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Set-up

Up to now: Grunsky matrix and inequality for g € .

Disjoint pair of univalent functions (f, g):
f:D—-C, g:D* — C univalent with expansions
f(z) =az +c12z2 +...,a#0) g@=z+by+ blz_1 + ...
Disjoint means (D) N g(D*) = @.
‘Standard’ Grunsky uses no information about the inner domain D := f(D).
Goal: generalize Grunsky to use information about the inner mapping f.

(00 0
Example: area theorem Z nla, |2 + Z n|b, |2 <I1.
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Generalized Grunsky coefficients

We define Grunsky coefficients (b)), ;7 by, € C as follows (warning: our
by, are Duren’s 7, and """ = kby,)
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* Moreover:
bk,—l = b—k,l’ k Z 1,l Z O, SO S)'mmetriC: bkl = blk’ j, k € Z .




Bi-infinite Grunsky matrix
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Generalized Grunsky matrices

Rescale and collect in four infinite matrices associated to the disjoint

pair (f, g):
B, = (ki b_—Dris1> By = (Vkl b_i i1
B; = (\/H bk,—l)k,ZZI; By = (\/H bkl)k,ZZI

(Note, the zero-index entries are omitted.)

As in Peter’s talk, the matrices By, B,, B;, B, give rise to linear operators
ont?={z= Ty 2 |z, |> < 0o} that are contractions (by the

theorem). Alternatively, write B = [B,, B,; Bs, B,] which acts on e A
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Why?

Use more available information, more symmetric setting ...

Bi-infinite Grunsky matrix contains information about the two mapping
functions simultaneously. Particularly interesting when omitted set has zero

area.

Estimates: Relations between coefficients. Estimates involving both

mappings. Quantify one-sided estimates (as in the generalized area theorem).

Operators:When there is equality, generalized Grunsky inequality
expresses transfer of information between outside and inside. Relation to
composition operators and conformal welding ... topic of discussion.

Note: Different generalizations use other information, e.g., Garaberdian-
Schiffer.




Statement: generalized Grunsky
inequality

Theorem [Hummel ‘72]: Let (f, g) be a disjoint pair.

Let m € N, and take 4, € C,k = —m, ..., m, not all zero.Then:
PRI AW I I
k=1 I=—m k=1 [=—m

m 1 _ m
<Y —(|AP+ 12D +2R | 2 by A
]Z}k k k 02 0,141

l=—m

Equality holds iff the area of C \ (f(D) U g(D*)) = 0.

*
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Generalized Grunsky operators

Many things can be written very neatly in this language.

» Example from Takhtajan-Teo: Generalized Grunsky when 4, = 0 and the
omitted set has zero area (i.e. when there is equality) can then (after

polarization) be formulated as (B]zl< is the adjoint operator):

(B, ~f,By~ g ..)or simply BB* = I.

» Operators can be realized in different ways that lead to other proofs and

insights. This story is continued in llia’s talk...

* Clear expression of symmetries. Paths to, e.g., characterizations (Yilin-
Tim).




Proof, Step 0

The proof uses Faber polynomials.Where do they come from?

Problem: Q2 Jordan domain (with some regularity). Represent
fe HD)nCD)

8}

f@=Ygo ), zeD.

j=0
polynomial basis ((®;);»() depends only on €.

Faber [1903]: change variables in Cauchy formula using g : D* — D* and

expand near oo.

FLN




Faber polynomials, recap

Interesting relations. E.g. Schiffer [1940s], appear in many places.

Defining relations (large |w| expansion)

s —z pars w Pl

Recall the key formulas: (Compare expansions with definition of

Grunsky coefficients.)

f@)=kY bz k=1 (1)

=0

g@) =2 +k) byz. k=1 ()
=1
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Proof, Step |

Idea: compute the area of the omitted set E under a carefully chosen
function.The estimate then comes from positivity. The function is:

m

A - A
h(Z) = Z 7]{(1)/\(:)+ Z qu)_/\.(a /:) - 10 log <
k=1 k=1

It is holomorphic in C \ f3,a branch cut. Here ®_,(z) is the k:th Faber
polynomial of a/f(z~!) € X.

g N
> -
: - /\ 7 h(E)




Proof, Step |

Write E = C~ (f(D) U g(D*)) and for r < 1:
A=fGz:|zl=r,B=gw:|w|=r.
Thenset E, =C~(f(z:|z| £nugw:|w] > r7 1),

Choose f so that it is a smooth Jordan arc connecting the points

f(r) and g(r~!) and otherwise not intersecting A, B.

