Final Preparation Problems, Advanced Calculus, Fall 2008

1. True or false?

- (a) If $g \circ f$ is one-to-one, then f is one-to-one.
- (b) If $g \circ f$ is one-to-one, then g is one-to-one.
- (c) If (a_n) is a bounded sequence, then $b_n = \frac{a_1 + \dots + a_n}{n}$ converges.
- (d) If $b_n = \frac{a_1 + \dots + a_n}{n}$ converges, then (a_n) is bounded.
- (e) Every continuous function $f: [0, +\infty) \to \mathbb{R}$ is bounded.

(f) Every continuous function $f: [0, +\infty) \to \mathbb{R}$ with $\lim_{x\to\infty} f(x) = 0$ is bounded.

2. Find the limit of these sequences or show that it does not exist.

(a)
$$a_n = \frac{n}{\sqrt{n+1}}$$

(b) $b_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$
(c) $c_n = \frac{2^n + (-3)^n}{2^n - 3^n}$
(d) $d_1 = 0$, and $d_{n+1} = d_n^2 + 1/4$ for $n \ge 1$.
(e) $e_1 = 1$, and $e_{n+1} = e_n^2 + 1/4$ for $n \ge 1$.
3. Find the limits or show that they do not exist.

(a)
$$\lim_{x \to \infty} \frac{1+x^2}{x^3-x^2}$$

(b) $\lim_{x \to 1} \frac{1+x^2}{x^3-x^2}$

(c) $\lim_{x\to 0} \frac{1+x^2}{x^3-x^2}$

4. Where are the following functions continuous?

- (a) f(x) = [x]
- (b) g(x) = x for $x \in \mathbb{Q}$, and g(x) = 1/x for $x \notin \mathbb{Q}$.

5. (a) Show that the equation $r^{x} + x = 0$ has exactly one real solution x for every r > 0.

(b)* Denoting this solution by x(r), show that this is a continuous function of r.