
Homework 1 Solutions

1.1.4 (a) Prove that A ⊆ B iff A ∩B = A.

Proof. First assume that A ⊆ B. If x ∈ A ∩ B, then x ∈ A and x ∈ B by
definition, so in particular x ∈ A. This proves A ∩ B ⊆ A. Now if x ∈ A,
then by assumption x ∈ B, too, so x ∈ A ∩ B. This proves A ⊆ A ∩ B.
Together this implies A = A ∩B.

Now assume that A ∩ B = A. If x ∈ A, then by assumption x ∈ A ∩ B, so
x ∈ A and x ∈ B. In particular, x ∈ B. This proves A ⊆ B. �

1.1.4 (b) Prove A ∩B = A \ (A \B).

Proof. Let x ∈ A ∩ B. Then x ∈ A and x ∈ B. In particular, x /∈ A \ B
(because x ∈ A \ B would imply x /∈ B). So x ∈ A \ (A \ B). This shows
A∩B ⊆ A\(A\B). Now let x ∈ A\(A\B). Then x ∈ A and x /∈ A\B. This
means that x /∈ A or x ∈ B (the negation of x ∈ A and x /∈ B). Since we
know x ∈ A, this implies x ∈ B, so x ∈ A∩B. This shows A\(A\B) ⊆ A∩B.
Together with the first part this shows A ∩B = A \ (A \B). �

1.1.4 (c) Prove (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

Proof. Let x ∈ (A \ B) ∪ (B \ A). Then x ∈ A \ B or x ∈ B \ A. In
the first case, this implies x ∈ A and x /∈ B. From this we get x ∈ A or
x ∈ B (since the first of those statements is true), so x ∈ A ∪ B. We also
get that x /∈ A ∩ B (because x /∈ B), so x ∈ (A ∪ B) \ (A ∩ B). In the
second case we get x ∈ B and x /∈ A, so by the same argument x ∈ A ∪ B
and x /∈ A ∩ B. Again we conclude x ∈ (A ∪ B) \ (A ∩ B). This shows
(A \B) ∪ (B \A) ⊆ (A ∪B) \ (A ∩B).

Now let x ∈ (A ∪ B) \ (A ∩ B). Then x ∈ A or x ∈ B, and x /∈ A ∩ B. If
x ∈ A, then x /∈ B (because otherwise x ∈ A ∩ B), so x ∈ A \ B. If x /∈ A,
then by assumption x ∈ B, so x ∈ B\A. In either case, x ∈ (A\B)∪(B\A).
This shows (A ∪ B) \ (A ∩ B) ⊆ x ∈ (A \ B) ∪ (B \ A). Together with the
first part this shows the claimed set equality. �

1.1.4 (d) Prove that (A ∩B)× C = (A× C) ∩ (B × C).

Proof. If p ∈ (A ∩ B) × C, then p = (x, y) with x ∈ A ∩ B and y ∈ C.
This means x ∈ A, x ∈ B and y ∈ C, and thus (x, y) ∈ A × C and
(x, y) ∈ B × C. This implies p = (x, y) ∈ (A × C) ∩ (B × C). This proves
(A ∩B)× C ⊆ (A× C) ∩ (B × C).

If p ∈ (A×C)∩ (B×C), then p ∈ A×C and p ∈ B×C, so p = (x, y) with
x ∈ A and y ∈ C, and x ∈ B and y ∈ C. This implies x ∈ A∩B and y ∈ C,
so p = (x, y) ∈ (A∩B)×C. This proves (A×C)∩ (B ×C) ⊆ (A∩B)×C.
Together the two inclusions prove the claimed equality. �
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1.1.4 (e) Prove that A∩B and A \B are disjoint, and that A = (A∩B)∪
(A \B).

Proof. For the first part we have to prove that (A ∩ B) ∩ (A \ B) = ∅. Let
x ∈ (A ∩ B) ∩ (A \ B). Then x ∈ A ∩ B and x ∈ A \ B, so x ∈ A and
x ∈ B, and x ∈ A and x /∈ B. In particular, this implies x ∈ B and x /∈ B,
which is a contradiction. I.e., there can be no such x and we proved that
(A ∩B) ∩ (A \B) = ∅.
For the set equality, let x ∈ A be arbitrary. Then either x ∈ B or x /∈ B.
In the first case, x ∈ A ∩ B, in the second case x ∈ A \ B. In either case,
x ∈ (A ∩B) ∪ (A \B). This shows A ⊆ (A ∩B) ∪ (A \B).

