
Homework 4, 5, 6 Solutions

2.1.2(a) lim
n→∞

an = 0.

Proof. Let ε > 0. Then for n ≥ n∗ = 2+ 1
2ε we have 2n−3 ≥ 4+1

ε−3 > 1
ε > 0,

so 0 < 1
2n−3 < ε, and thus |an − 0| = 1

2n−3 < ε. �

2.1.2(g) lim
n→∞

(
√

n + 1−
√

n) = 0.

Proof. Let ε > 0. Then for n ≥ n∗ = 1
4ε2

we have 2
√

n ≥ 1
ε > 0, and so

|an− 0| =
√

n + 1−
√

n = (
√

n+1−
√

n)(
√

n+1+
√

n)√
n+1+

√
n

= 1√
n+1+

√
n

< 1
2
√

n
≤ ε. �

2.1.2(k) The sequence an =

{
1 if n is odd
1/n if n is even

diverges.

Proof. Assume not. Then the sequence converges to some limit A ∈ R. By
definition of convergence (with ε = 1/4) there exists n∗ such that |an−A| <
1/4 for n ≥ n∗. Choose an integer k ≥ n∗/2. Then 2k ≥ n∗ and 2k+1 ≥ n∗,
so |a2k − A| < 1/4 and |a2k+1 − A| < 1/4. So |1/(2k) − A| < 1/4 and
|1 − A| < 1/4. The second inequality implies A > 3/4, and the first one
A < 1/(2k) + 1/4 ≤ 1/2 + 1/4 = 3/4. This is a contradiction, so the
statement is proved. �

2.1.7 If lim
n→∞

a2n = A and lim
n→∞

a2n−1 = A, then lim
n→∞

an = A.

Proof. Let ε > 0. Then there exist n1 and n2 such that |a2n − A| < ε for
n ≥ n1 and |a2n−1−A| < ε for n ≥ n2. Let n∗ = max(2n1, 2n2− 1), and let
n ≥ n∗ be arbitrary. If n is even, then there exists k ∈ N such that n = 2k.
Since n ≥ n∗ ≥ 2n1 we get that k ≥ n1, and thus |an−A| = |a2k−A| < ε. If n
is odd, then there exists k ∈ N such that n = 2k−1. Since n ≥ n∗ ≥ 2n2−1,
we get k ≥ n2, and thus |an − A| = |a2k−1 − A| < ε. Every number n is
either even or odd, so we have proved the claim. �

The converse is also true: If lim
n→∞

an = A, then lim
n→∞

a2n = lim
n→∞

a2n−1 = A.

Proof. Let ε > 0. Then there exists n1 such that |an − A| < ε for n ≥ n1.
For n ≥ n∗ = (n1 + 1)/2 we get 2n ≥ 2n − 1 ≥ n1 and thus |a2n − A| < ε
and |a2n−1 −A| < ε. This shows the claim. �

The first direction helps with 2(j), since lim
n→∞

a2n = lim
n→∞

1/(2n) = 0 and
lim

n→∞
a2n−1 = 0, so the results implies that the sequence converges to 0.
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The converse helps with 2(k), since lim
n→∞

a2n = lim
n→∞

1/(2n) = 0 and lim
n→∞

a2n−1 =
1. If the sequence would converge, these two limits would have to be the
same. Since they are different, the sequence itself diverges.

2.1.10 If {an} converges to A, then the sequence {bn} defined by bn =
(an + an+1)/2 converges to A, too.

Proof. Let ε > 0. Then there exists n∗ such that |an − A| < ε for n ≥ n∗.
Then |bn − A| = |(an + an+1)/2 − A| = |(an − A) + (an+1 − A)|/2 ≤ |an −
A|/2 + |an+1 −A|/2 < ε/2 + ε/2 = ε for n ≥ n∗. �

2.1.20 Consider sequences {an} and {bn}, where bn = n
√

an.

(a) If {bn} converges to 1, does the sequence {an} necessarily converge?

No. Example is an = n, bn = n
√

n.

(b) If {bn} converges to 1, does the sequence {an} necessarily diverge?

No. Example is an = bn = 1.

(c) Does {bn} have to converge to 1?

No. Example is an = bn = 0.

2.2.11(c) lim
n→∞

1
2n

= 0 by Theorem 2.1.13.

