Third Test Review Key, M273Q-03, Spring 2011

1. Calculate // (14 2?) dA, where D is the triangular region with vertices (0,0), (1,1), and (0, 1).
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2. Change the order of integration and evaluate
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3. Find the centroid of the region VW bounded in spherical coordinates by ¢ = ¢g and the sphere
p=R.

Assuming that 0 < ¢y < 7, and that the region is the one including the north pole, the bounds for
integration in spherical coordinates are 0 < p < R, 0 < ¢ < ¢g, and 0 < 6 < 27. By symmetry
around the z-axis, £ = § = 0. To find z we calculate
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4. (a) Parametrize the circle C of radius 2 with center (4,5) in counterclockwise orientation.
c(t) = (44 2cost,5+2sint), 0<t<2rm

(b) Find é(x +y)ds.
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(¢c) What could a possible physical interpretation of the integral in (b) be? Give one example.
(There are many correct answers here.)

Mass of a circular wire with linear density p = x + y, one-sided surface area of a circular garden
fence with height h =z + y.



5. One of the following vector fields is conservative. Find a potential for it, and use the potential
to calculate / F-dr, where the curve C is given by r(t) = (t*/2, cos(nt?)), 0 < t < 1.
¢
Fl(:Ea y) = <yeacy + Y, ze' — 3;‘>
Fo(z,y) = (ye —xz,ze™ +y)

Cross-partial condition is satisfied by Fo, but not by Fi. Since both of these are defined in the
whole plane, the cross-partial condition is equivalent to being conservative, so Fy is conservative,
F; is not. A potential for Fs is given by
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The curve C has initial point r(0) = (0,1) and endpoint r(1) = (1,—1), so by the Fundamental
Theorem for Line Integrals,
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where S is the cylinder with equation z? + y? = 9 for 0 < z < 10.

6. Calculate

A parametrization of the cylinder is given by

G(0,z) = (3cosh,3sinb,z), 0<60<2mr, 0<2z<10

Then
Ty = (—3sin6,3cosb,0),
T. =(0,0,1),
n="Tyx T, =(3cosh,3sinb,0),
dS = |n| dfdz =3dfdz,
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