
Final Preparation Key, Advanced Calculus, Fall 2008

1. True or false?

(a) If g ◦ f is one-to-one, then f is one-to-one.

True. If f(x) = f(y), then g(f(x)) = g(f(y)), and by assumption this implies
x = y.

(b) If g ◦ f is one-to-one, then g is one-to-one.

False. Counterexample: g : R → R, g(x) = x2 is not one-to-one, but with
f : (0, +∞) → R, f(x) = x, the composition g ◦ f : (0, +∞) → R, (g ◦ f)(x) = x2

is one-to-one.

(c) If (an) is a bounded sequence, then bn = a1+...+an

n
converges.

False. Counterexamples for this are slightly tricky to write down, one possibility
is the following. Let (an) be a sequence of numbers ±1 constructed inductively as
follows: Let a1 = −1. Now assume that a1, . . . , an have already been determined.
Define an+1 = . . . = a2n = 1, and a2n+1 = . . . = a5n = −1. Then b2n ≥ 0 and
b5n ≤ −1/5. Since |b2n−b5n| ≥ 1/5, this shows that (bn) is not a Cauchy sequence,
hence divergent.

(d) If bn = a1+...+an

n
converges, then (an) is bounded.

False. One possible counterexample is the unbounded sequence a2k−1 =
√

k,

a2k = −
√

k. Then b2k = 0, and b2k−1 =
√

k
2k−1

, so limk→∞ b2k = limk→∞ b2k−1 = 0.
This shows that limn→∞ bn = 0.

(e) Every continuous function f : [0, +∞) → R is bounded.

False. Counterexample f(x) = x.

(f) Every continuous function f : [0, +∞) → R with limx→∞ f(x) = 0 is bounded.

True. The assumption implies that f is eventually bounded, i.e., there exists M
and K1 such that |f(x)| ≤ K1 for x ≥ M . Continuous functions on closed bounded
intervals are bounded, so there exists K2 such that |f(x)| ≤ K2 for x ∈ [0, M ].
Then |f(x)| ≤ K = max(K1, K2) for x ∈ [0, +∞).

2. Find the limit of these sequences or show that it does not exist.

(a) limn→∞
n√
n+1

= ∞

(b) limn→∞
3n−(−2)n

3n+(−2)n = 1.

(c) limn→∞
2n+(−3)n

2n−3n does not exist, there are two subsequences converging to 1 and
-1, respectively. (The sequence with the typo on the sheet I handed out converges
to -1.)

(d) d1 = 0, and dn+1 = d2
n + 1/4 for n ≥ 1.
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limn→∞ dn = 1/2. The sequence satisfies 0 ≤ dn ≤ 1/2 for all n, and it is
increasing. As a monotone and bounded sequence it converges to a limit D ∈
[0, 1/2] satisfying D = D2 + 1/4. The only solution is D = 1/2.

(e) e1 = 1, and en+1 = e2
n + 1/4 for n ≥ 1.

limn→∞ en = +∞. This sequence satisfies en ≥ 1 for all n, and it is increasing. A
limit E would have to satisfy E = E2 + 1/4 and E ≥ 1. Since there is no such
real number, the sequence diverges to +∞.

3. Find the limits or show that they do not exist.

(a) limx→∞
1+x2

x3−x2 = 0

(b) limx→1
1+x2

x3−x2 does not exist. The limit from the left and from the right are
−∞ and ∞, respectively.

(c) limx→0
1+x2

x3−x2 = −∞.

4. Where are the following functions continuous?

(a) f(x) = [x] is continuous in R \ Z.

(b) g(x) = x for x ∈ Q, and g(x) = 1/x for x /∈ Q, is continuous in ±1.

5. (a) Show that the equation rx + x = 0 has exactly one real solutionx for every
r > 0.

First of all, the function fr(x) = rx+x is strictly increasing, so there can be at most
one solution. In order to show existence, we observe that limx→∞ fr(x) = +∞ and
limx→−∞ fr(x) = −∞. So there exist a, b ∈ R with fr(a) < 0 and fr(b) > 0. The
intermediate value theorem shows that there exists x(r) between a and b with
fr(x(r)) = 0.

(b)∗ Denoting this solution by x(r), show that this is a continuous function of r.

This is a little harder. Assume that x(r) is not continuous at some point r0 > 0.
Then there exists ε > 0 and a sequence (rn) of positive numbers converging to r0

with |x(rn)− x(r0)| ≥ ε for all n. This implies that x(rn) ≥ x(r0) + ε for infinitely
many n, or that x(rn) ≤ x(r0)− ε for infinitely many n. Let us first assume that

the first case applies, and let xε = x(r0) + ε. This implies 0 = r
x(rn)
n + x(rn) ≥

rxε
n + xε for infinitely many n. Passing to the limit along this subsequence we get

0 ≥ rxε
0 +xε > rx0

0 +x0 = 0, a contradiction. The other case leads to a contradiction
in the same way.


