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Bergman Space

Let Q be a domain in C. The Bergman space AP() is the subspace of analytic
functions in LP(Q)
AP(Q) := LP(Q N H(Q)

(L here is with respect to the area).
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functions in LP(Q)

AP(Q) := LP(Q) N H(Q)
(L here is with respect to the area).
By Cauchy inequalities, LP-convergence in AP(Q2) implies locally uniform
convergence, so AP(Q) is a closed subspace (a locally uniform limit of analytic

functions is analytic).
We will also need the conjugate space of anti-analytic functions:

AP(Q) := AP(Q) = LP(Q) N H(Q)
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Bergman Space

Let Q be a domain in C. The Bergman space AP() is the subspace of analytic
functions in LP(Q)

AP(Q) := LP(Q) N H(Q)
(L here is with respect to the area).
By Cauchy inequalities, LP-convergence in AP(Q2) implies locally uniform
convergence, so AP(Q) is a closed subspace (a locally uniform limit of analytic
functions is analytic).
We will also need the conjugate space of anti-analytic functions:

AP(Q) := AP(Q) = LP(Q) N H(Q)

We will mostly talk about p = 2.
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Bergman Space in D

Let us now concentrate on Q =D and p = 2.
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Bergman Space in D

Let us now concentrate on Q =D and p = 2.

()
<wr<n+1> )

is an orthonormal basis of A?(D), and for f(z) = 3" a,z" € A*(D):

2 1 anf
Ifll2 = Wzn+1~

n=0
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Bergman Space in D

Let us now concentrate on Q =D and p = 2.

()
<wr<n+1> )

is an orthonormal basis of A?(D), and for f(z) = 3" a,z" € A*(D):
1 o= |anf?
713 = 13 2l
n=0

If g(z) € L*(D), then its orthogonal projection to A?(D) is given by

Pg(z) := Z < g, en > en(2)
n=0

n

1S - 2" 1 g(w)
_;g/ﬂmg(w)w dA(W)n+1 _;/DmdA(w)

llia Binder
Beurling and Grunsky.



Bergman Space in D

Let us now concentrate on Q =D and p = 2.

()
<wr<n+1> )

is an orthonormal basis of A?(D), and for f(z) = 3" a,z" € A*(D):

2 1 anf
Ifll2 = Wzn+1~

n=0

If g(z) € L*(D), then its orthogonal projection to A?(D) is given by

Pg(z) := Z < g, en > en(2)
n=0

1S - 2" 1 g(w)
_;g/ﬂmg(w)w dA(W)n+1 _;/DmdA(w)

The interchange of the integration and summation is justified because the sum

oo w'z" . .
>orco = converges uniformly on D for each fixed z.
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Grunsky kernel

Let v € ¥. Its Grunsky decomposition:

MECETTI I o S

n=1 k=1
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Grunsky kernel

Let v € ¥. Its Grunsky decomposition:
z) —Pp(w 2 & Cn
log (M) =S W
Z-w n=1 k=1
We can assume ¢ € ¥, so consider

o(z) = —

= <°
Then

log (7#2) — <Z>(w)) =- Z Z’Ynkz"wk + log 0(2) + log @

zZ—Ww z
n=1 k=1
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Grunsky kernel

Let v € ¥. Its Grunsky decomposition:

log (W) == zivnﬂ"wk

We can assume ¢ € ¥, so consider
¢(z) = ———
(2) ”
Then

log (L) Zz'y,,kz w* + log oz )+Iog@.

zZ— W
Now differentiate to get the Grunsky kernel:

d(z,w) = azaw log (7"5(23:3("")) =
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Grunsky operator

Grunsky operator is an anti-linear operator on L?(Q) with kernel ®(z, w):

N B 15 C) N U T
Fof(z): w/nm((as(z)—aw)y (z—w)?)f( ) dA(w):
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Grunsky operator

Grunsky operator is an anti-linear operator on L?(Q) with kernel ®(z, w):

N B 15 C) N U T
Fof(z): 7r/m>((¢(2)—¢(W))2 (z—w)?)f( ) dA(w):

