- 1. Let f be an analytic map with a fixed point at ∞ . Show that the multiplier of f at ∞ is equal to $\lambda = \lim_{z \to \infty} \frac{1}{f'(z)} = \lim_{z \to \infty} \frac{z}{f(z)}$.
- 2. Let f be a non-constant rational map and let $K \subseteq \hat{\mathbb{C}}$ be a set.
 - (a) Show that $f^{-1}(K) = K$ implies f(K) = K.
 - (b) Give an example to show that f(K) = K does not imply $f^{-1}(K) = K$.

(In other words, for complete invariance it is enough to check $f^{-1}(K) = K$, but not enough to check f(K) = K.)

- 3. Let f be a rational map of degree ≥ 2 . Show that the Julia set $\mathcal{J}(f)$ is the smallest completely invariant compact set containing at least three points. I.e., if K is a compact set containing at least three points with $f(K) = K = f^{-1}(K)$, then $\mathcal{J}(f) \subseteq K$.
- 4. Let $f(z) = z^2 2$. Show that $\mathcal{J}(f) = [-2, 2]$.