2.1.2(a) $\lim_{n \to \infty} a_n = 0.$

Proof. Let $\epsilon > 0$. Then for $n \ge n^* = 2 + \frac{1}{2\epsilon}$ we have $2n - 3 \ge 4 + \frac{1}{\epsilon} - 3 > \frac{1}{\epsilon} > 0$, so $0 < \frac{1}{2n-3} < \epsilon$, and thus $|a_n - 0| = \frac{1}{2n-3} < \epsilon$.

2.1.2(g) $\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n}) = 0.$

Proof. Let $\epsilon > 0$. Then for $n \ge n^* = \frac{1}{4\epsilon^2}$ we have $2\sqrt{n} \ge \frac{1}{\epsilon} > 0$, and so $|a_n - 0| = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} \le \epsilon$. \Box

2.1.2(k) The sequence $a_n = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 1/n & \text{if } n \text{ is even} \end{cases}$ diverges.

Proof. Assume not. Then the sequence converges to some limit $A \in \mathbb{R}$. By definition of convergence (with $\epsilon = 1/4$) there exists n^* such that $|a_n - A| < 1/4$ for $n \ge n^*$. Choose an integer $k \ge n^*/2$. Then $2k \ge n^*$ and $2k+1 \ge n^*$, so $|a_{2k} - A| < 1/4$ and $|a_{2k+1} - A| < 1/4$. So |1/(2k) - A| < 1/4 and |1 - A| < 1/4. The second inequality implies A > 3/4, and the first one $A < 1/(2k) + 1/4 \le 1/2 + 1/4 = 3/4$. This is a contradiction, so the statement is proved.

2.1.7 If $\lim_{n \to \infty} a_{2n} = A$ and $\lim_{n \to \infty} a_{2n-1} = A$, then $\lim_{n \to \infty} a_n = A$.

Proof. Let $\epsilon > 0$. Then there exist n_1 and n_2 such that $|a_{2n} - A| < \epsilon$ for $n \ge n_1$ and $|a_{2n-1} - A| < \epsilon$ for $n \ge n_2$. Let $n^* = \max(2n_1, 2n_2 - 1)$, and let $n \ge n^*$ be arbitrary. If n is even, then there exists $k \in \mathbb{N}$ such that n = 2k. Since $n \ge n^* \ge 2n_1$ we get that $k \ge n_1$, and thus $|a_n - A| = |a_{2k} - A| < \epsilon$. If n is odd, then there exists $k \in \mathbb{N}$ such that n = 2k - 1. Since $n \ge n^* \ge 2n_2 - 1$, we get $k \ge n_2$, and thus $|a_n - A| = |a_{2k-1} - A| < \epsilon$. Every number n is either even or odd, so we have proved the claim.

The converse is also true: If $\lim_{n \to \infty} a_n = A$, then $\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} a_{2n-1} = A$.

Proof. Let $\epsilon > 0$. Then there exists n_1 such that $|a_n - A| < \epsilon$ for $n \ge n_1$. For $n \ge n_* = (n_1 + 1)/2$ we get $2n \ge 2n - 1 \ge n_1$ and thus $|a_{2n} - A| < \epsilon$ and $|a_{2n-1} - A| < \epsilon$. This shows the claim.

The first direction helps with 2(j), since $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} 1/(2n) = 0$ and $\lim_{n\to\infty} a_{2n-1} = 0$, so the results implies that the sequence converges to 0.

The converse helps with 2(k), since $\lim_{n\to\infty} a_{2n} = \lim_{n\to\infty} 1/(2n) = 0$ and $\lim_{n\to\infty} a_{2n-1} = 1$. If the sequence would converge, these two limits would have to be the same. Since they are different, the sequence itself diverges.

2.1.10 If $\{a_n\}$ converges to A, then the sequence $\{b_n\}$ defined by $b_n = (a_n + a_{n+1})/2$ converges to A, too.