Now let x ∈ (A ∩ B) ∪ (A \ B). Then x ∈ A ∩ B or x ∈ A \ B. Either case
implies x ∈ A by definition. This shows (A ∩ B) ∪ (A \ B) ⊆ A. Together
the two inclusions show the claimed set equality. �

1.2.5 Prove that if a function f has a maximum, then sup f exists and
max f = sup f .

Proof. For the existence of the supremum we have to show that f is bounded
above, and for the claimed equality we have to show that max f is the least
upper bound for f .

By definition of the maximum, there exists x0 ∈ X with f(x) ≤ f(x0) =
max f for all x ∈ X. This shows that max f is an upper bound for f , and
that the supremum of f exists.

Now choose an arbitrary M ∈ R with M < max f . Then M < f(x0), and
thus M is not an upper bound. This shows that max f is the least upper
bound, i.e., max f = sup f . �

1.2.22 Suppose that f : X → Y .

For the following proofs we break down the “if and only if” into both di-
rections. The symbol “=⇒” means that we show that the first assumption
implies the second one, the symbol “⇐=” means that we are proving that
the second assumption implies the first one. Similarly we break down the
proof of set equalities into the two inclusions “⊆” and “⊇”.

1.2.22 (a) Prove that f(A ∩ B) = f(A) ∩ f(B) for all A,B ⊆ X iff f is
injective.

Proof. We show the implications separately.

=⇒: Let x1, x2 ∈ X be arbitrary with f(x1) = f(x2). Let A = {x1} and
B = {x2}. By assumption, f(A∩B) = f(A)∩ f(B) = {f(x1)} ∩ {f(x2)} =
{f(x1)}. This implies that there exists an element x ∈ A ∩ B with f(x) =
f(x1). Since x ∈ A and x ∈ B we have that x = x1 and x = x2, and hence
x1 = x2. This shows that f is injective.
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⇐=: This breaks down into two parts itself.

⊆: Let y ∈ f(A ∩ B). Then there exists x ∈ A ∩ B with f(x) = y. This
implies that x ∈ A and x ∈ B with f(x) = y, thus y ∈ f(A) and y ∈ f(B).
By definition, y ∈ f(A) ∩ f(B).

⊇: Let y ∈ f(A) ∩ f(B). Then y ∈ f(A) and y ∈ f(B). Thus there
exists x1 ∈ A with f(x1) = y and there exists x2 ∈ B with f(x2) = y. By
injectivity of f we have x1 = x2, and thus x1 ∈ B, too. So x1 ∈ A ∩B and
hence y = f(x1) ∈ f(A ∩B). �

1.2.22 (b) Prove that f(A \ B) = f(A) \ f(B) for all A,B ⊆ X iff f is
injective.

Proof. Set difference is intersection with the complement, so this proof mim-
icks the proof in (a).

=⇒: Let x1, x2 ∈ X be arbitrary with f(x1) = f(x2). Let A = {x1} and
B = {x2}. By assumption, f(A\B) = f(A)\f(B) = {f(x1)}\{f(x2)} = ∅.
This implies that A \ B = ∅, and hence {x1} \ {x2} = ∅. This means that
x1 = x2 (because otherwise {x1} \ {x2} = {x1}). This shows that f is
injective.

⇐=: This breaks down into two parts itself.

⊆: Let y ∈ f(A \ B). Then there exists x ∈ A \ B with f(x) = y. This
implies that x ∈ A and x /∈ B with f(x) = y. We can immediately deduce
y ∈ f(A). Now we have to show that y /∈ f(B). Assume to the contrary
that y ∈ f(B). Then there exists x1 ∈ B with f(x1) = y. By injectivity of
f , we get x = x1, and thus x ∈ B and x /∈ B, a contradiction. This shows
that y /∈ f(B), and thus y ∈ f(A) \ f(B).

⊇: Let y ∈ f(A) \ f(B). Then y ∈ f(A) and y /∈ f(B). Thus there exists
x ∈ A with f(x) = y. If x ∈ B, then y ∈ f(B), which contradicts the
previous statement, so we must have x /∈ B. This implies x ∈ A \ B, and
hence y ∈ f(A \B). �

1.2.22 (c) Prove that f−1(f(A)) = A for all A ⊆ X iff f is injective.

Proof. =⇒: Let x1, x2 ∈ X with f(x1) = f(x2). Let A = {x1}. Then
f(A) = {f(x1)}, and since f(x1) = f(x2) we have that x2 ∈ f−1(f(A)). By
assumption f−1(f(A)) = A, so x2 ∈ A = {x1}, and thus x1 = x2. This
shows that f is injective.

⇐=:

⊆: Let x ∈ f−1(f(A)). Then f(x) ∈ f(A), hence there exists x1 ∈ A with
f(x1) = f(x). By injectivity, x = x1, so x ∈ A.

⊇: Let x ∈ A. Then f(x) ∈ f(A), and by definition this implies x ∈
f−1(f(A)). �
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1.2.22 (d) Prove that f(f−1(B)) = B for all B ⊆ Y iff f is surjective.

