First Practice Test, Advanced Calculus, Fall 2009

1. State the definitions of injectivity (one-to-one), surjectivity (onto), and bijectivity. (Be as rigorous as possible.)

2. Which of the following statements are true for arbitrary functions $f : X \to Y$ and sets $A, B \subseteq X$? Give a proof or counterexample.

- (a) $A \subseteq B \implies f(A) \subseteq f(B)$.
- (b) $f(A) \subseteq f(B) \implies A \subseteq B$.
- (c) A and B are disjoint if and only if $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint.
- **3.** Find all $x \in \mathbb{R}$ that satisfy

$$\left|1 - \left|\frac{x-1}{x+1}\right|\right| < \frac{1}{2}.$$

4. Prove by induction that $2^n < n!$ for all natural numbers $n \ge 4$.

5. (a) Let $f : A \to \mathbb{R}$ and $g : A \to \mathbb{R}$ be bounded functions with $f(x) \ge 0$ and $g(x) \ge 0$ for all $x \in A$. Show that

$$\sup_{x \in A} (fg)(x) \le \sup_{x \in A} f(x) \cdot \sup_{x \in A} g(x).$$

(b) Show that the assumption that f and g be non-negative is essential, i.e., give an example where the inequality fails for bounded $f : A \to \mathbb{R}$, $g: A \to \mathbb{R}$.