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Set-up
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Up to now: Grunsky matrix and inequality for .

Disjoint pair of univalent functions :

   univalent with expansions

Disjoint means  .

‘Standard’ Grunsky uses no information about the inner domain .

Goal: generalize Grunsky to use information about the inner mapping  .

Example: area theorem  .

g ∈ Σ

( f, g)

f : 𝔻 → ℂ, g : 𝔻* → ℂ

f (z) = az + a2z2 + …, (a ≠ 0) g(z) = z + b0 + b1z−1 + …

f (𝔻) ∩ g(𝔻*) = ∅

D := f (𝔻)

f
∞

∑
n=1

n |an |2 +
∞

∑
n=1

n |bn |2 ≤ 1



Generalized Grunsky coefficients
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We define Grunsky coefficients ,  as follows (warning: our 

 are Duren’s  and )

•

•

•

• Moreover: 

(bkl)k,l∈ℤ bkl ∈ ℂ
bkl γkl βDuren

kl = kbkl

log
g(z)−g(w)

z − w
= −

∞

∑
k=1

∞

∑
l=1

bkl z−kw−l, |z | , |w | > 1

log
f (z)−f (w)

z − w
= −

∞

∑
k=0

∞

∑
l=0

b−k,−l zkwl, |z | , |w | < 1

log
g(z)−f (w)

z
= −

∞

∑
k=0

∞

∑
l=1

b−k,l z−lwk, |w | < 1 < |z |

bk,−l = b−k,l, k ≥ 1,l ≥ 0,  so symmetric:  bkl = blk, j, k ∈ ℤ .



Bi-infinite Grunsky matrix
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Generalized Grunsky matrices
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Rescale and collect in four infinite matrices associated to the disjoint 
pair :

(Note, the zero-index entries are omitted.) 

As in Peter’s talk, the matrices  give rise to linear operators 

on  that are contractions (by the 

theorem).  Alternatively, write  which acts on .

( f, g)

B1 = ( kl b−k,−l)k,l≥1; B2 = ( kl b−k,l)k,l≥1

B3 = ( kl bk,−l)k,l≥1; B4 = ( kl bkl)k,l≥1

B1, B2, B3, B4

ℓ2 = {z = (zn)∞
n=1 : ∑ |zn |2 < ∞}

B = [B1, B2; B3, B4] ℓ2 ⊕ ℓ2



Why?
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Use more available information, more symmetric setting ...

Bi-infinite Grunsky matrix contains information about the two mapping 
functions simultaneously. Particularly interesting when omitted set has zero 
area.

Estimates: Relations between coefficients. Estimates involving both 

mappings. Quantify one-sided estimates (as in the generalized area theorem).

Operators: When there is equality, generalized Grunsky inequality 

expresses transfer of information between outside and inside. Relation to 
composition operators and conformal welding ... topic of discussion.

Note: Different generalizations use other information, e.g., Garaberdian-
Schiffer.



Statement: generalized Grunsky 
inequality

7

Theorem [Hummel ‘72]: Let  be a disjoint pair.

Let  and take , not all zero. Then:

Equality holds iff the area of 

( f, g)

m ∈ ℕ0, λk ∈ ℂ, k = − m, …, m
∞

∑
k=1

k |
m

∑
l=−m

bklλl |
2 +

∞

∑
k=1

k |
m

∑
l=−m

b−k,lλl |
2

ℂ ∖ ( f (𝔻) ∪ g(𝔻*)) = 0.

≤
m

∑
k=1

1
k

( |λk |2 + |λ−k |2 ) + 2ℜ (λ0

m

∑
l=−m

b0,lλl)



Generalized Grunsky operators
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Many things can be written very neatly in this language. 

• Example from Takhtajan-Teo: Generalized Grunsky when  and the 

omitted set has zero area (i.e. when there is equality) can then (after 

polarization) be formulated as (  is the adjoint operator):

(  ... ) or simply .

• Operators can be realized in different ways that lead to other proofs and 
insights. This story is continued in Ilia’s talk...

• Clear expression of symmetries. Paths to, e.g., characterizations (Yilin-
Tim).

λ0 = 0

B*k

B1B*1 + B2B*2 = I, B3B*1 + B4B*2 = 0;

B1B*3 + B2B*4 = 0, B3B*3 + B4B*4 = I .

B1 ∼ f, B4 ∼ g BB* = I



Proof, Step 0
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The proof uses Faber polynomials. Where do they come from?

Problem:  Jordan domain (with some regularity). Represent 

polynomial basis ( ) depends only on . 

Faber [1903]: change variables in Cauchy formula using  and 

expand near . 

Ω
f ∈ H(D) ∩ C(D )

(Φj)j≥0 Ω

g : 𝔻* → D*
∞

f (z) =
∞

∑
j=0

cj Φj(z), z ∈ D .

g′ (w)
g(w) − z

=
∞

∑
j=0

Φj(z) w−( j+1)



Faber polynomials, recap

10

Interesting relations. E.g. Schiffer [1940s], appear in many places. 

