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Fundamental Theorem for Conservative Vector Fields

Theorem

Assume that F = ∇V .

If C is a path from P to Q, then∫
C
F · ds = V (Q)− V (P)

If C is a closed path, then ∮
C
F · ds = 0.

Remarks

If
∫
C F · ds depends only on the endpoints of C, F is path-independent.

A path C is closed, if the initial point and the endpoint of C are the
same.

Lukas Geyer (MSU) 16.3 Conservative Vector Fields M273, Fall 2011 2 / 23



Using the Fundamental Theorem

Example

Verify that V (x , y , z) = xz + 2y is a potential for F(x , y , z) = 〈z , 2, x〉 and
evaluate

∫
C F · ds, where C is given by c(t) = 〈cos t, t, sin t〉, 0 ≤ t ≤ π/2.

Verify that V is a potential

∇V (x , y , z) = 〈Vx ,Vy ,Vz〉 = 〈z , 2, x〉 = F(x , y , z)

Evaluate the integral

Initial point c(0) = 〈1, 0, 0〉
Endpoint c(π/2) = 〈0, π/2, 1〉
Use the Fundamental Theorem∫

C
F · ds = V (0, π/2, 1)− V (1, 0, 0) = π − 0 = π
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Conservation of Energy

Physics conventions

V is a potential of F if F = −∇V .

A particle located at P has potential energy PE = V (P).

A particle of mass m moving at speed v has kinetic energy
KE = 1

2mv2.

A particle of mass m moving along a path c(t) has total energy

E = KE + PE =
1

2
m‖c′(t)‖2 + V (c(t)).

Theorem

The total energy of a particle moving under the influence of a conservative
force field is constant in time, i.e., dE

dt = 0.
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Conservation of Energy Proof

Theorem

The total energy of a particle moving under the influence of a conservative
force field is constant in time, i.e., dE

dt = 0.

Proof

dE

dt
=

d

dt

[
1

2
m‖c′(t)‖2 + V (c(t))

]
=

1

2
m(2c′(t) · c′′(t)) +∇V (c(t)) · c′(t)

= mc′(t) · c′′(t)− F(c(t)) · c′(t)

= [mc′′(t)− F(c(t))] · c′(t) = 0 · c′(t) = 0,

using Newton’s Law F = ma = mc′′ in the last line.
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Conservation of Energy Application I

Gravitational Potential

The gravitational field

F(x) = −GMm

‖x‖3
x

has potential (in the physical sense)

V (x) = −GMm

‖x‖
= − GMm√

x2 + y2 + z2
= −GMm(x2 + y2 + z2)−1/2

Check

Vx = −GMm

(
−1

2
(x2 + y2 + z2)−3/2

)
2x =

GMm

‖x‖3
x

Vy =
GMm

‖x‖3
y , Vz =

GMm

‖x‖3
z , ∇V =

GMm

‖x‖3
x = −F
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Conservation of Energy Application II

Gravitational Field and Potential

F(x) = −GMm

‖x‖3
x, V (x) = −GMm

‖x‖

Example

A particle of mass m at distance r0 from a
fixed object of mass M at the origin moves
straight away from the origin, with initial
speed v0.

(a) How far away from the origin will it get?

(b) What is the escape velocity, i.e., how
large does v0 have to be to get away
infinitely far?
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Conservation of Energy Application III

Gravitational Field and Potential

F(x) = −GMm

‖x‖3
x, V (x) = −GMm

‖x‖

Example

A particle of mass m at distance r0 from a fixed object of mass M at the
origin moves straight away from the origin, with initial speed v0.

(a) How far away from the origin will it get?

Total Energy

E = KE + PE =
1

2
mv2

0 −
GMm

r0
=

1

2
mv(t)2 − GMm

r(t)
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Conservation of Energy Application IV

Example

A particle of mass m at distance r0 from a fixed object of mass M at the
origin moves straight away from the origin, with initial speed v0.

(a) How far away from the origin will it get?

Total Energy

E =
1

2
mv2

0 −
GMm

r0
=

1

2
mv(t)2 − GMm

r(t)

At the turnaround time v(t1) = 0, so

1

2
mv2

0 −
GMm

r0
= −GMm

r(t1)
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Conservation of Energy Application V

Example

A particle of mass m at distance r0 from a fixed object of mass M at the
origin moves straight away from the origin, with initial speed v0.

(a) How far away from the origin will it get?

Total Energy

1

2
mv2

0 −
GMm

r0
= −GMm

r(t1)

=⇒ r(t1) =
GM

GM
r0
− 1

2v2
0

=
1

1
r0
− v2

0
2GM
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Conservation of Energy Application VI

Example

A particle of mass m at distance r0 from a fixed object of mass M at the
origin moves straight away from the origin, with initial speed v0.

(a) How far away from the origin will it get?

(b) What is the escape velocity, i.e., how large does v0 have to be to get
away infinitely far?

Answer (a)

r(t1) =
1

1
r0
− v2

0
2GM

What does a negative or zero denominator mean physically? It means that
there is no turnaround, so the particle gets infinitely far away. Escape
velocity is the borderline case, i.e., denominator zero.
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Conservation of Energy Application VII

Example

A particle of mass m at distance r0 from a fixed object of mass M at the
origin moves straight away from the origin, with initial speed v0.

(b) What is the escape velocity, i.e., how large does v0 have to be to get
away infinitely far?