YA e84 (p)
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Proof, Step |

Apply Green’s theorem with y (note that the index of yis = 1 in

E.~p)

1 ) 1 — 1 _ _

— |h'(2)|"dA(z) = ———| hh'dz+—| hh'dz—1y| h'dz.
m g s 2ri ), 27i Jg 5

The last term comes from the —4,log z term in 7. The RHS is non-negative.




Proof, Step 2

Change variables
@) :=hof(@), ]zl <1, ww):=hogw),|w|> 1.

1 ’ 2 1 / 1 — e -1
—J |h'(2) | dA(z)=——.[ cofde—j py'dw =2y (w(r™) — o)
mlg 2 l2l=r 2ri ol

Use (1) and (2) for Faber polynomials (linking to Grunsky coefficients):

¢(z) = —/Iologz"‘/lologm*'k 1—(/)/(f(Z))+Z—(/) k <f(a)>

=...=-ylogz + i%z‘k+ iakzk.
k=1 k=0
A = 2 b_y i, ag = Z b4y -

I=—m




Recall

Faber polynomials

Key relations: (Compare expansions with definition of Grunsky

coefficients.)

O f@) =k ) b7 k=1 (1)

j=0

O (@) =2 +k ) b7, k=1 (2
j=1




Proof, Step 2
Change variables
p():=hof(2),|z] <1, wWw):=hogw),|w|> 1.

1 ’ 2 1 — 1 — e -1
—J |h'(2)] dA<z>=——.[ ¢¢dz+—.[ gy'dw =2 (W™ — o)
mlg 2 Il A I

Similar formula for y

w(z) = —ﬂologz+ﬂolog?+z ¢A(8(Z))+Z;k¢ <?Z)>

=...=—Aglogz+ i%zk+ iékz‘k.
k=1 k=0
O = Z by 6o = = Zbo 1A

[=—m
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1 ’ 2 1 ’ 1 — e -1
—J |h'(2) | dA(z)=——.J (p(pdz+—J py'dw =1, (w0~ — o)
mlg 2r l¢|=r 2ri ol

Integrate term by term (yes, tedious!) using formulas from previous

slides...e.g., p-term:

m /1_ 0 n o
9() =—Aglogz+ ) Tkz"‘ + Y i withay = Y by, ag= ) by
k=1 k=0 I==m =0

The ¢-term becomes:

~Top (1) + 2RagZo + | A | (m—210gr)+2k NA_ P2k - Zklaklz 2%
k=1

Similar expression for y-term...
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Proof, Step 3

4.1. Disjoint univalent functions 95

The first term on the right-hand side is, by (11), equal to

L s s I O Vm)
2_"6/ (17\01 —Nologr #kz=:1 o esig szoa“' e
a —k ikt _ S\ k ikt
(kz=:o A r ke —El kg rte ) dt

= —Now(r) + oo + & Ao + | Aol?(im — 2 log 7)

moN_ = .\
—k' -2k E o
+ 4 - klag|-r
k2=l k e
because
2n
i T 1 )
18) [ refa=t (#0), =in k=0
0

Similarly the second term is, by (13), equal to

No¥ (r™) — Boko = Bolo + | Nol* (~im2 logr)

mo =
N R LT T
1k £=1

Adding these contributions we obtain from (17) that

1 ' 250 - % 1 2 20,2k _ 3 2 2y 2k
;fflh(WH aQ= 3 p (&P +INDF K- 5 k(o P + 1617
A k=1 k=1
+2 Re[Ro(ao — Bo)] — 4120 log .
If we let 7 > 1 — O we obtain the identity
1 , 290 < @ 1 2 2
= lh(w)ldﬂ-kz ;(lL,J +IN )
=1
ag F
~k2 k(e I + 1B ) + 2 Re [o(Bo — )]
=1




Proof, conclusion

Area is non-negative

@) =hof(2),|zl <1, ww):=hogw),|w|> 1.

