆n CP∞)

(
(t0, . . . , tn) C⟨t0ei0 + . . . tnein⟩

)
{i0,...,in}

.

Note that the map ∆n → CP∞ map is indeed stratified, and that

dim(C⟨t0ei0 + . . . tnein⟩) = 1

since the eik are linearly independent, and (t0+ . . . tn) = 1. Moreover this maps Fn assemble

into a morphism in Psh(∆). Therefore since

HomCat([•],−) : Cat
ff−→ Psh(∆) ,
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this corresponds to a functor

σ : Z≥0 → E∞ .

that is a section to the functor E∞ → Z≥0.

Lemma 300. The ∞-category ModT ⊂ VE∞ fits into a pullback diagram

ModT VE∞

V Fun(Z≥0,V)

ev0 σ∗

⟨0⟩!

⌟
.

Proof. Lemma 296 verifies that the ∞-category ModT(V) is the pullback

ModT VE∞

Fun≃ (Z≥0,V) Fun(Z≥0,V)

ev0 σ∗
⌟

. (5.5)

Lemma 298 gives an equivalence of ∞-categories

V ≃ Fun≃ (Z≥0,V)) .

Therefore, the pullback diagram (5.5) is equivalent to the diagram

ModT VE∞

V Fun(Z≥0,V)

ev0 σ∗

⟨0⟩!

⌟
.
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The Identification of Exit (CP∞)-modules

The stratification of VE∞ determines a glueing diagram

Ǧ
(
VE∞

)
:= {(F, i◦) ∈ VE∞ × Zop

≥0 | F ∈ λi(V{i})} .

The canonical projection map to Zop
≥0 is a locally cartesian fibration by Lemma 237

(
Ǧ
(
VE∞

)
→ Zop

≥0

)
∈ LModr.lax.Z≥0

:= loc.Cart(Zop
≥0) .

Theorem 2.2.1.2 of [10] states that the straightening and unstraightening construction gives

an equivalence

Un : Fun(Z≥0,Cat(∞,1)) LModZ≥0
:= Cart(Zop

≥0) : St .

In the same way, one would want a straightening and unstraightening equivalence for the

notion of a right-lax functor

Un : Funr.lax(Z≥0,Prst) LModr.lax.Z≥0
:= loc.Cart(Zop

≥0) : St .

However, the left hand term is not defined. Therefore, in [6], they define the left hand side

to be the locally cartesian fibrations over Zop
≥0

Funr.lax(Z≥0,Cat) := LModr.lax.Z≥0
.

This allows the glueing diagram Ǧ
(
VE∞

)
to be thought of as a right-lax functor

Ǧ
(
VE∞

)
: Z≥0

r.lax−−→ Prst .
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We seek to unpack the data of a right-lax functor

Z≥0
r.lax−−→ Prst .

For ordinary categories, lax functors correspond to functors between 2 categories.

Therefore, we begin by considering how to regard Z≥0 as a 2-category, in the “right” way.

This is the right-laxification of the poset Z≥0 (See Observation A.7.2 of [6]).

(1) An object of the 2-category (Z≥0)
r.lax is a non-negative integer i ∈ Z≥0.

(2) A morphism from i to j in (Z≥0)
r.lax is a subset I ⊂ Z≥0, such that:

Min(I) = i Max(I) = j .

(3) There is a unique 2 morphism from I ⊂ Z≥0 to J ⊂ Z≥0 if and only if there is an

inclusion of J ⊂ I. The composition is given by the composition of inclusions.

The data then of the right-lax functor Ǧ
(
VE∞

)
is a functor from the 2-category (Z≥0)

r.lax

to Prst

Ǧ
(
VE∞

)
: (Z≥0)

r.lax → Prst

which we unpack shortly. Before doing so, we give some notation and definitions.

Notation 301. Let I be a finite subset of Z≥0. Denote I0 denote the subset of I obtained by

removing the maximal element of I.

Definition 302. Let I ↪→ J be the inclusion between two finite linearly ordered sets.

Provided Min(I) = Min(J), this functor admits a left adjoint, which is the floor function

⌊I ⊂ J⌋ : J I

j max{i | i ≤ j}
.
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We denote ⌊I ⊂ J⌋i as the fiber of the floor function over i ∈ I

⌊I ⊂ J⌋i J

{i} I

⌊I⊂J⌋
⌟ .

Definition 303. Let I ↪→ J be the inclusion of two linearly ordered posets. Define the map

µ⌊I⊂J⌋i to be the multiplication map

µ⌊I⊂J⌋i : T
⌊I⊂J⌋i T

(x0, . . . , xn) (x0 . . . xn)
.