2.2.11(d) lim
n→∞

rn

n!
= 0.

Proof. We will write an = rn

n! . Choose n1 ∈ N with n1 ≥ |r|. Let

M = |an1 | =
|r|n1

n1!
=
|r|
1
· |r|

2
· · · |r|

n1
.

We first claim that |an| ≤ M for all n ≥ n1. Proof by induction: The case
n = n1 is immediate by definition of M . Now if we already know the claim
for some n ≥ n1, then

|an+1| =
|r|n+1

(n + 1)!
=
|r|n

n!
· |r|
n + 1

≤ M
|r|

n + 1
≤ M.

(We used n+1 ≥ n1 ≥ |r| in the last inequality, and the induction hypothesis
in the second-to-last inequality.) Now let n > n1 be arbitrary. Then n−1 ≥
n∗, so |r|n−1

(n−1)! ≤ M , and thus

|an| =
|r|n

n!
=

|r|n−1

(n− 1)!
· |r|

n
≤ M |r|

n
.

We know that lim
n→∞

M |r|
n = 0. The squeeze theorem then implies that {an}

converges to 0, too. �

2.2.11(i) lim
n→∞

n

√
n +

√
n = 1.
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Proof. This follows from the squeeze theorem, the estimate 1 ≤ n
√

n +
√

n ≤
n
√

2n = n
√

2 · n
√

n, and lim
n→∞

n
√

2 = lim
n→∞

n
√

n = 1. �

2.2.13(a) Suppose that {an} and {anbn} both converge, and an 6= 0 for
large n. Is it true that {bn} must converge?

No. Example: an = 1/n, bn = n.

2.2.13(b) Suppose that {an} converges to a non-zero number and {anbn}
converges. Prove that {bn} must also converge.

Proof. This follows immediately from the limit theorems. Let A = lim
n→∞

an

and C = lim
n→∞

anbn. Then bn = anbn
an

is the quotient of two convergent
sequences, where the denominator converges to a non-zero limit. From The-
orem 2.2.1(c) we get that {bn} converges to C/A. �

2.2.18(a) Is it possible to have an unbounded sequence {an} such that
lim

n→∞
an/n = 0?

Yes. Example an =
√

n.

2.2.18(b) Prove that if the sequence {an} satisfies lim
n→∞

an/n = L 6= 0, then

{an} is unbounded.

Proof. Assume not. Then there exists M such that |an| ≤ M for all n, and
thus |an/n| ≤ M/n. We know lim

n→∞
M/n = 0, and the squeeze theorem

implies lim
n→∞

an/n = 0, contradicting the assumption. �

2.2.21 If 0 ≤ α ≤ β, then lim n
√

αn + βn = β.

Proof. This is again the squeeze theorem. We know βn ≤ αn +βn ≤ 2βn, so
β ≤ n

√
αn + βn ≤ n

√
2 · β. In class we proved lim

n→∞
n
√

2 = 1, so the sequence
in the middle of the inequalities also has to converge to β. �

2.3.1 Prove the Comparison Theorem: If {an} diverges to +∞, and an ≤ bn

for n ≥ n1, then {bn} also diverges to +∞.

Proof. Let M > 0 be arbitrary. Then there exists n2 such that an > M for
n ≥ n2. For n ≥ n∗ = max(n1, n2) we get bn ≥ an > M . �

2.3.3(a) Prove that an = (n2 + 1)/(n− 2) diverges to +∞.

Proof. For n ≥ 3 we have an ≥ n2/n = n, and we already know that
lim

n→∞
n = +∞. By comparison theorem {an} diverges to +∞, too. �
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2.4.1 Give an example of a sequence that diverges to +∞ but is not even-
tually increasing.

an = n + (−1)n.

2.4.2 Give an example of a converging sequence that does not attain a
maximum value.

an = −1/n.

2.4.11(a) Let the sequence {an} be recursively defined by a1 =
√

6 and
an+1 =

√
6 + an for n ∈ N. Find the limit if it exists.

First claim: The sequence is increasing. Proof by induction: a2 =
√

6 +
√

6 ≥√
6 = a1. Assume that we know an+1 ≥ an. Then an+2 =

√
6 + an+1 ≥√

6 + an = an+1.

