
Homework Key, Advanced Calculus, Fall 2008

3.1.2 (a) lim
x→∞

f(x) = 2.

Proof. Let ε > 0. Then for x ∈ D with x > 3 + 6/ε we have x− 3 > 6/ε > 0
and thus

|f(x)− 2| =
∣∣∣∣ 2x

x− 3
− 2

∣∣∣∣ =
∣∣∣∣ 6
x− 3

∣∣∣∣ =
6

x− 3
<

6
6/ε

= ε.

�

3.1.2 (b) lim
x→∞

1−x2

x−2 = −∞.

Proof. Let K > 0. For x > 2 we have x2 − 1 > x2

2 and x − 2 > x > 0, so
x2−1
x−2 > x2/2

x = x/2. So for x > max(2, 2K) we get

1− x2

x− 2
< −x

2
< −K.

�

3.1.2 (c) lim
x→−∞

f(x) = −∞.

Proof. Let K > 0. For x < −2 we have x2+1 > x2 > 0 and 0 < 2−x < −2x,
so x2+1

2−x > x2

−2x = −x/2. So for x ∈ Q with x < −max(2, 2K) we get

x2 + 1
x− 2

<
x

2
< −K.

�

3.1.2 (d) lim
x→−∞

−1
x+1 = 0.

Proof. Let ε > 0. Then for x < −1 − 1/ε we have x + 1 < −1/ε < 0 and
thus |x + 1| > 1/ε > 0. This implies |f(x)− 0| =

∣∣∣ −1
x+1

∣∣∣ = 1
|x+1| < ε. �

3.1.5 (c) lim
n→∞

−2n
3
√

n2−1
= −2/3.

Proof.
−2n

3
√

n2 − 1
=

−2
3
√

1− 1/n2
,

and we know lim
n→∞

1/n2 = 0. Applying limit theorems yields the result. �
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3.1.5 (g) lim
x→∞

√
x = ∞.

Proof. Let K > 0. Then for x > K2 we have
√

x > K. �

3.1.5 (i) lim
x→−∞

x−3
|x−3| = −1.

Proof. For x < 3 we have |x− 3| = −(x− 3), so x−3
|x−3| = −1. In particular,∣∣∣ x−3

|x−3| − (−1)
∣∣∣ = 0 < ε for any ε > 0. �

3.1.6 (a) E.g., the function

f(x) =

{
1
x for x 6= 0,
0 for x = 0,

is unbounded on R, yet lim
x→∞

f(x) = 0 is finite.

3.1.6 (b) If lim
x→∞

f(x) = L ∈ R, then for every ε > 0 there exists M > 0

such that |f(x)−L| < ε whenever x ∈ D with x ≥ M . Now if t is a number
with −t ∈ D and t ≤ −M , then −t ≥ M , and thus |f(−t) − L| < ε. This
shows that lim

t→−∞
f(−t) = L.

The other direction works exactly the same way, and the cases where L =
±∞ are simple modifications.

3.1.6 (c) lim
x→−∞

2xe−x = lim
x→∞

2−xex = lim
x→∞

(e/2)x = ∞ since e/2 > 1.

3.2.1 (a) lim
x→0

(x + 1)3 = 1.

Proof. Let ε > 0. Then for |x| < δ := min(1, ε/7) we get |x2 + 3x + 3| ≤
|x|2 +3|x|+3 < 1+3+3 = 7, because |x| < 1. This implies |(x+1)3− 1| =
|x3 + 3x2 + 3x| = |x||x2 + 3x + 3| ≤ 7|x| < ε, since |x| < ε/7. �

3.2.1 (d) lim
x→0

x2

|x| = 0.

Proof. Let ε > 0. Then for 0 < |x| < δ := ε we get
∣∣∣ x2

|x| − 0
∣∣∣ = |x| < δ =

ε. �
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3.2.1 (f) lim
x→1

1−x
1−
√

x
= 2.

Proof. Let ε > 0, and choose δ = ε. Let x ≥ 0 with |x− 1| < δ. We have∣∣∣∣ 1− x

1−
√

x
− 2

∣∣∣∣ =
∣∣∣∣1− x− 2 + 2

√
x

1−
√

x

∣∣∣∣ =
∣∣∣∣−1 + 2

√
x− x

1−
√

x

∣∣∣∣
=

∣∣∣∣−(1−
√

x)2

1−
√

x

∣∣∣∣ = | − 1 +
√

x| =
∣∣∣∣(√x− 1)(

√
x + 1)√

x + 1

∣∣∣∣
=
|x− 1|√

x + 1
≤ |x− 1| < ε.

�

3.2.8 (a) lim
x→3/8

f(x) = 1.

Proof. Let ε > 0, and choose δ = 1/24. If x ∈ R with |x − 3/8| < 1/24,
then 1/3 = 3/8 − 1/24 < x < 3/8 + 1/24 < 1/2, so 2 < 1/x < 3. In
particular, x can not be the reciprocal of an integer, and thus f(x) = 1, and
|f(x)− 1| = 0 < ε. �

3.2.8 (b) lim
x→−1/3

f(x) = 1.

Proof. Let ε > 0, and choose δ = 1/12. If x ∈ R with 0 < |x − (−1/3)| <
1/12, then −1/2 < −1/3−1/12 < x < −1/3+1/12 = −1/4, so −4 < 1/x <
−2. In particular, the only way that x can be the reciprocal of an integer is
x = −1/3. However, this contradicts 0 < |x − (−1/3)|, and thus f(x) = 1,
and |f(x)− 1| = 0 < ε. �

3.2.8 (c) lim
x→0

f(x) does not exist.

Proof. Let xn = 1/n. Then lim
n→∞

xn = 0 and lim
n→∞

f(xn) = 0. Let yn =
√

2/n. Then yn is irrational for all n, and hence not the reciprocal of an
integer. This implies f(yn) = 1, and thus lim

n→∞
yn = 0 and lim

n→∞
f(yn) = 1.

Since the limits of {f(xn)} and {f(yn)} are different, the limit of f(x) as x
tends to 0 does not exist. �

Squeeze Theorem If f, g, h : D → R are functions with lim
x→∞

f(x) = A =

lim
x→∞

h(x), and f(x) ≤ g(x) ≤ h(x) eventually, then lim
x→∞

g(x) = A.