Observation 304. We now unpack the right-lax functor

Ǧ
(
VE∞

)
: (Z≥0)

r.lax → Prst .

(1) For each i ∈ (Z≥0)
r.lax, the value of the right-lax functor on i is sent to the ith-strata,

which in this case is the ∞-category V .

(2) For each {i < j} in Z≥0, the value of the right-lax functor on the morphism {i < j} is

the endomorphim of V given by tensoring with T

V
T⊙−−−→ V .

More generally, for each morphism from i to j, which is a subset I ⊂ Z≥0 with minimum

value i and maximum value j, the right-lax functor evaluated on I is the functor

V
T|I0|⊙−
−−−−→ V .
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(3) The value of a 2 morphism {i ≤ j ≤ k} → {i, k} is the natural transformation between

endofunctors

T{i,j} ⊙− µ⊙−→ T{i} ⊙−

implimented by the multiplication map µ : T × T → T. More generally, the value of

a 2-morphism from I → J, which is an inclusion J ⊂ I preserving the minimum and

maximum values, is the natural transformation

∏
i∈I0
µ⌊I⊂J⌋i : T

J0 ⊙− TI0 ⊙− .

Furthermore, the reflected reconstruction theorem (Theorem 238) gives an equivalence of

∞-categories

VE∞ ≃ liml.lax

(
Z≥0

Ǧ (VE∞)
−−−−−→ Prst

)
.

Lemma 289 and Lemma 294 identify tensoring with T and the multiplication map µ in

the stable setting. Therefore we seek to unpack the right-lax limit with the identifications

T⊙− ≃
Lemma 289

(1⊕ Σ)

(
T× T⊙− µ−→ T⊙−

)
≃

Lemma 294

V ⊕ ΣV ⊕ ΣV ⊕ Σ2V

[
1 0 0 0
0 1 1 η

]
−−−−−−−−−→ V ⊕ ΣV

 .

Notation 305. Let P be a finite linearly ordered poset, and let F be an endofunctor of V.

Define ⊗
p∈P

F := FP

s to be the iterated composition of the endofunctor F, once for each element p ∈ P.
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Observation 306. Note by Lemma 289, there is an equivalence of endofunctors

TP ⊙− ≃
⊗
P

(1⊕ Σ) .

Lemma 307. There is an equivalence of endofunctors

⊗
P

(1 + Σ) ≃
⊕

S∈P(P)

ΣS ,

where Σ∅ is understood to be the identity functor 1 on V .

Proof. Using that finite-fold direct sums are finite coproducts, this follows immediately from

the binomial theorem

(1 + x)n =
∑
k∈[n]

(nk)x
n

after noting that exact functors1 distribute over direct sums of exact functors.

Lemma 308. Through the identification

T⊙− ≃
Lemma 289

(1⊕ Σ) ,

together with the identification

⊗
P

(1 + Σ) ≃
Lemma 307

⊕
S∈P(P)

ΣS ,

the multiplication map

µk : Tk ⊙− → T⊙−

corresponds to the following matrix, where the columns are indexed by S ∈ P([k − 1]) and

1Exact functors are those that preserve preserve both finite limits and colimits
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T ∈ P([0])

[µk]
S
T =


δS∅ T = ∅

η|S|−|T | = η|S|−1 T = {0}
(5.6)

where η−1 is understood to be 0, and η0 is understood to be the identity.

Proof. We prove this by induction on k. The base case is the case µ1 : T2 ⊙ − → T ⊙ −

which is the matrix

µ1 =

Σ∅ Σ{0} Σ{1} Σ{0,1}[ ]1 1 0 0 0
Σ{0} 0 1 1 η

This matrix satisfies the formula for S ⊂ P([1]) and T ⊂ [0]

[µ1]
S
T =


δS∅ T = ∅

η|S|−|T | = η|S|−1 T = {0}
.

The map µk can be factored as

Tk+1 ⊙− Tk ⊙− T⊙−

⊕
S∈P[k]

ΣS
⊕

S∈P([k−1])

ΣS (1 + Σ)

≃ ≃

µk

≃ .

We assume that µk−1 satisfies the formula (5.6) by induction. The matrix given by tensoring

µ1 with (1 ⊕ Σ) is a diagonal matrix, given by the following formula with rows indexed by

S ⊂ P([k]) and rows indexed by T ⊂ P([k − 1]).

[Tk−2 ⊙ µ1]
S
T =


[µ1]

S≤1

T≤0
= η|S|−|T | (S>1)− 1 = T > 0

0 else

.