Observe

1 o0 oo

n—1

— E MTNYnmZ = — E V NMYpmen—1
TVTm n=1 n=1

So Ty maps A%(D) to A?(D), with the Grunsky matrix.
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Grunsky operator

Grunsky operator is an anti-linear operator on L?(Q) with kernel ®(z, w):

N B 15 C) N U T
Fof(z): 7r/m>((¢(2)—¢(W))2 (z—w)?)f( ) dA(w):

Observe

1 o0 oo
n—1
— E MTNYnmZ = — E V NMYpmen—1
n=1 n=1

T/Tm <
So Ty maps A%(D) to A*(D), with the Grunsky matrix.

Grunsky inequalities are equivalent to the fact that Ty is a contraction for all
p €S, ie |[Tofl2 <|[f]2.
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Grunsky operator

Grunsky operator is an anti-linear operator on L?(Q) with kernel ®(z, w):

N B 15 C) N U T
Fof(z): 7r/m>((¢(2)—¢(W))2 (z—w)?)f( ) dA(w):

Observe

1 o0 oo
n—1
— E MTNYnmZ = — E V NMYpmen—1
n=1 n=1

T/ Tm -

So Ty maps A%(D) to A?(D), with the Grunsky matrix.
Grunsky inequalities are equivalent to the fact that I'y is a contraction for all
¢S, e [[Toflla <||fll2-

Equivalently, a linear version ', f := [4f is a contraction from .712(]D)) to A%(DD).
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Cauchy and Beurling transforms

Let f € C5°(C). Its Cauchy transform:

(€f) (2) = %/MdA(w).

czZ—w

By Green, (€f;) = (¢f), = f. Holds in weak sense for any distribution.
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Cauchy and Beurling transforms

Let f € C5°(C). Its Cauchy transform:

_ 1 [ f(w)
(€f) (2) = ;/CmdA(w).
By Green, (€f;) = (¢f), = f. Holds in weak sense for any distribution.
Beurling transform of f:

0

(Bf) (2) == 5 (€F) (2) = (¢£) (2) = Jim l/l f,(w)

—z|>r zZ—w

'm_—l f(w) w _ -1 v f(w) w
rIL>0 T Jiwzsr (2 —w)? dA(w) e '/C (z — w)? dA(w)

dA(w) ="

r—0 7
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Cauchy and Beurling transforms

Let f € C5°(C). Its Cauchy transform:

_ 1 [ f(w)
(€f) (2) = ;/CmdA(w).
By Green, (€f;) = (¢f), = f. Holds in weak sense for any distribution.
Beurling transform of f:

0

(Bf) (2) == 5 (€F) (2) = (¢£) (2) = Jim l/l f,(w)

—z|>r zZ—w

'm_—l f(w) w _ -1 v f(w) w
rIL>0 T Jiwzsr (2 —w)? dA(w) e '/C (z — w)? dA(w)

The fundamental property: Bf; = f;, since

0 0 0 0
%Og—gogoﬁ—g.
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Properties of Beurling transform

B is symmetric:

/f 2)(Bg)(2) dA(2) = lim 7//W 1 zfg(V)VZ) dA(w) dA(z) =

I|m—//
-0 7 lw—2z|>r

dA(z) dA(w) = / (BF)(w)g(w) dA(w).




Properties of Beurling transform

B is symmetric:

/f 2)(Bg)(z) dA(z) = lim 7//W . f(z (W) 7 dA(w) dA(z) =

r—0 T

(2s(+) _
i [ / = L CETOR /@ (BF)(w)g(w) dA(w).

r—0 T

It is unitary for g of the form g = 7, f € (§°:
/C 18(2) dA(z) = / £(2)F(2) dA(z) =
/C £(2)F-(2) dA(z) °=" / £ (2)F=(2) dA(z) = / (Be)(2)[ dA(2).

