Final Preparation Key, Advanced Calculus, Fall 2008

1. True or false?

(a) If g o f is one-to-one, then f is one-to-one.

True. If f(x) = f(y), then g(f(z)) = g(f(y)), and by assumption this implies
r=y.

(b) If g o f is one-to-one, then g is one-to-one.

False. Counterexample: ¢g : R — R, g(z) = 2? is not one-to-one, but with

f:(0,400) — R, f(x) = x, the composition go f : (0,+0c) — R, (go f)(z) = 2?
is one-to-one.
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(c) If (a,) is a bounded sequence, then b, = converges.

False. Counterexamples for this are slightly tricky to write down, one possibility
is the following. Let (a,) be a sequence of numbers 41 constructed inductively as
follows: Let a; = —1. Now assume that aq,...,a, have already been determined.
Define a, 11 = ... = as, = 1, and a9y = ... = as, = —1. Then by, > 0 and
bs, < —1/5. Since |by, —bs,| > 1/5, this shows that (b,) is not a Cauchy sequence,
hence divergent.

(d) If b, = B+=Fan converges, then (a,) is bounded.
False. One possible counterexample is the unbounded sequence ag,_q = Vk,

Qop, = —+v/k. Then bar = 0, and bgp_1 =
This shows that lim,,_,. b,, = 0.

T\/_Elv S0 hmk—>oo b2k = hmkﬂoo b2k—1 = 0.
(e) Every continuous function f : [0, +00) — R is bounded.

False. Counterexample f(x) = x.

(f) Every continuous function f : [0, +00) — R with lim, . f(z) = 0 is bounded.

True. The assumption implies that f is eventually bounded, i.e., there exists M
and K such that |f(z)| < K for x > M. Continuous functions on closed bounded
intervals are bounded, so there exists K such that |f(z)] < K, for z € [0, M].
Then |f(z)| < K = max(K;, K») for z € [0, +00).

2. Find the limit of these sequences or show that it does not exist.
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(c) limy, o 57— does not exist, there are two subsequences converging to 1 and
-1, respectively. (The sequence with the typo on the sheet I handed out converges
to -1.)

(d) d; =0, and d,,,; = d2 +1/4 for n > 1.
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lim, ... d, = 1/2. The sequence satisfies 0 < d, < 1/2 for all n, and it is
increasing. As a monotone and bounded sequence it converges to a limit D €
0,1/2] satisfying D = D? + 1/4. The only solution is D = 1/2.

(e) e1 =1, and e, = €2 + 1/4 for n > 1.

lim,,_., €, = +00. This sequence satisfies e¢,, > 1 for all n, and it is increasing. A
limit £ would have to satisfy £ = E? + 1 /4 and E > 1. Since there is no such
real number, the sequence diverges to +oo.

3. Find the limits or show that they do not exist.

(a) lim, oo 525 =0

(b) lim,_,; ;3%’;22 does not exist. The limit from the left and from the right are

—o0 and oo, respectively.
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(c) lim,— —00.

4. Where are the following functions continuous?
(a) f(z) = [z] is continuous in R\ Z.
(b) g(x) =z for x € Q, and g(x) = 1/z for x ¢ Q, is continuous in +1.

5. (a) Show that the equation r* + x = 0 has exactly one real solutionz for every
r > 0.

First of all, the function f,.(z) = r*+ux is strictly increasing, so there can be at most
one solution. In order to show existence, we observe that lim, ., f.(z) = +o0c and
lim, ., fr(z) = —00. So there exist a,b € R with f,.(a) < 0 and f,.(b) > 0. The
intermediate value theorem shows that there exists x(r) between a and b with

£ (x(r)) = 0.
(b)* Denoting this solution by z(r), show that this is a continuous function of r.

This is a little harder. Assume that z(r) is not continuous at some point ry > 0.
Then there exists € > 0 and a sequence (r,,) of positive numbers converging to r
with |x(r,) — x(ro)| > € for all n. This implies that z(r,) > x(r¢) + € for infinitely
many n, or that x(r,) < x(rg) — € for infinitely many n. Let us first assume that
the first case applies, and let 2, = x(rg) + e. This implies 0 = re™ + z(r,) >
r¥e 4+ x. for infinitely many n. Passing to the limit along this subsequence we get
0> ry<+x. > ry°+zo = 0, a contradiction. The other case leads to a contradiction
in the same way.