Here the set (S > 1)− 1 is the set obtained by shifting the elements of S>1 down by 1. The
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formula for the matrix Tk−2 ⊙ µ1 is seen by inspecting

⊕
U∈P([k−2])

ΣU

 ⊕
S∈P([1])

ΣS µ1−→
⊕

T∈P([0])

ΣT

 .

Therefore consider the composite

[µk]
S
T =

(
[µk−1 ◦ Tk−2 ⊙ µ1]

)S
T
.

By the formula for Tk−2 ⊙ µ1, there is a unique U ⊂ P([k − 1]) such that the composite

ΣS Tk−2⊙µ1−−−−−→ ΣU µk−1−−−→ ΣT

is nonzero. This seen by noting that the column of each matrix has precisely one nonzero

entry. The composite is given then by the formula

[µk]
S
T =

(
[µk−1 ◦ Tk−2 ⊙ µ1]

)S
T
= [µk−1]

U
T [Tk−2 ⊙ µ1]

S
U

which if T ̸= ∅ is given by

[µk]
S
T = η|Y |−|T | ◦ η|S|−|U | = η|S|−|U |+|U |−|T | = η|U |−|T |

and if T = ∅

[µk]
S
T = δS∅ .
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Example 309. The matrix µ1 is the matrix of Lemma 290

µ1 =

Σ∅ Σ{0} Σ{1} Σ{0,1}[ ]1 1 0 0 0
Σ{0} 0 1 1 η

The matrix µ2 is the matrix

µ2 :=

Σ∅ Σ{0} Σ{1} Σ{0,1} Σ{2} Σ{0,2} Σ{1,2} Σ{0,1,2}[ ]1 1 0 0 0 0 0 0 0
Σ{0} 0 1 1 η 1 η η η2

The matrix µ3 is the matrix

µ3 =

[
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 η 1 η η η2 1 η η η2 η η2 η2 η3

]

where the columns are ordered by the maximum element of S ⊂ P([3]).

In summary, by unpacking Observation 304, we have identified E∞-modules as follows.

Theorem 310. The right-lax functor

Z≥0

Ǧ (VE∞)
−−−−−→ Prst

evaluates as follows:

(1) The value on an object i ∈ Z≥0 is V .

(2) The value on a 1-morphism from i to j, which is a subset I ⊂ Z≥0 with Min(I) = i and

Max(I) = j, is the functor

(
V

(1⊕Σ)|I0|−−−−−→ V

)
≃

V

⊕
S⊂P(I0)

ΣS

−−−−−→ V

 .
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which is the iterated suspension of the endofunctor of (1 ⊕ Σ) of V, iterated once for

each non maximal element of V.

(3) The value on a 2-morphism from J to I, which is an inclusion I ⊂ J, is given by

⊗
i∈I0

 ⊕
S⊂⌊I⊂J⌋i

ΣS

 ⊗
i∈I0

µ|⌊I⊂J⌋i|

−−−−−−→
⊗
i∈I0

(1⊕ Σ) .

The left lax limit of this functor defines an equivalence of ∞-categories

ModE∞(V) ≃ liml.lax

(
Z≥0

Ǧ (VE∞)
−−−−−→ Prst

)
.

Remark 311. Note that the value on a two morphism I ⊂ J is a matrix which only depends

on the matrices µk for various k in Z≥0 .

Remark 312. The data of an object of the left-lax limit of the right-lax functor Ǧ
(
VE∞

)
is the data of

(1) A functor

V• : Z≥0

(
V0

f0−→→V1

f1−→V2

f2−→...

)
−−−−−−−−−−−−−−−→ V .

(2) A natural transformation

∂• : ΣV• → V•+1 ,

which is the data of a diagram in V

ΣV0 ΣV1 ΣV2 . . .

V1 V2 V3 . . .

∂0

f0

f1

∂1

f1

f2

∂2

f2

f3
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(3) A coherently compatible family of identification between natural transformations

∂r ≃ ηr−1∂ (r ≥ 2) .

Observation 313. For a functor sd([i])op → VEi with image in Ǧ
(
VEi
)
, there exists a

factorization
sd([i− 1])op sd([i])op

VEi−1 × [i− 1] VEi × [i]

with image in Ǧ
(
VEi
)
.

This observation allows for the identification of Ǧ
(
VE∞

)
inductively, in terms of Ǧ

(
VEi
)
.

Example 314. A E0-module is the data of a functor

[0]→ V .

The functor [0]→ V is the data of an object V0 ∈ V.