Proof. Let $\epsilon > 0$. Then there exists n^* such that $|a_n - A| < \epsilon$ for $n \ge n^*$. Then $|b_n - A| = |(a_n + a_{n+1})/2 - A| = |(a_n - A) + (a_{n+1} - A)|/2 \le |a_n - A|/2 + |a_{n+1} - A|/2 < \epsilon/2 + \epsilon/2 = \epsilon$ for $n \ge n^*$.

2.1.20 Consider sequences $\{a_n\}$ and $\{b_n\}$, where $b_n = \sqrt[n]{a_n}$.

(a) If $\{b_n\}$ converges to 1, does the sequence $\{a_n\}$ necessarily converge?

No. Example is $a_n = n$, $b_n = \sqrt[n]{n}$.

(b) If $\{b_n\}$ converges to 1, does the sequence $\{a_n\}$ necessarily diverge?

No. Example is $a_n = b_n = 1$.

(c) Does $\{b_n\}$ have to converge to 1?

- No. Example is $a_n = b_n = 0$.
- **2.2.11(c)** $\lim_{n \to \infty} \frac{1}{2^n} = 0$ by Theorem 2.1.13. **2.2.11(d)** $\lim_{n \to \infty} \frac{r^n}{n!} = 0.$

Proof. We will write $a_n = \frac{r^n}{n!}$. Choose $n_1 \in \mathbb{N}$ with $n_1 \ge |r|$. Let

$$M = |a_{n_1}| = \frac{|r|^{n_1}}{n_1!} = \frac{|r|}{1} \cdot \frac{|r|}{2} \cdots \frac{|r|}{n_1}.$$

We first claim that $|a_n| \leq M$ for all $n \geq n_1$. Proof by induction: The case $n = n_1$ is immediate by definition of M. Now if we already know the claim for some $n \geq n_1$, then

$$|a_{n+1}| = \frac{|r|^{n+1}}{(n+1)!} = \frac{|r|^n}{n!} \cdot \frac{|r|}{n+1} \le M \frac{|r|}{n+1} \le M.$$

(We used $n+1 \ge n_1 \ge |r|$ in the last inequality, and the induction hypothesis in the second-to-last inequality.) Now let $n > n_1$ be arbitrary. Then $n-1 \ge n^*$, so $\frac{|r|^{n-1}}{(n-1)!} \le M$, and thus

$$|a_n| = \frac{|r|^n}{n!} = \frac{|r|^{n-1}}{(n-1)!} \cdot \frac{|r|}{n} \le \frac{M|r|}{n}.$$

We know that $\lim_{n \to \infty} \frac{M|r|}{n} = 0$. The squeeze theorem then implies that $\{a_n\}$ converges to 0, too.

2.2.11(i) $\lim_{n \to \infty} \sqrt[n]{n + \sqrt{n}} = 1.$

Proof. This follows from the squeeze theorem, the estimate $1 \leq \sqrt[n]{n + \sqrt{n}} \leq \sqrt[n]{2n} = \sqrt[n]{2} \cdot \sqrt[n]{n}$, and $\lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} \sqrt[n]{n} = 1$.

2.2.13(a) Suppose that $\{a_n\}$ and $\{a_nb_n\}$ both converge, and $a_n \neq 0$ for large *n*. Is it true that $\{b_n\}$ must converge?

No. Example: $a_n = 1/n, b_n = n$.

2.2.13(b) Suppose that $\{a_n\}$ converges to a non-zero number and $\{a_nb_n\}$ converges. Prove that $\{b_n\}$ must also converge.

Proof. This follows immediately from the limit theorems. Let $A = \lim_{n \to \infty} a_n$ and $C = \lim_{n \to \infty} a_n b_n$. Then $b_n = \frac{a_n b_n}{a_n}$ is the quotient of two convergent sequences, where the denominator converges to a non-zero limit. From Theorem 2.2.1(c) we get that $\{b_n\}$ converges to C/A.

