
First Test, Advanced Calculus, Fall 2008

1. State the definitions of injectivity (one-to-one), surjectivity (onto), and
bijectivity. (Be as rigorous as possible.)

A function f : A → B is injective if f(x1) = f(x2) implies x1 = x2 for all
x1, x2 ∈ A.

A function f : A → B is surjective if f(A) = B.

A function is bijective if it is both surjective and injective.

2. Which of the following statements are true for arbitrary functions f :
X → Y and sets A,B ⊆ X? Give a proof or counterexample.

(a) A ⊆ B =⇒ f(A) ⊆ f(B).

True. If y ∈ f(A), then there exists x ∈ A with f(x) = y. By assumption
x ∈ B, so y ∈ f(B).

(b) f(A) ⊆ f(B) =⇒ A ⊆ B.

False. Counterexample: f : R → R, f(x) = x2, A = {1}, B = {−1}. Then
f(A) = f(B) = {1}, but A 6⊆ B.

(c) A and B are disjoint if and only if f−1(A) and f−1(B) are disjoint.

False. Counterexample: f : R → R, f(x) = x2, A = B = {−1}. Then
f−1(A) = f−1(B) = ∅ are disjoint (the empty set is disjoint from any other
set), but A and B are not.
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If x = −1, this is undefined. Otherwise −2|x + 1| < 0, so multiplying with
it gives the equivalent inequalities

3|x + 1| > 2|x− 1| > |x + 1|.

Now we consider the cases x < −1, −1 < x < 1, and x ≥ 1 separately.

If x ≥ 1, the inequalities are

3(x + 1) > 2(x− 1) > x + 1.
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The left inequality is equivalent to x > −5, the right inequality to x > 3.
Both of these have to be satisfied, as well as x ≥ 1, so we get x ∈ (3,∞) in
this case.

If −1 < x < 1, we get

3(x + 1) > −2(x− 1) > x + 1.

Here the left inequality is satisfied for x > −1
5 , the right inequality for x < 1

3 ,
so we get x ∈

(
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in this case.

If x < −1, we get

−3(x + 1) > −2(x− 1) > −(x + 1).

These are the same inequalities as in the case x ≥ 1, except that the signs
are reversed. So instead of x > −5 and x > 3 we get x < −5 and x < 3.
Both of these have to be satisfied, as well as x < −1, so the solution set in
this case is x ∈ (−∞,−5).

Combining all three cases, the inequality is satisfied for x ∈ (−∞,−5) ∪(
−1
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)
∪ (3,∞).

4. Prove by induction that
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Proof. For n = 1 the statement is 1 ≤ 1, so it is true. We now need to show
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We start with the left side and use the assumption.
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5. (a) Let f : A → R and g : A → R be bounded functions with f(x) ≥ 0
and g(x) ≥ 0 for all x ∈ A. Show that

sup
x∈A

(fg)(x) ≤ sup
x∈A

f(x) · sup
x∈A

g(x).

Proof. The supremum is an upper bound, so

0 ≤ f(x) ≤ sup
y∈A

f(y)

and
0 ≤ g(x) ≤ sup

y∈A
g(y)

for all x ∈ A. Multiplying both inequalities (this is allowed because all
numbers are non-negative) we get

0 ≤ f(x)g(x) ≤ sup
y∈A

f(y) · sup
y∈A

g(y)

for all x ∈ A. This shows that the right side of this inequality is an upper
bound for fg on A. Since the supremum is the least upper bound, we get

sup
x∈A

(fg)(x) ≤ sup
y∈A

f(y) · sup
y∈A

g(y).

(At this point we could rename the variables from y to x, but this is not
necessary. Don’t get too attached to variable names.) �

(b) Show that the assumption that f and g be non-negative is essential,
i.e., give an example where the inequality fails for bounded f : A → R,
g : A → R.

One example is given by A = [−1, 0] and f(x) = g(x) = x for all x ∈ [0, 1].
Then supx∈A f(x) = supx∈A g(x) = 0, but supx∈A(fg)(x) = sup−1≤x≤0 x2 =
1 6≤ 0 · 0.