Example 315. A E1-module is the data of:

(1) Two objects V0 and V1 in V.

(2) A morphism

V0 ⊕ ΣV0
[f0,∂0]−−−→ V1

in V.

Example 316. An E2 module

E2 → V

is the data of:
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(1) For each i ∈ [2], an object Vi ∈ V.

(2) For each {i < j} ∈ [2], a morphism in V

Vi ⊕ ΣVi

[
f i
j ∂ij

]
−−−−−−→ Vj .

(3) A commutative square in V

V0 ⊕ ΣV0 ⊕ ΣV0 ⊕ Σ2V0 V1 ⊕ ΣV1

V0 ⊕ ΣV0 V2

[
1 0 0 0

0 1 1 η

]

[
f0
1 ∂0

1 0 0

0 0 f0
1 ∂0

1

]

[f1
2 ∂1

2]

[f0
2 ∂0

2]

Therefore the data of this square commuting is an identification of the two matrices

[f 0
2 ∂02 ∂02 η∂02 ] = [f 1

2 f
0
1 f 1

2∂
0
1 ∂12f

0
1 ∂12∂

0
1 ]

Recall, that a CPi is the groupoid completion of the ∞-category Ei. Therefore we also

unpack several Ei-modules that also satisfy the gropuoid completion condition.

Example 317. A CP0-module is the data of a an object V ∈ V.

Example 318. A CP1-module is the data of:

(1) An object V ∈ V.

(2) A morphism

V ⊕ ΣV
[1,∂]−−→ V .



204

Equivalently, this is the data of a morphism

ΣV
∂−→ V .

Example 319. We example the data of a CP2-module. A CP2-module determines:

(1) An object V ∈ V.

(2) For each {i ≤ k} ∈ [2], a morphism in V

V ⊕ ΣV
[1,∂i

k]−−−→ V ⊕ V .

(3) A commutative square in V

V ⊕ ΣV ⊕ ΣV ⊕ Σ2V V ⊕ ΣV

V ⊕ ΣV V

[
1 0 0 0

0 1 1 η

]

[
1 ∂0

1 0 0

0 0 1 ∂0
1

]

[1 ∂1
2 ]

[1 ∂0
2 ]

Multiplying the matrices of each composite gives identifications

[1 ∂02 ∂02 η∂02 ] = [1 ∂01 ∂12 ∂12∂
0
1 ]

Therefore it must be the case that

∂01 ≃ ∂12 ≃ ∂02 .

Therefore, the data of a CP2-module is:

(1) An object V ∈ V .
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(2) A morphism ΣV → V

(3) An identification of η∂ ≃ ∂2

Σ2V ΣV

ΣV V

η

∂

∂

∂

.

Example 320. A CP3 module is the data of:

(1) An object V ∈ V.

(2) A morphism ΣV → ΣV .

(3) The data of a commutative square

V ⊕ ΣV ⊕ ΣV ⊕ Σ2V V ⊕ ΣV

V ⊕ ΣV V

[
1 0 0 0

0 1 1 η

]

[
1 ∂ 0 0

0 0 1 ∂

]

[1 ∂]

[1 ∂]

which is equivalent with the data of an identification η∂ ≃ ∂2

Σ2V ΣV

ΣV V

η

∂

∂

∂

.
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(4) The data of a cube in V

(V ⊕ ΣV ){0,1,2} (V ⊕ ΣV ){1,2}

(V ⊕ ΣV ){1} (V ⊕ ΣV ){2}

(V ⊕ ΣV ){0,1} (V ⊕ ΣV ){1}

(V ⊕ ΣV ){0} V

id⊗µ

T2⊙[1 ∂]

T⊙[1 ∂]

µ

T⊙[1 ∂]

[1 ∂]

[1 ∂]

[1 ∂]

µ
µ⊗id

µ

T⊕[1 ∂]
.

Note each face is determined by the previous data. Namely, 4 of the faces are the 4

CP2-modules induced by each of the four conservative functors [1] → [2], and one of

the faces is multiplication of T. This is equivalent with an identification of η2∂ = ∂3

Σ3V Σ2V

Σ2V ΣV

Σ2V ΣV

ΣV V

η

∂

∂

∂

η

∂

∂

∂

∂

ηη

η

.
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The proof of Theorem 276 relied on many facts from∞-category theory. The important
ones are given here for the readers reference. This appendix read on its own may feel
disjointed, and the reader is encouraged to use it as a reference for Sections 5.1-5.4.

We record the following result from §4 of [10].