2.2.18(a) Is it possible to have an unbounded sequence $\{a_n\}$ such that $\lim_{n\to\infty} a_n/n = 0$?

Yes. Example $a_n = \sqrt{n}$.

2.2.18(b) Prove that if the sequence $\{a_n\}$ satisfies $\lim_{n \to \infty} a_n/n = L \neq 0$, then $\{a_n\}$ is unbounded.

Proof. Assume not. Then there exists M such that $|a_n| \leq M$ for all n, and thus $|a_n/n| \leq M/n$. We know $\lim_{n \to \infty} M/n = 0$, and the squeeze theorem implies $\lim_{n \to \infty} a_n/n = 0$, contradicting the assumption.

2.2.21 If $0 \le \alpha \le \beta$, then $\lim \sqrt[n]{\alpha^n + \beta^n} = \beta$.

Proof. This is again the squeeze theorem. We know $\beta^n \leq \alpha^n + \beta^n \leq 2\beta^n$, so $\beta \leq \sqrt[n]{\alpha^n + \beta^n} \leq \sqrt[n]{2} \cdot \beta$. In class we proved $\lim_{n \to \infty} \sqrt[n]{2} = 1$, so the sequence in the middle of the inequalities also has to converge to β .

2.3.1 Prove the Comparison Theorem: If $\{a_n\}$ diverges to $+\infty$, and $a_n \leq b_n$ for $n \geq n_1$, then $\{b_n\}$ also diverges to $+\infty$.

Proof. Let M > 0 be arbitrary. Then there exists n_2 such that $a_n > M$ for $n \ge n_2$. For $n \ge n^* = \max(n_1, n_2)$ we get $b_n \ge a_n > M$.

2.3.3(a) Prove that $a_n = (n^2 + 1)/(n - 2)$ diverges to $+\infty$.

Proof. For $n \geq 3$ we have $a_n \geq n^2/n = n$, and we already know that $\lim_{n \to \infty} n = +\infty$. By comparison theorem $\{a_n\}$ diverges to $+\infty$, too.

2.4.1 Give an example of a sequence that diverges to $+\infty$ but is not eventually increasing.

 $a_n = n + (-1)^n.$

2.4.2 Give an example of a converging sequence that does not attain a maximum value.

 $a_n = -1/n.$

2.4.11(a) Let the sequence $\{a_n\}$ be recursively defined by $a_1 = \sqrt{6}$ and $a_{n+1} = \sqrt{6 + a_n}$ for $n \in \mathbb{N}$. Find the limit if it exists.

First claim: The sequence is increasing. Proof by induction: $a_2 = \sqrt{6 + \sqrt{6}} \ge \sqrt{6} = a_1$. Assume that we know $a_{n+1} \ge a_n$. Then $a_{n+2} = \sqrt{6 + a_{n+1}} \ge \sqrt{6 + a_n} = a_{n+1}$.

Second claim: The sequence is bounded by 30. Proof by induction: $a_1 = \sqrt{6} \leq 30$. If we know $a_n \leq 30$, then $a_{n+1} = \sqrt{6 + a_n} \leq \sqrt{6 + 30} = 6 \leq 30$.

We know that monotone bounded sequences converge, so there exists some limit $A \in \mathbb{R}$. We can pass to the limit in the recursive equation to get $A = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{6 + a_n} = \sqrt{6 + A}$ by limit theorems. From the equation $A = \sqrt{6 + A}$ we see that $A \ge 0$, and that $A^2 = 6 + A$. The two solutions of this equation are -2 and 3, and since $A \ge 0$, we get A = 3.

2.4.11(g) Same question as previous problem for $a_1 = 1$ and $a_{n+1} = 1 + a_n/2$.

