First Test, Advanced Calculus, Fall 2008

1. State the definitions of injectivity (one-to-one), surjectivity (onto), and
bijectivity. (Be as rigorous as possible.)

A function f: A — B is injective if f(x1) = f(x2) implies 1 = x5 for all
xr1,T9 € A.

A function f: A — B is surjective if f(A) = B.
A function is bijective if it is both surjective and injective.

2. Which of the following statements are true for arbitrary functions f :
X — Y and sets A, B C X? Give a proof or counterexample.

(a) AC B = f(A) C f(B).

True. If y € f(A), then there exists x € A with f(z) = y. By assumption
x € B,soy e f(B).

(b) f(A) € f(B) = ACB.

False. Counterexample: f: R — R, f(z) = 2%, A = {1}, B = {—1}. Then
f(A) = f(B) = {1}, but AZ B.

(c) A and B are disjoint if and only if f~1(A) and f~!(B) are disjoint.
False. Counterexample: f : R — R, f(z) = 22, A = B = {—1}. Then
fH(A) = f~1(B) = 0 are disjoint (the empty set is disjoint from any other
set), but A and B are not.

3. Find all = € R that satisfy
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If x = —1, this is undefined. Otherwise —2|x + 1| < 0, so multiplying with
it gives the equivalent inequalities

lz+1] > 2z —1| > |z +1].
Now we consider the cases x < —1, —1 <z < 1, and x > 1 separately.
If x > 1, the inequalities are

z+1)>2(x—1)>x+1
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The left inequality is equivalent to x > —5, the right inequality to z > 3.
Both of these have to be satisfied, as well as z > 1, so we get = € (3,00) in
this case.

If -1 <z <1, we get
3x4+1)>-2(x—-1)>x+1.
Here the left inequality is satisfied for x > —%, the right inequality for x < %,
SO we get x € (—%, %) in this case.
If z < —1, we get
=3x+1)>-2@z—-1)>—(z+1).

These are the same inequalities as in the case z > 1, except that the signs
are reversed. So instead of x > —5 and x > 3 we get x < —5 and = < 3.
Both of these have to be satisfied, as well as x < —1, so the solution set in
this case is x € (—o0, —5).

Combining all three cases, the inequality is satisfied for z € (—o0,—5) U
(—%, %) U (3, 00).
4. Prove by induction that

for all n € N.

Proof. For n = 1 the statement is 1 < 1, so it is true. We now need to show
n+1
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We start with the left side and use the assumption.
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5. (a) Let f: A— Rand g : A — R be bounded functions with f(x) > 0
and g(z) > 0 for all z € A. Show that

sup(fg)(x) < sup f(z) - sup g(z).
€A z€A z€A

Proof. The supremum is an upper bound, so
0 < f(z) <sup f(y)
yeA

and

0 < g(x) <supg(y)
yeA

for all z € A. Multiplying both inequalities (this is allowed because all
numbers are non-negative) we get
0 < f(x)g(z) < sup f(y) - supg(y)
yeA ycA
for all x € A. This shows that the right side of this inequality is an upper
bound for fg on A. Since the supremum is the least upper bound, we get

sup(fg)(z) < sup f(y) - sup g(y).
€A yeA yeA

(At this point we could rename the variables from y to x, but this is not
necessary. Don’t get too attached to variable names.) (I

(b) Show that the assumption that f and g be non-negative is essential,
i.e., give an example where the inequality fails for bounded f : A — R,
g:A—R.

One example is given by A = [—1,0] and f(z) = g(z) = « for all z € [0, 1].

(
Then sup,c 4 f(2) = sup,e 4 g(x) = 0, but sup,c4(fg)(x) =sup_;<,<o2® =
1£0-0.