Since functions of the form f,, f € C5° and of the form f5, f € C5° are dense

in L?(C) (the functions orthogonal to all of them must be anti-entire or entire
correspondingly), B3 extends to a unitary operator on L?(C).
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Properties of Beurling transform

B is symmetric:

/f 2)(Bg)(z) dA(z) = lim 7//W . f(z (W) 7 dA(w) dA(z) =

r—0 T

(2s(+) _
i [ / = L CETOR /@ (BF)(w)g(w) dA(w).

r—0 T

It is unitary for g of the form g = 7, f € (§°:
/C 18(2) dA(z) = / £(2)F(2) dA(z) =
/C £(2)F-(2) dA(z) °=" / £(2)F=(2) dA(z) = / (Be)(2)[ dA(2).

Since functions of the form f,, f € C5° and of the form £, f € C5° are dense
in L?(C) (the functions orthogonal to all of them must be anti-entire or entire
correspondingly), 9B extends to a unitary operator on L?(C).
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Properties of Beurling transform

B is symmetric:

/C F(2)(Be)(2) dA(z) = lim - / / i f(z g(W) ) dA(w) dA(z) =

r—0 T

r—0 T

f(z (w) -
lim —//W o (2o wp dA(z )dA(W)—/C(SBf)(W)g(W) dA(w).
It is unitary for g of the form g = 7, f € (§°:
/C 18(2) dA(z) = / £(2)F(2) dA(z) =
/C £(2)F-(2) dA(z) °=" / £(2)F=(2) dA(z) = / (Be)(2)[ dA(2).

Since functions of the form f,, f € C5° and of the form £, f € C5° are dense
in L?(C) (the functions orthogonal to all of them must be anti-entire or entire
correspondingly), 9B extends to a unitary operator on L?(C).

In terms of Fourier transform: (‘/B\f)(() = %f(()

By the standard Calderon-Zygmund theory, B : LP — LP, 1 < p < oco.
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A computation.

By approximation, B = f,, holds for any f € W2
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A computation.

By approximation, B = f,, holds for any f € W2
Let f(z) := 1pZ". Then f = 2Zg(z), where

1 _,
g(z) = ——7= p 4+

1 zfnfl]l
n+1 n+1 C\D-

So

0 e
Bf(z) = ag(z) =—lepz "
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A computation.

By approximation, B = f,, holds for any f € W2
Let f(z) := 1pZ". Then f = 2Zg(z), where

1 _,
g(z) = ——7= p 4+

z "1
n+1 n+1 C\D-

So 5
Bh(2) = L g(z) = ez

An important observation: if f € XZ(ID)), then 1pBf = 0 (since it is true for
the basis functions z").
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A computation.

By approximation, B = f,, holds for any f € W2
Let f(z) := 1pZ". Then f = 2Zg(z), where

1 _,
g(z) = ——7= p 4+

1 zfnfl]l
n+1 n+1 C\D-

So 5
Bf(z) = ag(z) =—lepz "
An important observation: if f € XZ(ID)), then 1pBf = 0 (since it is true for

the basis functions z").
By scaling and translation, if f(z) := Lp(,,.):

2
r
Bf(z) = _mﬂc\m(a,o-
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Pointwise existence of Beurling transform: following Mateu and Verdera.

For f € LP(C) oo > p > 1, Bf € LP(C) is defined a.e. But is it equal to the
principal value of the integral?
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Pointwise existence of Beurling transform: following Mateu and Verdera.

For f € LP(C) oo > p > 1, Bf € LP(C) is defined a.e. But is it equal to the
principal value of the integral? Yes!
By the previous observation:

-1 W) iy = 2 [ At
T Jiw—z|>r (z—w)? dA(w) 7rr2/cf( )(Blp(z,n)(w) dA(w)

1

mr?

by symmetry

1
[ L (w) A = 5 | B aAw)
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Pointwise existence of Beurling transform: following Mateu and Verdera.