Lemma 321. Let F : C→ D be a functor, and V be a presentable stable ∞-category. Then
the left and right Kan extensions exits, and they define left and right adjoints to the functor
F ∗ : Fun(D,V)→ Fun(C,V).

Fun(C,V) Fun(D,V)

F∗

F!

F ∗

Lemma 322. Let V be a presentable stable ∞-category.

(1) Let π : E→ B be a fully faithful right fibration. The right Kan extension functor

π∗ : Fun(E,V)→ Fun(B,V)

is given by extension by 0.

(2) Let π : E→ B be a fully faithful left fibration. The left Kan extension functor

π! : Fun(E,V)→ Fun(B,V)

is given by extension by 0.

Proof. By taking opposites of E and B, the two statements imply one another. So we only
prove the first statement.

Using that V is assumed presentable, the value of the right Kan extension π∗ on a functor

E
F−→ V evaluated on an object b ∈ B is given by the limit indexed by the ∞-undercategory:

π∗(F )(b) ≃ lim
(
Eb/ → E

F−→ V
)
.

Using that π is a fully faithful right fibration, the ∞-undercategory Eb/ is a (−1)-type: it is
empty if b /∈ π(E) and it is a contractible ∞-groupoid if b ∈ π(E). The result then follows
from the fact that the limit indexed by the empty ∞-category is a final object.

Observation 323. The functor

Fun (−,V) : Catop → Cat

is an endofunctor of Cat that takes values in presentable stable ∞-categories. Moreover it
takes values in Prst

R, where an object is a presentable stable ∞-category, and a morphism
is a functor that is a right adjoint. There is an isomorphim of categories

Prst
R → Prst

Lop
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that sends a functor to its left adjoint. All together then there is a composite functor

Catop → Prst
Lop

.

which we can consider as a functor
Cat→ Prst

L

by taking opposites.

The following is an immediate consequence of the universal property of colimits.

Lemma 324. Let
F : K▷ → Cat

be a colimit diagram, and
G : F(+∞)→ V

be a functor. Then the functor

K▷ V

k colim
(
F(k)

!−→ F(+∞)→ V
)

is a colimit diagram.

We record the following result from §5 of [10].

Lemma 325. Let F : C→ D be a functor.

(1) If F : C→ D is a right adjoint, then the functor preserves limits.

(2) If F : C→ D is a left adjoint, then the functor preserves limits.

We record the following result from [2].

Lemma 326. Let F : C→ D be a functor.

(1) If F : C→ D is a right adjoint, then F is a final functor.

(2) If F : C→ D is a left adjoint, then F is an initial functor.

The definition of homotopy colimits is designed so the following two results are true.

Lemma 327. Consider a pair of functors F : C → Top and G : C → Top, with a natural
transformation F⇒

α
G

C Top

F

G

α .
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If the components of α are given by homotopy equivalences, then

hocolim(C
F−→ Top) ≃ hocolim

(
C

G−→ Top
)

Lemma 328. Let C
F−→ Top be a functor that is cofibrant. Then the canonical map

hocolim(C
F−→ Top)

≃−→ colim(C
F−→ Top)

is an equivalence.

Definition 329. Let C be an ∞-category. The classifying space of C is colimit of the
constant functor

BC := colim
(
C

const∗−−−→ Spaces
)
.

Definition 330. Let G be a group. Define the category BG to be the category with a single
object, with hom space

HomBG(∗, ∗) = G .

The composition rule of BG is determined by multiplication in G.

The following result follows from the univalence-completeness axiom, in the presentation
of (∞, 1)-categories as complete Segal spaces.

Lemma 331. Let G be a group object in Spaces, then the canonical functor

BG→ BG

is an equivalence in Cat(∞,1).

Theorem 332 (Local Immersion Theorem). Let M0 ↪→ M be an immersion of smooth
manifolds, and let x be a point in M0. Then there exists charts (U, ϕ) about x in M0 and a
chart (V, φ) such that

U V

Rn0 Rn1

ϕ
∼=

φ
∼=

i

the inclusion of U into V is the canonical local embedding of Rn0 into Rn1.

Definition 333. Let L : Cop → D and R : C→ D be two functors between categories. The
coend is the colimit of the diagram

∐
f :s→t∈Ar(C) L(t)× R(s)

∐
c∈C L(c)× R(t)

L(f)×id

id×R(f)

.
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Definition 334. Let L : Cop → D and R : C → D be two functors between ∞-categories,
where D admits small limits and colimits. The ∞-coend 1 is the colimit of the functor

L⊗ R := colim
(
TwAr(C)→ Cop × C

L×R−−→ D×D
−×−−−−→ D

)
.

