Practice Final, MATH 224, Spring 2007

- 1. (20 pts) True or false? Correct the false statements.
 - (a) If two vectors \mathbf{a} and \mathbf{b} are parallel, then $\mathbf{a} \times \mathbf{b} = \mathbf{0}$.
 - (b) The equation 3x + y z + 2 = 0 describes a line.
 - (c) The equation $x^2 + y^2 + z^2 = 1 + x$ describes a sphere.
 - (d) If an object moves at constant speed, then its acceleration is zero.
 - (e) If the acceleration of an object is zero, then it moves at constant speed.
 - (f) If f is differentiable and has a local maximum or minimum at **x**, then $\nabla f(\mathbf{x}) = \mathbf{0}$.
 - (g) If f is differentiable and $\nabla f(\mathbf{x}) = \mathbf{0}$, then f has a local maximum or minimum at \mathbf{x} .
 - (h) If D is the upper half of the unit disk and f is a continuous function, then $\iint_D f(x,y) \, dx \, dy = \int_0^1 \int_0^\pi f(r \cos \theta, r \sin \theta) \, d\theta \, dr.$
 - (i) If a vector field $\mathbf{F} = \langle P, Q \rangle$ is conservative, then $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$
 - (j) If f(x, y) is a continuously differentiable function, then $\int_C \nabla f \cdot d\mathbf{r} = 0$ for any simple closed curve C.

2. (8 pts) A constant force $\mathbf{F} = \langle 1, 2, -3 \rangle$ moves an object along a line segment from (2, 0, 1) to (1, 3, 2). Find the work done if the distance is measured in meters and the force in Newtons.

3. (8 pts) A plane contains the points (2, 1, 0), (-1, 1, 1), and (0, 0, 2). Find a vector which is perpendicular to the plane. Where does the plane intersect the *x*-axis?

4. (8 pts) Identify and sketch the surface $x = y^2 + z^2 - 4z$.

5. (8 pts) Find the linearization of $f(x,y) = \sqrt{x^2 + 2y^2}$ at the point (1,2) and use it to estimate f(1.1, 1.9).

6. (8 pts) Let $f(x, y, z) = xy + z^2$. Find the directional derivative of f at the point (3, 0, -2) in the direction of $\mathbf{v} = \langle -1, 2, 2 \rangle$. What are the directions of maximal and minimal directional derivatives at (3, 0, -2)?

7. (10 pts) Let $f(x,y) = x^2y + y^3 - y$. Find all critical points of f and determine whether they are maxima, minima, or saddle points.

8. (10 pts) Evaluate $\int_0^4 \int_{\sqrt{x}}^2 e^{y^3} dy dx$ by reversing the order of integration.

9. (10 pts) Consider a lamina that occupies the region $4 \le x^2 + y^2 \le 9$, with mass density $\rho(x,y) = (x^2 + y^2)^{-3/2}$. Find the moments of inertia of the lamina about the coordinate axes.

10. (10 pts) Use Green's Theorem to evaluate $\int_C (y + \sin \sqrt{x}) dx + (3x - \ln(1 + y^2)) dy$, where C is the circle $(x-3)^2 + (y-1)^2 = 4$, parameterized in counterclockwise direction. (Hint: You may use the fact that the area of a circle of radius r is πr^2 .)