Second claim: The sequence is bounded by 30. Proof by induction: a1 =√
6 ≤ 30. If we know an ≤ 30, then an+1 =

√
6 + an ≤

√
6 + 30 = 6 ≤ 30.

We know that monotone bounded sequences converge, so there exists some
limit A ∈ R. We can pass to the limit in the recursive equation to get
A = lim

n→∞
an+1 = lim

n→∞

√
6 + an =

√
6 + A by limit theorems. From the

equation A =
√

6 + A we see that A ≥ 0, and that A2 = 6 + A. The two
solutions of this equation are −2 and 3, and since A ≥ 0, we get A = 3.

2.4.11(g) Same question as previous problem for a1 = 1 and an+1 = 1 +
an/2.

First claim: The sequence is increasing. Proof by induction: a2 = 1+1/2 ≥
1 = a1. Assuming that we know an+1 ≥ an, we get an+2 = 1 + an+1/2 ≥
1 + an/2 = an+1.

Second claim: The sequence is bounded by 30. Proof by induction: a1 =
1 ≤ 30. Assuming we know an ≤ 30, we get an+1 = 1 + an/2 ≤ 1 + 30/2 =
16 ≤ 30.

Again we know that the sequence converges to some limit A ∈ R because
it is monotone and bounded. Passing to the limit in the recursive equation
we get A = lim

n→∞
an+1 = lim

n→∞
(1 + an/2) = 1 + A/2 by limit theorems. The

equation A = 1 + A/2 has only one solution A = 2, so the limit is 2.

2.5.1 Let s0 be an accumulation point of S. Prove that the following two
statements are equivalent.

(a) Any neighborhood of s0 contains at least one point of S different from
s0.

(b) Any neighborhood of s0 contains infinitely many points of S.

The statement of this problem is unfortunately slightly screwed up. Kosmala
assumes from the outset that s0 is an accumulation point. Then (a) is always
true, since it is the definition of accumulation points. So the direction “(b)
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implies (a)” is trivial, since (a) is true. It would also make both of these
statements equivalent to completely unrelated true statements such as “(c)
The angle sum in a Euclidean triangle is π.”

We will show that (a) is equivalent to (b) for any s0 ∈ R, without any
assumptions about s0 being an accumulation point.

Proof. (b) =⇒ (a): Let ε > 0 be arbitrary. Then (s0 − ε, s0 + ε) contains
infinitely many points of S, so it contains at least two different points s1, s2 ∈
S. If s1 6= s0, we have found a point of S in the neighborhood different from
s0. Otherwise we have s2 6= s1 = s0, so s2 is the desired point.

(a) =⇒ (b): Assume not. Then there exists ε > 0 such that the neighbor-
hood (s0 − ε, s0 + ε) contains only finitely many points of S. Denote this
finite set of points by T , and let D = {|s−s0| : s ∈ T, s 6= s0}∪{ε}. The set
D is finite (since T is finite) and non-empty (ε ∈ D), and all the numbers
in D are positive. So ε1 = minD > 0 exists.

Claim: There are no points of S different from s0 in the neighborhood
(s0 − ε1, s0 + ε1).

Assume not. Then there exists s ∈ S ∩ (s0 − ε1, s0 + ε1) with s 6= s0. This
implies 0 < |s− s0| < ε1 ≤ ε, so s ∈ T . By definition |s− s0| ∈ D, and thus
ε1 ≤ |s− s0|. However, this contradicts |s− s0| < ε1.

This contradiction proves the claim, and the claim itself contradicts (a),
finishing the proof of this direction. �

2.5.3 (a) Give an example of a sequence for which the set S = {an : n ∈ N}
has exactly two accumulation points.

an = (−1)n(1− 1/n), accumulation points 1 and −1.

2.5.3 (b) Give an example of a set S that contains infinitely many points
but not every point of S is an accumulation point of S.

2.5.3 (c) Give an example of a set S where both supS and exactly one
accumulation point exist, but the values are not equal.

2.5.3 (d) Give an example of a set S where inf S and supS are in S, but
the accumulation point (points) is (are) not.

Example for (b), (c), and (d): S = {(−1)n/n : n ∈ N}. This set contains
infinitely many points, the only accumulation point 0 is not in S, and both
supS = 1/2 and inf S = −1 are in S.