For f € LP(C) oo > p > 1, Bf € LP(C) is defined a.e. But is it equal to the
principal value of the integral? Yes!
By the previous observation:

-1 W) iy = 2 [ At
T Jiw—z|>r (z—w)? dA(w) 7rr2/cf( )(Blp(z,n)(w) dA(w)

1

mr?

by symmetry

1
[ L (w) A = 5 | B aAw)

So
-1 f(iw)z dA(w) = Bf(z)

r—0 T |lw—z|>r (Z - W)

for all Lebesgue points of Bf.
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The transferred Beurling transform

Let Q C C be a domain. For f € LP(Q), the Restricted Beurling transform of f
is:

Bof(z) = *71 b.v. /Q % dA(w) = 1o(2)Bf(2).
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The transferred Beurling transform

Let Q C C be a domain. For f € LP(Q), the Restricted Beurling transform of f
is:

Bof(z) = *71 b.v. /Q % dA(w) = 1o(2)Bf(2).

Bq is always bounded on LP(Q) for 1 < p < co. If Area(C\ Q) =0, it is an
isometry on L?(), otherwise, it is a contraction.
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The transferred Beurling transform

Let Q C C be a domain. For f € LP(Q), the Restricted Beurling transform of f
is:

Bof(z) = *71 b.v. /Q % dA(w) = 1o(2)Bf(2).

Bq is always bounded on LP(Q) for 1 < p < co. If Area(C\ Q) =0, it is an
isometry on L?(), otherwise, it is a contraction.

If Q is a simply-connected domain, let ¢ : D +— Q be its Riemann map. Let the
isometry T? : LP(Q) — LP(D) (and AP(Q) — AP(D)) be defined by

Tof(2) = ¢'(2)"PF(9(2)).
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The transferred Beurling transform

Let Q C C be a domain. For f € LP(Q), the Restricted Beurling transform of f
is:

Bof(z) = *71 b.v. /Q % dA(w) = 1o(2)Bf(2).

Bq is always bounded on LP(Q) for 1 < p < co. If Area(C\ Q) =0, it is an
isometry on L?(), otherwise, it is a contraction.
If Q is a simply-connected domain, let ¢ : D +— Q be its Riemann map. Let the
isometry T? : LP(Q) — LP(D) (and AP(Q) — AP(D)) be defined by

TEF(2) == ¢'(2)"/°F(4(2))-

For g € LP(D), define the transferred Beurling transform:

Blg:=T,oBgo (T(’Z)71 o Mg,
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The transferred Beurling transform

Let Q C C be a domain. For f € LP(Q), the Restricted Beurling transform of f
is:

Bof(z) = *71 b.v. /Q % dA(w) = 1o(2)Bf(2).

Bq is always bounded on LP(Q) for 1 < p < co. If Area(C\ Q) =0, it is an
isometry on L?(), otherwise, it is a contraction.

If Q is a simply-connected domain, let ¢ : D +— Q be its Riemann map. Let the
isometry T? : LP(Q) — LP(D) (and AP(Q) — AP(D)) be defined by

Tof(2) = ¢'(2)"PF(9(2)).

For g € LP(D), define the transferred Beurling transform:

’ 2
Blg:=T;oBgo (T:Z)f1 oMpg, h(w) = — ( ¢ (w) >
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The transferred Beurling transform

Let Q C C be a domain. For f € LP(Q), the Restricted Beurling transform of f
is:

Bof(z) = *71 b.v. /Q % dA(w) = 1o(2)Bf(2).

Bq is always bounded on LP(Q) for 1 < p < co. If Area(C\ Q) =0, it is an
isometry on L?(), otherwise, it is a contraction.

If Q is a simply-connected domain, let ¢ : D +— Q be its Riemann map. Let the
isometry T? : LP(Q) — LP(D) (and AP(Q) — AP(D)) be defined by

Tof(2) = ¢'(2)"PF(9(2)).

For g € LP(D), define the transferred Beurling transform:

’ 2
Blg:=T;oBgo (T:Z)f1 oMpg, h(w) = — ( ¢ (w) >

%5) is bounded for 1 < p < oo, is a contraction for p = 2.
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The integral form of transferred Beurling transform and Grunsky inequality.

In the integral form

V2P (w22
(B78) (2) = = /%}22 ¢l ) 58 (w) dA(w).
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The integral form of transferred Beurling transform and Grunsky inequality.