Defining relations (large  expansion)

Recall the key formulas: (Compare expansions with definition of 
Grunsky coefficients.)

    (1)

   (2)

|w |

g′ (w)
g(w) − z

=
∞

∑
j=0

Φj(z) w−( j+1), Φ0(z) ≡ 1, log
g(w) − z

w
= −

∞

∑
j=1

1
j

Φj(z)w−j

Φk( f (z)) = k
∞

∑
l=0

bk,−lzl, k ≥ 1.

Φk(g(z)) = zk + k
∞

∑
l=1

bklz−l, k ≥ 1.



Proof, Step 1
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Idea: compute the area of the omitted set  under a carefully chosen 
function. The estimate then comes from positivity. The function is:

It is holomorphic in , a branch cut. Here  is the k:th Faber 

polynomial of . 

E

h(z) =
m

∑
k=1

λk

k
Φk(z)+

m

∑
k=1

λ−k

k
Φ−k(a /z) − λ0 log z

ℂ ∖ β Φ−k(z)
a /f (z−1) ∈ Σ



Proof, Step 1

12

Write  and for :

. 

Then set . 

Choose  so that it is a smooth Jordan arc connecting the points 

 and otherwise not intersecting . 

E = ℂ ∖ ( f (𝔻) ∪ g(𝔻*)) r < 1

A = f (z : |z | = r), B = g(w : |w | = r−1)

Er = ℂ ∖ ( f (z : |z | ≤ r) ∪ g(w : |w | ≥ r−1))

β
f (r) and g(r−1) A, B



Proof, Step 1
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Apply Green’s theorem with  (note that the index of  is  in 

) 

The last term comes from the  term in . The RHS is non-negative.

γ γ ≡ 1
Er ∖ β

1
π ∫Er∖β

|h′ (z) |2 d A(z) = −
1

2π i ∫A
hh′ dz +

1
2π i ∫B

hh′ dz − λ0 ∫β
h′ dz .

−λ0 log z h



Proof, Step 2
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Change variables 

Use (1) and (2) for Faber polynomials (linking to Grunsky coefficients):

.    

φ(z) := h ∘ f (z), |z | < 1, ψ (w) := h ∘ g(w), |w | > 1.
1
π ∫Er

|h′ (z) |2 d A(z) = −
1

2π i ∫|z|=r
φφ′ dz +

1
2π i ∫|w|=r−1

ψ ψ′ dw − λ0 (ψ (r−1) − φ(r))

φ(z) = − λ0 log z + λ0 log
z

f (z)
+

m

∑
k=1

λk

k
ϕk( f (z)) +

m

∑
k=1

λ−k

k
ϕ−k ( a

f (z) )
= … = −λ0 log z +

m

∑
k=1

λ−k

k
z−k +

∞

∑
k=0

αkzk

αk =
m

∑
l=−m

b−k,lλl, α0 =
m

∑
l=0

b0lλl .



Recall
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Faber polynomials

Key relations: (Compare expansions with definition of Grunsky 
coefficients.)

    (1)

   (2)

Φk( f (z)) = k
∞

∑
j=0

bk,−jz j, k ≥ 1.

Φk(g(z)) = zk + k
∞

∑
j=1

bkjz−j, k ≥ 1.



Proof, Step 2
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Change variables

Similar formula for 

.    

φ(z) := h ∘ f (z), |z | < 1, ψ (w) := h ∘ g(w), |w | > 1.
1
π ∫Er

|h′ (z) |2 d A(z) = −
1

2π i ∫|z|=r
φφ′ dz +

1
2π i ∫|w|=r−1

ψ ψ′ dw − λ0 (ψ (r−1) − φ(r))

ψ

ψ (z) = − λ0 log z + λ0 log
z

g(z)
+

m

∑
k=1

λk

k
ϕk(g(z)) +

m

∑
k=1

λ−k

k
ϕ−k ( a

g(z) )
= … = −λ0 log z +

m

∑
k=1

λk

k
zk +

∞

∑
k=0

δkz−k

δk =
m

∑
l=−m

bk,lλl, δ0 = −
m

∑
l=1

b0,−lλ−l .



Proof, Step 3
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Integrate term by term (yes, tedious!) using formulas from previous 

slides...e.g., -term:

 with 

The -term becomes:

Similar expression for -term...

1
π ∫Er

|h′ (z) |2 d A(z) = −
1

2π i ∫|z|=r
φφ′ dz +

1
2π i ∫|w|=r−1

ψ ψ′ dw − λ0 (ψ (r−1) − φ(r))

φ

φ(z) = −λ0 log z +
m

∑
k=1

λ−k

k
z−k +

∞

∑
k=0

αkzk αk =
m

∑
l=−m

b−k,lλl, α0 =
m

∑
l=0

b0lλl .