Answer (b)

1

r0
=

v2
0

2GM
⇔ v0 =

√
2GM

r0

Escape velocity from Earth

v0 =

√
2× 6.673× 10−11m3kg−1s−2 × 5.9742× 1024kg

6.371× 106m
= 11.19km/s
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Potentials and Path Independence

Theorem

A vector field F is path-independent if and only if it is conservative.

“Proof”

If F is conservative, then F is independent of path by the Fundamental
Theorem for Conservative Vector Fields.
If F is independent of path, choose an arbitrary base point P0, and define

V (P) =

∫
C
F · ds,

where C is any path from P0 to P. Then ∇V = F.
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Potentials and the Cross-Partial Condition I

Example

The Vortex Field

F(x , y) =

〈
−y

x2 + y2
,

x

x2 + y2

〉

Sketch of the vortex vector
field with the unit circle C.
If C is parametrized
counterclockwise, then∮

C
F · ds = 2π.

So F is not conservative.
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Potentials and the Cross-Partial Condition II

Example

The Vortex Field

F(x , y) =

〈
−y

x2 + y2
,

x

x2 + y2

〉

Cross-Partial Condition

∂F1

∂y
=

(−1)(x2 + y2)− (−y)(2y)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2

∂F2

∂x
=

1(x2 + y2)− x(2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2

=⇒ ∂F1

∂y
=
∂F2

∂x

The cross-partial condition is satisfied, but F is not conservative!
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Potentials and the Cross-Partial Condition III

But not all is lost!

Theorem

If a 2-D vector field F = 〈F1,F2〉 on a simply connected domain satisfies
the cross-partial condition

∂F1

∂y
=
∂F2

∂x
,

then it is conservative.

Simply Connected Domains

A domain is simply connected if it “has no holes”. Mathematically
rigorous, it is simply connected if every loop can be deformed to a point in
the domain.

Lukas Geyer (MSU) 16.3 Conservative Vector Fields M273, Fall 2011 16 / 23



Simply Connected Domains

Question

Which of these domains
are simply connected?

Answer

The green and black
domain are not simply
connected, all the others
are.

Vortex field explained

The problem with the vortex field is that it is not defined at 0, so its
domain is not simply connected.
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Potentials and the Cross-Partial Condition in 3-D

Theorem

If a 3-D vector field F = 〈F1,F2,F3〉 on a simply connected domain
satisfies the cross-partial condition

∂F1

∂y
=
∂F2

∂x
,

∂F1

∂z
=
∂F3

∂x
,

∂F2

∂z
=
∂F3

∂y
,

then it is conservative.

Simply Connected Domains

A 3-D domain is simply connected if every loop can be deformed to a
point in the domain. This includes some domains with holes, like balls
with a point removed and spherical shells. An example of a non-simply
connected domain is a cylindrical shell.
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Finding a Potential I

Example

Show that F(x , y) = 〈2e2x + sin y , 2y + x cos y〉 is conservative and find a
potential.

Checking cross-partials

∂F1

∂y
= cos y =

∂F2

∂x

Checking simple connectivity

The vector field is defined in the whole plane, which is simply connected.
So F is conservative.
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Finding a Potential II

Example

Show that F(x , y) = 〈2e2x + sin y , 2y + x cos y〉 is conservative and find a
potential.

Finding antiderivatives

Vx = 2e2x + sin y =⇒ V =

∫
2e2x + sin y dx = e2x + x sin y + g(y)

The “integration constant” g(y) may depend on y .

Vy = 2y + x cos y and Vy = x cos y + g ′(y) =⇒ g ′(y) = 2y

=⇒ g(y) = y2 + C =⇒ V = e2x + x sin y + y2 + C .
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Finding a Potential in 3-D I

Example

Show that F(x , y , z) = 〈2xy + z , x2 + 2z , x + 2y + 4z〉 is conservative and
find a potential.

Checking cross-partials

∂F1

∂y
= 2x =

∂F2

∂x
,

∂F1

∂z
= 1 =

∂F3

∂x
,

∂F2

∂z
= 2 =

∂F3

∂y

Checking simple connectivity

The vector field is defined in the whole space, which is simply connected.
So F is conservative.
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Finding a Potential in 3-D II

Example

Show that F(x , y , z) = 〈2xy + z , x2 + 2z , x + 2y + 4z〉 is conservative and
find a potential.

Find antiderivatives

Vx = 2xy + z =⇒ V =

∫
2xy + z dx = x2y + xz + g(y , z)

The “integration constant” g(y , z) may depend on all variables but x .

Vy = x2 + 2z and Vy = x2 + gy (y , z) =⇒ gy (y , z) = 2z .

g(y , z) =

∫
2z dy = 2yz + h(z)

Now the “integration constant” h(z) may only depend on z .
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Finding a Potential in 3-D III

Example

Show that F(x , y , z) = 〈2xy + z , x2 + 2z , x + 2y + 4z〉 is conservative and
find a potential.

Find antiderivatives

V (x , y , z) = x2y + xz + g(y , z), g(y , z) = 2yz + h(z)

=⇒ V = x2y + xz + 2yz + h(z)

Vz = x + 2y + 4z and Vz = x + 2y + h′(z) =⇒ h′(z) = 4z

=⇒ h(z) =

∫
4z dz = 2z2 + C =⇒ V = x2y + xz + 2yz + 2z2 + C
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