1 1 -
0< ——J @(p’dz+—," py'dw — Ay (l//(”_l)_(p(r)>
27l lz|=r 7l |w|=r

The RHS is non-negative. Letting r — 1— gives the result. )%’

That is, if (f, g) is a disjoint pair, then for m € N, and take

A € Ck = —m,...,m,not all zero.Then:
Zk| Z bk + 2k| Z byl
k=1  I=—m k=1  I=—m

SZ (4> + 14 ] )+2§R</10 Z boz’%)

[=—m




Some consequences

« Pick some [; and choose 4; = §; ;: the theorem gives for [, # O resp./, = 0

o (o) 1
D klby P+ Y kb P < — @)
k=1 k=1 o]

Y klbgl*+ D klb_l* < 2Rbyy = — 2log|al . (4)
k=1 k=1
(Special case [, =1 follows from the usual area theorem since
by = by, b_ 1 = a, k > 1 and area(f(D)) < area(C \ g(D*)) .)
* (4) implies (as pointed out inTT)
| S|
2rlogla|™ > [ |Ji ——|*dA +[ 12— PaaA
D f Z D+ & Z

o0
2
. With work one can show, e.g,, Z la, |2 < e~ 1bol”,

n=1

20



Consequences

» Take 1, € R, 4, € C,k # 0.Then (assuming the second series converges)

R Z Z bkl/lk/ll‘l'z —(1 4P+ 1241%) 20

k=—0c0 [=—0

Pf.Assume 4, = 0 for large k.The double sum is a quadratic polynomial
inAg:

q(hg) 1= 23Rboy + 220R D b+ R Y Y by,
140 k#0 [0

If Rbyy > O (cf (4)) there is a global minimum. Computing the value gives the
statement.

Note: If 4; = 0 we get estimate on the modulus. (Cf. weak standard Grunsky.)

21
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Theorem 1. Let F denote a function belonging to X. Let o, .+, for

, 5
v, v' = 1,.2’ <++, n, where n> 1, denote real numbers such that z:,v‘alay'y"‘;/‘yl
is a positive quadratic form. Then, for arbitrary CV, v=1,2,---,n, the
inequalities

." l
1 R

n

.o,y FE)—FE,)
<11 )“c——c‘_‘

v, v =1 | (6)
=

ay g

hold throughout the domain |{| > 1, where we should understand the factor
|F'(£,)| in the second product when £, =¢ ..

22
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§2. Sharpening of the distortion theorems

As another application of the method of patamemc representation, we now

present sharpened forms of certain i H ituting di ion th
for the classes S and £.%) Let us first show a number of relationships that hold
ion of univalent f

role in questions concerning bounds.

in the

P and that play an important
Consider an arbitrary function f(z) € C' defined in accordance with formula
(1) of §1, where [(z, t) satisfies in the interval 0 < ¢ < the differential equa-
tion (2) and initial condition (3) of §1. For the function f(z, t), we have a num-
ber of interesting relationships. Specifically, let us take in | z| < 1 arbitrary

poiats z for v=1,--+, n and let us write for brevity f, = f(z,,, t). By using the

equations
14k f, —

=—fi=xe7’ =L-on

we obtain by direct calculation the relations

L i f,—fy
2 10g [, 7 0

o kfy
Flog(l—ff)= =)

(where k= k(¢). If z,=z,., the expression (f, - f,)/(z,, - z,,) in (1) should
be understood to mean f'(z,).

If we integrate equations (1) with respect to ¢ from 0 to o and keep (1) and,

(3) of $1 in mind, we obtain the following imegml formulas:

FR)—FE,) kf, *fy
L=t —‘2f T—&f, T—kf,

*2_;11/}; (12‘:’/ >

log dt,

)

1) Goluzin [1948b, 1951a].

Goluzin via Loewner

§2. SHARPENING OF DISTOR TION THEOREMS 119

where we set

- FOEE

We introduce the expansions

-
og FO=EO_ Y g, ot 10 >1, 01> 1,

et @)
ROFE O _
TW;}Z]%(!)Z‘, lz|< 1.

When we substitute these expansions into (2) and identify the resulting equations
with respect to £, and ¢, we arrive at the formulas

a,=—2{ 5O Od (¢ I=12..) @
0
© 0 for k£
§b~(t)b.(t)dt:{2% o by B 1=12) )

h

Formulas (5) express the i property of lity of the f

br(e) for k=1,2,+-.

