First Test Review Problems, M 273, Fall 2011

1. Let $\mathbf{v} = \langle 1, 3, -2 \rangle$ and $\mathbf{w} = \langle 2, -1, 4 \rangle$.

- (a) Compute $\mathbf{v} \cdot \mathbf{w}$.
- (b) Compute the angle between \mathbf{v} and \mathbf{w} .
- (c) Compute $\mathbf{v} \times \mathbf{w}$.
- (d) Find the area of the parallelogram spanned by \mathbf{v} and \mathbf{w} .
- (e) Find the volume of the parallelepiped spanned by \mathbf{v}, \mathbf{w} , and $\mathbf{u} = \langle 1, 2, 6 \rangle$.
- (f) Find all vectors orthogonal to both ${\bf v}$ and ${\bf w}.$
- (g) Find the decomposition $\mathbf{v} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$ with respect to \mathbf{w} .

2. Find an equation for the plane through the points (1, 2, 3), (2, 3, 4), and (3, 4, 6).

3. (a) Write the spherical equation $\rho^2(1 + A\cos^2 \phi) = 1$ in rectangular coordinates.

(b) How does the surface depend on the constant A?

4. Find a parametrization of the intersection of the plane x + y + z = 1 and the elliptical cylinder $\left(\frac{y}{3}\right)^2 + \left(\frac{z}{8}\right)^2 = 1$.

5. A force $\mathbf{F} = \langle 12t + 4, 8 - 24t \rangle$ (in Newtons) acts on a 2 kg mass. Find the position of the mass at t = 2s if it is located at (4,6) at t = 0 and has initial velocity $\langle 2, 3 \rangle$ in m/s.

6. Let $\mathbf{r}(t) = \langle \sin 3t, 4t, \cos 3t \rangle$ for $0 \le t \le 2\pi$.

- (a) Find $\mathbf{r}'(t)$, $\mathbf{r}''(t)$, $\mathbf{T}(t)$, and $\mathbf{N}(t)$.
- (b) Find an arc length parametrization of the path.
- (c) Find the curvature of the path.