Observation 335. Recall that the ∞-groupoid-completion functor

| − | : Cat(∞,1) −→ Spaces ,

is, by definition, left adjoint to the canonical inclusion. Therefore, | − | preserves colimits:

for K
F−→ Cat∞ a functor, the canonical map between spaces

colim
x∈K
|F (x)| ≃−−→

∣∣∣∣colimx∈K
F (x)

∣∣∣∣
is an equivalence.

Lemma 336. Let F : K0 ↪→ K be a fully faithful functor between ∞-categories, and let V be
a presentable stable ∞-category.

(1) The left Kan extension functor

F! : Fun (K0,V)→ Fun (K,V)

is fully faithful.

(2) The right Kan extension functor

F∗ : Fun (K0,V)→ Fun (K,V)

is fully faithful.

Proof. (1) follows since the left Kan extension can be computed pointwise due to V admiting
limits and colimits. (2) follows as the dual statement to (1).

Definition 337. Let W ⊂ K be an∞-subcategory of an∞-category K. The localization of
K with respect to W is defined to be the ∞-category determined by the pushout in Cat(∞,1)

W K

|W | K[W−1]

.

The definition of the twisted arrow ∞-category is such that the following is true.

1We will frequently just say coend, and rely on context to differentiate between the two
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Lemma 338. Let F and G be functors from an ∞-category C to a presentable stable ∞-
category V. Then the hom space HomFun(C,V)(F,G) is presented by the following limit

HomFun(C,V)(F,G) ≃ lim(TwAr(C)
(min,max)−−−−−→ Cop × C

Fop×G−−−→ V× V
HomV(−,−)−−−−−−→ Spaces .

Lemma 339. The functor Spaces
(+)−−→ Spaces∗/ preserves colimits.

Proof. The functor is left adjoint to the forgetful functor which forgets the basepoint.

Notation 340. Let X and Y be spaces. Define

Y X := HomSpaces(X, Y ) .

Lemma 341. Let X and Y be spaces. The canonically commutative diagram

X X ⨿ Y

∗ Y+

iX

⟨+⟩

⌟

is a pushout diagram in Spaces

Proof. The diagram is a pushout if for each space Z, the diagram

ZY+ ZX⨿Y

Z∗ ZX

is a limit diagram. Using the fact that Z∗ ≃ Z and X⨿Y is the coproduct, this is equivalent
to checking

Z × ZY ZX × ZY

Z ZX

is a limit diagram. Since the diagram is in Spaces it suffices to check for all z ∈ Z if the map
between the fibers
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ZY Z × ZY

ZY ZX × ZY

∗ Z

∗ ZX

⟨z⟩

πZ

π
ZX

⟨constz⟩

is an equivalence. This is clearly the case since it is just the identity morphism.

Lemma 342. Let

X Y

∗ Z+

f

g

⟨+⟩

⌟

be a pushout diagram in Spaces. Then the diagram

X+ Y+

∗ Z+

f+

g+

⟨+⟩

⌟

is a pushout in Spaces.

Proof. The diagram is a pushout if after applying for each space A ∈ Spaces, applying
HomSpaces(−, A) gives a limit diagram in Spaces

AZ+ AY+

A∗ ZX+

.

Using the universal property of the coproducts gives an equivalent diagram

AZ+ × ∗ AY × A∗

A∗ × ∗ ZX × A∗

.
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This diagram is a limit diagram if the map on fibers is an equivalence

fib(⟨+⟩) AZ+

fib(f ◦ × id) AY × A∗

∗ A∗

∗ AX × A∗

g◦+

(f◦,id)

.

This is immediate after noting the equivalence

fib(f ◦) ≃ fib(f ◦ × id)

since the identity map id : HomSpaces(∗, A)→ HomSpaces(∗, A) is an equivalence.

Lemma 343.

X Y

∗ Z+

f

⟨+⟩

⌟

be a pushout diagram in Spaces. Then

X+ Y+

∗ Z+

f+

⟨+⟩

⌟

is a pushout in Spaces∗/

Proof. By Lemma 342, the diagram

X+ Y+

∗ Z+

f

⟨+⟩

⌟

is a pushout diagram in Spaces. Using Lemma 344, where K is the cospan diagram and X is
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Spaces, the diagram

|K| ⊙ ∗ ≃ ∗ colim(K→ Spaces∗/ → Spaces)

∗ fgt(colim(K→ Spaces∗/))

≃

⟨+⟩

⟨+⟩

is a pushout in Spaces. The colimit

colim(K→ Spaces∗/ → Spaces) = Z+

by assumption, and therefore

Z+
≃−→ fgt(colim(K→ Spaces∗))

is an equivalence in Spaces. Furthermore Lemma 344 gives the equivalence

(∗ ⟨+⟩−−→ Z+) ≃ colim(K→ Spaces∗/)

Therefore the diagram

X+ Y+

∗ Z+

f+

⟨+⟩

⌟

is a pushout diagram in Spaces∗/.