We shall now prove two theorems dealing with the applications of formulas

(2) to inequalities.

Theorem 1. Let F denote a function belonging to %. Let a,, 1, for
v, v' =1,2,-+-, n, where n> 1, denote real numbers such that }:y 2Oy B
is a positive quadratic form. Then, for arbitrary {,, v=1,2,--, n, the

inequalities

r | FE)—F G v
T \‘J‘Li———z,c,

IIl

hold throughout the domain |{| > 1, where we should understand the factor
|[F*(£,)] in the second product when ¢, =,

Proof. Let us first prove inequalities (6) for the functions F({) = 1/f(1/9),
where f(z) € S'. In this case, if we set

©)

23
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Goluzin via Loewner

1V. EXTREMAL QUESTIONS

120
§2. SHARPENING OF DISTORTION THEOREMS
lif;,=X,+”’v v=1, for F(Q €D
and take out the real parts in (2), we obtain Proof. Just as above, it will be sufficient to prove (7) for the functions
. ’ & F({) = 1/{(1/{), where f(z) €S '. But, in the present case, we have from the
log | L&"#Iz — 2‘]. (XX, — Y.Y,)dt, first of formulas (2)
) 0 F(,)

log

1— c_' ) =—2 j(x,xw + 1Y) dt.

O

Then, by adding and subtracting, we arrive at the following formulas

=
«4.0[)(‘)(,, di,

i

%

‘ F(C) F(E, )J —10g

log

.

FG)—F @) 1
FOZFC | jog]1— Y dt.

’°g| =t ] l°gll th |+4! nr

We multiply these formulas by the numbers &, , and sum each of them with

with respect to v, v "=1,+++, n. Then, remembering that for numbers @, , the
3

satisfy the conditions of the theorem, we have

n n

> @ XXy =0, 3 a, ¥V >0.

v V=1 v V=1

We then immediately obtain inequalities (6). But these inequalities, which were
proved for the functi F({) EZ rep d in the form F({) = 1/f(1/{), where
f(z) € S, obviously remain valid for arbitrary functions F({) € = that can be
represented in the form F({) = 1/f(1/{) + const, where f(z) € S, and conse-
quently they remain valid for the entire class 2. This completes the proof of the

theorem.
Theorem 2. Let n denote a positive integer. For v =1, -, n, let y, denoté
arbitrary complex numbers and let {,, denote complex numbers in the domain

}¢) > 1. Then

V T logm) =

y, v’=l

F (( )—
E T 18— —¢ =T,

vovr=1
o
2 ety 12;,"‘:—2‘5(ZM:’KL)"”

y=1

¢ =1

and, consequently,
FQ—Fe) | _ F I
E Tvlog— —g 2§ dt

v,v=1

$o

:§ 3 vl (Do)

c!/‘g

From the second of formulas (2) applied to the last integral, this yields (7) and

completes the proof of the theorem.

=3 n{.rlog(l zE) ™

vy =1
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Further remarks

Grunsky proved his estimate and introduced the coefficients in 1939. (Area
principle.)

Goluzin proved his ineq using Loewner equation (late 1940s), from which
Grunsky follows. Goluzin’s book (1950s).

Generalized and “exponentiated” by Milin, Lebedev (1965, 1977) [Ch 5 in
Duren], used to prove special cases of Bieberbach. Garabedian-Schiffer,
extension, also using Loewner. ... de Branges, |985.

Faber, 1903. Schiffer studied Faber polynomials systematically in 1948,
proof of Grunsky via variation of Faber polynomials. Survey by Curtiss, 1971.

Generalized Grunsky: Hummel, 1972 (area-principle).
Grunsky matrix as operator (Milin, Pommerenke, Pederson 1960s).
Quasicircle characterization (Schiffer 1960s, Pommerenke?), further classes

(Pommerenke, Takhtajan-Teo, Shen... 1980s, 2000s).

Acting on Bergman spaces (Bergman-Schiffer, 1960s (?))

25



Further remarks

Links to CFT and physics ...

* Further implications of (generalized) Grunsky, e.g., links to composition
operators, spectral characterization theorems, applications in integrable
systems, CFT: e.g. arXiv:1607.08373 (Grunsky coeff), arXiv:hep-th/
0005259 (“tau function”, Schwarzian),

26
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