Second Test Review Problems, M 273, Fall 2011

1. Find and sketch the domain of the function $f(x, y) = \ln(x - \sqrt{y})$. Sketch a few level curves of f.

2. Find the partial derivatives f_x , f_y , f_z , and f_{xyz} of $f(x, y, z) = \frac{xy^2 - yx^2}{z}$.

3. Find the linear approximation of $f(x, y) = x + y - \sin(x^2 - 4y^2)$ at the point (2, 1), and use it to estimate f(2.01, 0.99).

4. Use the chain rule to find $\partial z/\partial r$ and $\partial z/\partial \theta$ for $z = e^{-x^2 - y^2}$, $x = r \cos \theta$, $y = 2r \sin \theta$ at $r = 1, \theta = 0$.

5. Find the directional derivative of $f(x, y, z) = \frac{x^2 - y^4}{z}$ at (4, 2, 1) in the direction of $\mathbf{v} = \langle 0, 3, -4 \rangle$.

6. Find all critical points of $f(x, y) = x^3 - 3x + y^2$ and determine whether they are local maxima, minima, or saddle points.

7. Find an equation for the tangent plane to $xyz = \cos(x + 2y + 3z)$ at (2, -1, 0).

8. True or false? (Assume that f has continuous second partial derivatives.)

(a) If $\nabla f(x,y) = \mathbf{0}$, then f has a local extremum at (x,y).

(b) If f has a local extremum at (x, y), then $\nabla f(x, y) = \mathbf{0}$.

- (c) If f has two local maxima, then f must have a local minimum.
- (d) $f_{xy} = f_{yx}$.