φ

−λ0φ(r) + 2ℜα0λ0 + |λ0 |2 (iπ − 2 log r) +
m

∑
k=1

k−1 |λ−k |2 r−2k −
∞

∑
k=1

k |αk |2 r2k

ψ



Proof, Step 3

18



Proof, conclusion
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Area is non-negative

 

The RHS is non-negative. Letting  gives the result.

φ(z) := h ∘ f (z), |z | < 1, ψ (w) := h ∘ g(w), |w | > 1.

0 ≤ −
1

2π i ∫|z|=r
φφ′ dz +

1
2π i ∫|w|=r−1

ψ ψ′ dw − λ0 (ψ (r−1) − φ(r))

r → 1−

That is, if  is a disjoint pair, then for  and take 

, not all zero. Then:

( f, g) m ∈ ℕ0,
λk ∈ ℂ, k = − m, …, m

∞

∑
k=1

k |
m

∑
l=−m

bklλl |
2 +

∞

∑
k=1

k |
m

∑
l=−m

b−k,lλl |
2

≤
m

∑
k=1

1
k

( |λk |2 + |λ−k |2 ) + 2ℜ (λ0

m

∑
l=−m

b0,lλl)



Some consequences
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• Pick some  and choose : the theorem gives for  resp. 

   (3)

 (4)

(Special case   follows from the usual area theorem since 
 and  . )

• (4) implies (as pointed out in TT)

 

• With work one can show, e.g., .

l0 λl = δl0l l0 ≠ 0 l0 = 0
∞

∑
k=1

k |bkl0
|2 +

∞

∑
k=1

k |b−k,l0
|2 ≤

1
| l0 |

∞

∑
k=1

k |bk0 |2 +
∞

∑
k=1

k |b−k,0 |2 ≤ 2ℜb00 = − 2 log |a | .

l0 = 1
bk1 = bk, b−k,1 = ak, k ≥ 1 area( f (𝔻)) ≤ area(ℂ ∖ g(𝔻*))

2π log |a |−1 ≥ ∫𝔻
|

f′ 
f

−
1
z

|2 d A + ∫𝔻*
|

g′ 
g

−
1
z

|2 d A
∞

∑
n=1

|an |2 ≤ e−|b0|2

|a1 | ≤ e−|b0|
2/(1+b1)



Consequences
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• Take  Then (assuming the second series converges)

Pf. Assume  for large . The double sum is a quadratic polynomial 
in 

.

If  (cf (4)) there is a global minimum. Computing the value gives the 
statement.

Note: If  we get estimate on the modulus. (Cf. weak standard Grunsky.)

λ0 ∈ ℝ, λk ∈ ℂ, k ≠ 0.

ℜ
∞

∑
k=−∞

∞

∑
l=−∞

bklλkλl +
∞

∑
k=1

1
k

( |λk |2 + |λ−k |2 ) ≥ 0

λk = 0 k
λ0 :

q(λ0) := λ2
0ℜb00 + 2λ0ℜ∑

l≠0

b0lλl + ℜ∑
k≠0

∑
l≠0

bklλkλl

ℜb00 > 0

λ0 = 0



Goluzin via Loewner
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Goluzin via Loewner
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Goluzin via Loewner
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Further remarks
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Grunsky proved his estimate and introduced the coefficients in 1939. (Area 
principle.)
Goluzin proved his ineq using Loewner equation (late 1940s), from which 
Grunsky follows. Goluzin’s book (1950s).
Generalized and ‘’exponentiated’’ by Milin, Lebedev (1965, 1977) [Ch 5 in 
Duren], used to prove special cases of Bieberbach. Garabedian-Schiffer, 
extension, also using Loewner. ... de Branges,  1985.

Faber, 1903.  Schiffer studied Faber polynomials systematically in 1948, 
proof of Grunsky via variation of Faber polynomials. Survey by Curtiss, 1971.

Generalized Grunsky: Hummel, 1972 (area-principle).

Grunsky matrix as operator (Milin, Pommerenke, Pederson 1960s). 
Quasicircle characterization (Schiffer 1960s, Pommerenke?), further classes 
(Pommerenke, Takhtajan-Teo, Shen... 1980s, 2000s).

Acting on Bergman spaces (Bergman-Schiffer, 1960s (?))



Further remarks
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Links to CFT and physics ... 

* Further implications of (generalized) Grunsky, e.g., links to composition 
operators, spectral characterization theorems, applications in integrable 
systems, CFT:  e.g. arXiv:1607.08373 (Grunsky coeff),  arXiv:hep-th/
0005259 (“tau function”, Schwarzian),  

https://arxiv.org/abs/1607.08373
https://arxiv.org/abs/hep-th/0005259
https://arxiv.org/abs/hep-th/0005259
https://arxiv.org/abs/hep-th/0005259
https://arxiv.org/abs/hep-th/0005259
https://arxiv.org/abs/1607.08373
https://arxiv.org/abs/hep-th/0005259
https://arxiv.org/abs/hep-th/0005259
https://arxiv.org/abs/hep-th/0005259
https://arxiv.org/abs/hep-th/0005259