The following result is an immediate application of the mapping-out property of
colimits.

Lemma 344. Let c ∈ C be an object in a cocomplete ∞-category. Let K→ Cc/ be a functor.
Then the diagram

|K| ⊙ c colim
(
K→ Cc/ → C

)
c colim

(
K→ Cc/

)
f

⟨+⟩

⌟

is a pushout.
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Lemma 345. Let f : x→ y be a morphisms in an ∞-groupoid G. Then the functors

G/x → G/y

and
Gy/ → Gx/

induced by composition with f are equivalences.

Proof. We prove that the functor Gx/ → Gy/ is an equivalence, and the case Gy/ → Gx/

follows by duality. Note that since G is a groupoid, there exists a morphisms f 1 : y → x and
a triangle in G

x x

y
f

id

f−1

.

This induces a diagram

G/x G/x

G/y

−◦f −◦f−1

id

.

Therefore this witnesses − ◦ f as the right inverse to − ◦ f−1. A similar argument shows
that − ◦ f is also the left inverse to − ◦ f−1. Therefore G/y ≃ G/x are equivalent.

Definition 346. Let F : C→ D be a functor, and let d ∈ D. The category C/d is defined to
be the pullback

C/d D/d

C D
F

⌟ .

Similarly, the category Cd/ is defined to be the pullback

Cd/ Dd/

C D
F

⌟ .
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Lemma 347. Let C be an∞-category and G an∞-groupoid, and F : C→ G a functor. Then
the two squares are each pullbacks

C/g C|g Cg/

G/g ∗ Gg/

⌟ ⌟
. (A.1)

Moreover, since the bottom two arrows

G/g
≃←− ∗ ≃−→ Gg/

are equivalences, the top arrows are also equivalences.

Proof. We first show that the left square is a pullback. Consider the diagram

C|g C/g C

∗ G/g G
⟨g

id−→g⟩

. (A.2)

The right square of (A.2) is a pullback by definition. The outer square of (A.2) is also a
pullback, since it is just the definition of the fiber over g. Therefore the left square of (A.2)
is a pullback, as well as the left square of (A.1). Dually, the right square of A.1 is also a
pullback.

Proposition 348 (Quillen Theorem A). Let F : C→ D be a functor between ∞-categories.
The functor F is final if and only if for each object d ∈ D , the classifying space

|Cd/| ≃ ∗

is contractible. Dually, the functor F is initial if and only if the classifying space

|C/d| ≃ ∗

is contractible.

Proposition 349 (Quillen Theorem B). Let C→ D be a functor between ∞-categories such
that for each morphism f : d→ d′ in D, the functor

C/d → C/d′

induced by composition with f is an equivalence on classifying spaces

|C/d|
≃−→ |C/d′ | .
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Then for each d ∈ D the diagram

|C/d| |C|

∗ |D|

⌟

is a pullback diagram in Spaces.

Proof. This is Theorem 5.16 of [2].

Lemma 350. Let R : E→ B be a fully faithful right fibration, and F : E→ Sp be a functor.
Then the Right Kan extension F∗ along R is given by extension given by extension by zero

Fun(B\E,V)

Fun(E,V) Fun(B,V)

Fun(E,V)

F∗

0

id

Proof. The right Kan extension of a functor F : E → V along E → B evaluated on a an
object b ∈ B is given by the limit

F!(b) = lim
(
Eb/ → E

F−→ V
)

There are two cases, either b ∈ E, or b ∈ B\E. If b ∈ E, then

Eb/ ≃ Bb/ .

The category Bb/ has an initial object b
id−→ b. Therefore

lim
(
Eb/ → E

F−→ V
)
≃ lim

(
∗ ⟨b→b⟩−−−→ Eb/ → E

F−→ V
)
= F(b) .

For the second case, assume that b ∈ B\E. An object in Eb/ is the data

{1} E

[1] B

{0}
⟨a⟩

⟨a→b⟩

⟨b⟩

.
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However, by the lifting property of E→ B being a right fibration, then b ∈ E.

The following result follows from the observation that the unstraightening of the identity

functor Spaces
id−→ Spaces is the left fibration Spaces∗/ → Spaces.