First claim: The sequence is increasing. Proof by induction: $a_2 = 1 + 1/2 \ge 1 = a_1$. Assuming that we know $a_{n+1} \ge a_n$, we get $a_{n+2} = 1 + a_{n+1}/2 \ge 1 + a_n/2 = a_{n+1}$.

Second claim: The sequence is bounded by 30. Proof by induction: $a_1 = 1 \le 30$. Assuming we know $a_n \le 30$, we get $a_{n+1} = 1 + a_n/2 \le 1 + 30/2 = 16 \le 30$.

Again we know that the sequence converges to some limit $A \in \mathbb{R}$ because it is monotone and bounded. Passing to the limit in the recursive equation we get $A = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} (1 + a_n/2) = 1 + A/2$ by limit theorems. The equation A = 1 + A/2 has only one solution A = 2, so the limit is 2.

2.5.1 Let s_0 be an accumulation point of S. Prove that the following two statements are equivalent.

(a) Any neighborhood of s_0 contains at least one point of S different from s_0 .

(b) Any neighborhood of s_0 contains infinitely many points of S.

The statement of this problem is unfortunately slightly screwed up. Kosmala assumes from the outset that s_0 is an accumulation point. Then (a) is always true, since it is the definition of accumulation points. So the direction "(b)

4

implies (a)" is trivial, since (a) is true. It would also make both of these statements equivalent to completely unrelated true statements such as "(c) The angle sum in a Euclidean triangle is π ."

We will show that (a) is equivalent to (b) for any $s_0 \in \mathbb{R}$, without any assumptions about s_0 being an accumulation point.

Proof. (b) \implies (a): Let $\epsilon > 0$ be arbitrary. Then $(s_0 - \epsilon, s_0 + \epsilon)$ contains infinitely many points of S, so it contains at least two different points $s_1, s_2 \in S$. If $s_1 \neq s_0$, we have found a point of S in the neighborhood different from s_0 . Otherwise we have $s_2 \neq s_1 = s_0$, so s_2 is the desired point.

(a) \implies (b): Assume not. Then there exists $\epsilon > 0$ such that the neighborhood $(s_0 - \epsilon, s_0 + \epsilon)$ contains only finitely many points of S. Denote this finite set of points by T, and let $D = \{|s - s_0| : s \in T, s \neq s_0\} \cup \{\epsilon\}$. The set D is finite (since T is finite) and non-empty ($\epsilon \in D$), and all the numbers in D are positive. So $\epsilon_1 = \min D > 0$ exists.

Claim: There are no points of S different from s_0 in the neighborhood $(s_0 - \epsilon_1, s_0 + \epsilon_1)$.

Assume not. Then there exists $s \in S \cap (s_0 - \epsilon_1, s_0 + \epsilon_1)$ with $s \neq s_0$. This implies $0 < |s - s_0| < \epsilon_1 \le \epsilon$, so $s \in T$. By definition $|s - s_0| \in D$, and thus $\epsilon_1 \le |s - s_0|$. However, this contradicts $|s - s_0| < \epsilon_1$.

This contradiction proves the claim, and the claim itself contradicts (a), finishing the proof of this direction. $\hfill \Box$

2.5.3 (a) Give an example of a sequence for which the set $S = \{a_n : n \in \mathbb{N}\}$ has exactly two accumulation points.

 $a_n = (-1)^n (1 - 1/n)$, accumulation points 1 and -1.

2.5.3 (b) Give an example of a set S that contains infinitely many points but not every point of S is an accumulation point of S.

2.5.3 (c) Give an example of a set S where both sup S and exactly one accumulation point exist, but the values are not equal.

2.5.3 (d) Give an example of a set S where $\inf S$ and $\sup S$ are $\inf S$, but the accumulation point (points) is (are) not.

Example for (b), (c), and (d): $S = \{(-1)^n/n : n \in \mathbb{N}\}$. This set contains infinitely many points, the only accumulation point 0 is not in S, and both $\sup S = 1/2$ and $\inf S = -1$ are in S.