In the integral form

YR ()22
(Bhe) (2) = = ¢(¢gz l ) 2 g(w) dA(w).

Collect what we know about p = 2:

BRI 10 N U UV
o)) = 1 [ (e ot ~ G ) 5 940
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The integral form of transferred Beurling transform and Grunsky inequality.

In the integral form

2/p 2-2/p
(B78) (2) = = /%}22 ¢lw ) () dA(w).

Collect what we know about p = 2:

BRI 10 N U UV
o)) = 1 [ (e ot ~ G ) 5 940

So
Fsg = Big — Big
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The integral form of transferred Beurling transform and Grunsky inequality.

In the integral form

A0kl

(Ble) (2) = = (0(2) = (W) g(w) dA(w).

Collect what we know about p = 2:

BRI 10 N U UV
o)) = 1 [ (e ot ~ G ) 5 940

So
Fsg = Big — Big

But on A°(DD), B2 =0, so for g € A (D):
Meg = %ig.
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The integral form of transferred Beurling transform and Grunsky inequality.

In the integral form

2/p 2-2/p
(B78) (2) = = /%}22 ¢l )))2 g(w) dA(w).

Collect what we know about p = 2:

BRI 10 N U UV
o)) = 1 [ (e ot ~ G ) 5 940

So
Fsg = Big — Big

But on A°(DD), B2 =0, so for g € A (D):
Meg = %ig.

Since %é is a contraction, it proves the Grunsky inequality.
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Generalized Grunsky inequality: transferred Beurling.

Essentially the same, but we need two univalent maps ¢ : C\ D — Q_,
d:D—Qp,withQ_NQy =0. Q:=Q_UQ,. Then define

o o [EEPR0E) I <1
Toufle): {w'(z>2/Pf(w(z)) 2l >1

-1
8- ,8(2) =T, ,0Bao (Tg,w) o Mg,
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Generalized Grunsky inequality: transferred Beurling.

Essentially the same, but we need two univalent maps ¢ : C\ D — Q_,
d:D—Qp,withQ_NQy =0. Q:=Q_UQ,. Then define

o o [EEPR0E) I <1
Toufle): {w'(z>2/Pf(w(z)) 2l >1

’ 2
&' (w)
B (2) = T2, 0 Bao (T2,) " omug, hw) o= |~ (500) | 11 <1
o p8\Z) = gy 02001y y) ©hE, MW) = / 2
_ [ 2w 1
67 (w)] wi >
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Generalized Grunsky inequality: transferred Beurling.

Essentially the same, but we need two univalent maps ¢ : C\ D — Q_,
d:D—Qp,withQ_NQy =0. Q:=Q_UQ,. Then define

1o ey [P <1
WEPPH(E) |2 > 1

b 1 _(\ij wj <1
%ng(z) = » ©Ba o( 5 w) o Mug, h(w) = oy \2
- (W(w)l) wl > 1
And, in integral form
¢ (2)”7¢( w)2 2
BL o g)(z — / g(w) dA(w)+
(55.08) () (62— stwyp £ A

R |
o (6(2) = ¢(w))? g(w) dA(w);

and similar expression for |z| > 1.

llia Binder
Beurling and Grunsky.

|z| < 1.



Generalized Grunsky inequality: transferred Beurling.

Essentially the same, but we need two univalent maps ¢ : C\ D — Q_,
d:D—Qp,withQ_NQy =0. Q:=Q_UQ,. Then define

1o ey [P <1
WEPPH(E) |2 > 1

b 1 _(\ij wj <1
%ng(z) = » ©Ba o( 5 w) o Mug, h(w) = oy \2
- (W(w)l) wl > 1
And, in integral form
¢ (2)”7¢( w)2 2
BL o g)(z — / g(w) dA(w)+
(55.08) () (62— stwyp £ A

R |
o (6(2) = ¢(w))? g(w) dA(w);

and similar expression for |z| > 1. A compression for p = 2.
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Generalized Grunsky inequality.