Lemma 351. Let F : C → Spaces be a functor. The unstraightening Un(F) is the pullback
pullback

Un(F) Spaces∗/

C Spaces
F

⌟ .

The following result is extracted from §2 of [10].

Lemma 352. Let F : C → Spaces be a functor. The colimit of F is the classifying space of
the unstraightening of F.

Lemma 353. Let F : C ↪→ D be a monomorphism. Then TwAr(F) : TwAr(C) → TwAr(D)
is a monomorphism.

Proof. First, recall that C→ D is a monomorphism if and only if ∀[p] ∈ ∆,

HomCat([p],C)→ HomCat([p],D)

is a monomorphism between spaces. Therefore we seek to show

HomCat([p],TwAr(C))→ HomCat([p],TwAr(A))

is a monomorphism of spaces. By the yoneda lemma and the definition of TwAr(C), there
are the equivalences

HomCat([p],TwAr(C)) ≃ TwAr(C)([p]) := HomCat([p]
op⋆[p],C) .

Therefore it suffices to check if

HomCat([p]
op⋆[p],C)→ HomCat([p]

op⋆[p],D)

is a monomorphism of spaces. Using that [p]◦⋆[p] ≃ [2p+ 1], the monomorphism condition
gives the desired result

HomCat([p],TwAr(C)) HomCat([p],TwAr(D))

HomCat([p]
◦⋆[p],C) HomCat([p]

◦⋆[p],D)

HomCat([2p+ 1],C) HomCat([2p+ 1],D)

≃ ≃

≃ ≃

.
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Lemma 354. Consider a diagram

C V

D

F

F!

where F! witnesses a right Kan extension. Then

lim(F)→ lim(F!)

is an equivalence.

Proof. Recall that the limit of a functor is the value of the right Kan extension along a point.
Consider the right Kan extension of F! along ∗

D V

∗

F!

lim(F!)

.

Since the right Kan extension of a right Kan extension witnesses a right Kan extension, the
diagram

C V

D

∗

F

F

lim(F!)

witnesses lim(F!) as the right Kan extension of F along C→ D→ ∗. Since the category ∗ is
terminal in Cat(∞,1), this implies lim(F!) witnesses the left Kan extension of F along C

!−→ ∗,
which is by definition lim(F). Therefore

lim(F) ≃ lim(F!)

.

Observation 355. Let C be an∞-category and c be an object of C. Then the∞-categories

C/c ≃
(
Copc◦/

)
Lemma 356. Let F : C→ D be a functor between (∞, 1)-categories.

(1) The following are equivalent.
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(1) The functor F is a right adjoint.

(2) For each object d ∈ D, the ∞-category Cd/ has an initial object

(2) The following are equivalent

(1) F is a left adjoint

(2) For each d ∈ D, the ∞-category Cd/ has a terminal object.

Proof. This Lemma 2.17 of [2].

Definition 357. Let C and D and B and be in PrL. A bi-colimit preserving functor is
a functor

F : C×D→ B

such that for all c ∈ C and d ∈ D, the restriction functors

F|c : c×D ↪→ C×D→ B

F|d : C× d ↪→ C×D→ B

are colimit preserving.

Definition 358. Let C and D be presentable ∞-categories. The tensor product of
presentable ∞-categories is the ∞-category that satisfies the universal property

C×D V

C⊗D
∃!

with respect to bicolimit preserving functors C×D→ V .

The following result is an immediate consequence of the fact that colimits in a functor
∞-category are computed value-wise.

Lemma 359. Let K be a (small) ∞-category. Then Fun(K,V) is a presentable ∞-category.

The following result is a direct consequence of the fact that colimits commute with one
another.

Lemma 360. The functor

Fun(K, Spaces)× V→ Fun(K,V)

that is adjoint to the functor

K× Fun(K,V)× V→ Spaces×V ⊙−→ V
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is a bi-colimit preserving functor.

Lemma 361. The inclusion zCat(∞,1) → Cat(∞,1) admits a left adjoint

Cat(∞,1)

(−)⋄−−→ zCat(∞,1)

that sends a category C to the category C⋄ that adjoins a zero object to the category C.

Proof. Notice that the forget functor zCat(∞,1) → Cat(∞,1) preserves limits. Using that
Cat(∞,1) is presentable, this forgetful functor admits a left adjoint.

Lemma 362. The tensor product restricts to StPr with the category of Spectra Sp as the
unit.

Proof. This follows since the category of Sp is freely generated by colimits by the sphere
spectrum S.
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