Proof. =⇒: Let y ∈ Y arbitrary. We have to show that there exists x ∈ X
with f(x) = y. Let B = {y}. By assumption, f(f−1(B)) = B = {y}, so
y ∈ f(f−1(B)). By definition this means that there exists x ∈ f−1(B) with
f(x) = y.

⇐=:

⊆: Let y ∈ f(f−1(B)). Then there exists x ∈ f−1(B) with f(x) = y. By
definition this means that y = f(x) ∈ B.

⊇: Let y ∈ B. By surjectivity of f there exists x ∈ X with f(x) = y. This
implies that x ∈ f−1(B). Then y = f(x) ∈ f(f−1(B)). �

For problems 23 and 24 we will choose X = Y = R and the functions
f : R → R given by f(x) = x2. (Since f is neither injective nor surjective it
is a good candidate for counterexamples.)

1.2.23 (a) Find an example for which f−1(f(A)) 6= A.

A = {1} gives f(A) = {1} and f−1(f(A)) = {−1, 1} 6= A.

1.2.23 (b) Find an example for which f(f−1(A)) 6= A.

A = {−1} gives f−1(A) = ∅ and f(f−1(A)) = ∅ 6= A.

1.2.24 (a) Find an example for which f(A ∩B) 6= f(A) ∩ f(B).

A = {1} and B = {−1} give A ∩ B = ∅, f(A ∩ B) = ∅, f(A) = {1} =
f(B) = f(A) ∩ f(B) 6= f(A ∩B).

1.2.24 (b) Find an example for which f(A \B) 6= f(A) \ f(B).

A = {1} and B = {−1} give A \ B = {1}, f(A \ B) = {1}, f(A) = f(B) =
{1}, and f(A) \ f(B) = ∅ 6= f(A \B).

As you can see, we could as well have chosen X = Y = {−1, 1} and f : X →
Y given by f(1) = f(−1) = 1 in all counterexamples.
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1.4.1 (a) The negation of “there exists p > 0 such that for every x we have
f(x + p) = f(x)” is “for all p > 0 there exists x with f(x + p) 6= f(x)”.

In formal notation with quantifiers (using ≡ for logical equivalence):

∼ (∃p > 0∀x : f(x + p) = f(x)) ≡ ∀p > 0∃x : f(x + p) 6= f(x)

Mathematically, the original statement means that f is a periodic function.

1.4.1 (b) The negation of “for all ε > 0 there exists δ > 0 such that
whenever x and t are in D and satisfy |x− t| < δ, then |f(x)− f(t)| < ε” is
“there exists ε > 0 such that for every δ > 0 there exist x and t in D with
|x− t| < δ, but |f(x)− f(t)| ≥ ε”.

Again the same in formal notation:

∼ (∀ε > 0∃δ > 0∀x, t ∈ D : |x− t| < δ ⇒ |f(x)− f(t)| < ε)

≡ ∃ε > 0∀δ > 0∃x, t ∈ D : (|x− t| < δ) ∧ (|f(x)− f(t)| ≥ ε)

Mathematically, the original statement means that the function f is uni-
formly continuous in D.

1.4.1 (c) The negation of “for all ε > 0 there exists δ > 0 such that whenever
x ∈ D and 0 < |x− a| < δ, then |f(x)− A| < ε” is “there exists ε > 0 such
that for all δ > 0 there exists x ∈ D with 0 < |x−a| < δ, but |f(x)−A| ≥ ε”.

In formal notation:

∼ (∀ε > 0∃δ > 0∀x ∈ D : 0 < |x− a| < δ ⇒ |f(x)−A| < ε)

≡ ∃ε > 0∀δ > 0∃x ∈ D : (0 < |x− a| < δ) ∧ (|f(x)−A| ≥ ε)

Mathematically the original statement means that lim
x→a

f(x) = A (assuming

that the domain of the function is D).

1.4.5 Consider the statement P : the sum of two irrational numbers is irra-
tional.

1.4.5 (a) Give an example of a case in which P is true.
√

2 +
√

2 = 2
√

2. (To show that 2
√

2 is irrational, assume to the contrary
that 2

√
2 = p/q with integers p and q. Then

√
2 = p/(2q) would be rational

as well. But we proved in class that this is not true, so this is a contradiction,
and thus 2

√
2 is irrational.)

1.4.5 (b) Prove or disprove P by giving a counterexample.

The statement is not true in general:
√

2 and −
√

2 are irrational, but their
sum

√
2 + (−

√
2) = 0 is rational. (If you want an example with positive

numbers, choose
√

2 and 2−
√

2. Irrationality of 2−
√

2 follows in the same
way as that of 2

√
2.)