Generalized Grunsky:
o0 <w(z; - ﬁ(w)) _3

log (M) ii% kankJFlOg@Jrlog@'

zZ—Ww
n=1 k=

-

|og<M> B ) S +|ogw(z)

n=1 k=1
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Generalized Grunsky inequality.

Generalized Grunsky:
log <7¢(Z; : 1va(w)> = - Z Z’y_n,—kzinwfk

log (M) i i’yn,kznwk +log @ +log @

zZ—Ww
n=1 k=

-

log <M> ii%n,kz*"wk + log @

n=1 k=1

By differentiating 9,0, and comparing we see that the operator
Top = B%, — Bb — BLp

has the generalized Grunsky matrix on A(D) & A(C \ D).
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Generalized Grunsky inequality.

Generalized Grunsky:
log <7¢(Z; : 1va(w)> = - Z Z’y_n,—kzinwfk

log (M) i i’yn,kznwk +log @ +log @

zZ—Ww
n=1 k=

-

log <M> ii%n,kz*"wk + log @

n=1 k=1

By differentiating 9,0, and comparing we see that the operator
Top = B%, — Bb — BLp

has the generalized Grunsky matrix on A(D) & A(C \ D).It is a contraction,
since both B%,;, and B, vanish on A(D) & A(C\ D).
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Generalized Grunsky inequality.

Generalized Grunsky:

op (UELZU) S5

zZ— W

log (M) i i’yn,kznwk +log @ +log @

zZ—Ww
n=1 k=

-

log <M> ii%n,kz*"wk + log @

n=1 k=1
By differentiating 9,0, and comparing we see that the operator
Top = B%, — Bb — BLp

has the generalized Grunsky matrix on A(D) & A(C \ D).It is a contraction,
since both B%,;, and B3 vanish on A(D) & A(C\ D). And this is exactly
generalized Grunsky inequality!
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Grunsky identity

Let f € A'(D). Then

@) =1 [ Qa0 = [ Ao

pl—(_w [0,w]
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Grunsky identity

Let f € A'(D). Then

R e P LA BR(GL

Indeed,

0N = 1 [ g (OO = (PR = £




Grunsky identity

Let f € A'(D). Then

R e P LA BR(GL
Indeed,
0N = 1 [ g (OO = (PR = £

_ P @' w) 1 .
o(2)—p(w) ~ z—w"
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Grunsky identity

For £(¢) := log(1 —¢w), f(0) =0, fc =0, fr = — , 50, by generalized
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or [y =B — Bf = B3P — a contraction on L2(]DJ), maps it to A%(D)!




Skewed Grunsky identities

Expand p-Beurling kernel near diagonal:
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Skewed Grunsky identities

Expand p-Beurling kernel near diagonal:

¢'(2)/P¢' (w)’ 2P 1 2 P'(w)
6w) — o7 (—wp (,, 1) w—2ew Y

So it is an analytic kernel, and for any f € L*(D),

2
(%‘; — Bp + (; — 1) €9ﬁ¢u/¢/> f is an analytic function
So it does not change under projection to analytic functions:
P 2 P 2
%qS*%]D)‘F E *1 @fmd,///d,/ :P%¢+P ;71 €m¢///¢/

In the case p = 2, it gives a version of Grusky identity:

B, — Bp = PB,
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Grunsky operator in the domain 2.

Tof := Baf = ;lp.v./ F(w)
T
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is an anti-linear contraction of A?(Q).
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Grunsky operator in the domain 2.

Tof—mof_ —L F(w)
Fof := Baf = - p.v./Q z=w) dA(w)
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Grunsky operator in the domain 2.

Tof—mof_ —L F(w)
Fof := Baf = - p.v./Q z=w) dA(w)
is an anti-linear contraction of A?(Q).
Let )
lo(zw) = 28G2w) 1,

8z0w  w(z — w)?
Since %D@ =0 for f € A*(Q), we have

/ Lo(z, w)f(w) dA(w) =0
Q
which means that on A?(Q),

FQf = /Q/Q(Z, W)?(W) dA(W)

llia Binder
Beurling and Grunsky.



