Homework Key, Advanced Calculus, Fall 2008

3.1.2 (a) 33151010 flx)=2.

Proof. Let € > 0. Then for x € D with x > 3+ 6/¢ we have t —3 > 6/¢ > 0
and thus

f(x) = 2| =

—| = < — =
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3.1.2 (b) lim =2 = 0.

Proof. Let K > 0. Forx>2wehavea:2—1>§andx—2>m>0,so

% > z2x/2 =x/2. So for z > max(2,2K) we get
1—a2? T
<—=< -K.
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3.1.2 (c) zgglwf(x) = —00.

Proof. Let K > 0. For z < —2we have 22+1 > 22 > 0and 0 < 2—z < —2u,

S0 z;_‘;l > _x—;x = —x/2. So for z € Q with x < —max(2,2K) we get
2
“+1 =z
< =< —-K.
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3.1.2 (d) lim —L =0.
Tr——00

Proof. Let € > 0. Then for z < —1 — 1/e we have x +1 < —1/e < 0 and

thus |z 4+ 1| > 1/e > 0. This implies |f(z) — 0| = z_—+11 = \mlTu <€ O
3.1.5 (c) lim w—% = —2/3.
Proof.

—2n -2
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and we know lim 1/n? = 0. Applying limit theorems yields the result. [

n—oo
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3.1.5 (g) lim /z = 0.
r—00

Proof. Let K > 0. Then for x > K? we have \/z > K. O

3.1.5 () lim 2= =-1.

Proof. For x < 3 we have |z — 3| = —(z — 3), so \£:§| — 1. In particular,
ﬁ—(—l) =0 < € for any € > 0. 0

3.1.6 (a) E.g., the function

is unbounded on R, yet lim f(x) = 0 is finite.
r—00

3.1.6 (b) If lim f(z) = L € R, then for every ¢ > 0 there exists M > 0

such that |f(z) — L| < e whenever x € D with x > M. Now if ¢ is a number
with —t € D and t < —M, then —t > M, and thus |f(—t) — L| < e. This
shows that tliI_Il f(—t) = L.

The other direction works exactly the same way, and the cases where L =

400 are simple modifications.

3.1.6 (c) lim 2%¢ " = lim 27%¢” = lim (¢/2)” = oo since /2 > 1.
rT——00

r—00 Tr—00

3.2.1 (a) lim(z + 1)3 =1.

Proof. Let € > 0. Then for |x| < § := min(1,¢/7) we get |2? + 3z + 3| <
|z|? +3|z| +3 < 1+3+3 =7, because |z| < 1. This implies |(z +1)3 — 1| =
|23 + 322 + 3x| = |z||2? + 3z + 3| < T|z| < ¢, since |z| < €/7. O
2

3.2.1 (d) lim &

0.
0 ||

Proof. Let € > 0. Then for 0 < |z| < § := € we get “%—O‘ =lz| <0 =

€. O




3.2.1 (f) lim 11_75 =2.

Proof. Let € > 0, and choose 6 = €. Let x > 0 with |z — 1| < 4. We have

11—z ol — l—2z—-242yx| |-1+2yz—x

SR i v R
—(1 - xz)? (Vr-1)(Vz+1)
e s R R
-1
_\/5+1§’£L'—1‘<€.

3.2.8 (a) xlir?gg f(z) =1.

Proof. Let € > 0, and choose 6 = 1/24. If z € R with |z — 3/8| < 1/24,
then 1/3 = 3/8—-1/24 <z < 3/8+1/24 < 1/2,502 < 1/z < 3. In
particular, x can not be the reciprocal of an integer, and thus f(z) = 1, and
|f(z) =1 =0<e. O

3.2.8 (b) x_l}izri/z%f(x) =1.

Proof. Let € > 0, and choose § = 1/12. If z € R with 0 < | — (—=1/3)| <
1/12, then —1/2 < —-1/3—-1/12 <2z < —-1/3+1/12=—1/4,s0 -4 < 1/x <
—2. In particular, the only way that x can be the reciprocal of an integer is
x = —1/3. However, this contradicts 0 < |z — (—1/3)|, and thus f(z) =1,
and |f(x) — 1| =0<e. O

3.2.8 (c) liH(l) f(x) does not exist.
T—

Proof. Let x, = 1/n. Then lim z, = 0 and lim f(z,) = 0. Let y, =
n—oo n—oo
\/5/ n. Then y, is irrational for all n, and hence not the reciprocal of an
integer. This implies f(y,) = 1, and thus lim y, = 0 and lim f(y,) = 1.
n—oo n—oo

Since the limits of {f(x,)} and {f(y,)} are different, the limit of f(z) as x
tends to 0 does not exist. (]

Squeeze Theorem If f,g,h: D — R are functions with lim f(z) = A =
lim h(x), and f(z) < g(x) < h(zx) eventually, then lim g(x) = A.



