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1. “Crash course” review of compact operators
2. G compact iff f asymptotically conformal

Philosophy/big picture

f ∈ Σ, f (z) = z + a0 + a1z
−1 + · · · , z →∞

log
f (z)− f (ζ)

z − ζ
= −

∞∑
m,n=1

bmnz
−mζ−n

These Grunsky coefficients (bmn)∞m,n=1 give rise to the natural
operator

x = (xm)∞m=1 7→ Gx :=

( ∞∑
n=1

√
mnbmnxn

)∞
m=1

I.e. “matrix multiplication” of the infinite, symmetric matrix
(
√
mnbmn)∞m,n=1 by the infinite column vector (xm)∞m=1 ∈ `2.
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1. “Crash course” review of compact operators
2. G compact iff f asymptotically conformal

Philosophy/big picture

We continue to explore the idea of how the geometry of
E := C\f (D∗) translates into operator-theoretic properties of the
Grunsky operator, working “in coordinates” (bmn).

We’ve already seen:

I Peter: G is unitary iff Area(E ) = 0 (both directions hold). G
is a strict contraction ‖Gx‖ < ‖x‖ iff Area(E ) > 0.

I Steffen: ‖G‖ < 1 iff E is a quasidisk.

I Our goal:

Theorem (Shen, TT)

G is a compact operator iff E is an asymptotically-conformal
quasidisk.
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A more abstract formulation:

Note we have a map

G : Σ→ B1(B(`2)).

Now,

log
f (z)− f (ζ)

z − ζ
= log

g(z)− g(ζ)

z − ζ
⇔ f (z) = g(z) + c ,

so let’s mod out by translation at ∞ to make G injective:

Σ0 = { f ∈ Σ : f (z) = z + a1/z + · · · , z →∞},

Then, G : Σ0 ↪→ B1(B(`2)).
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Restricting the domain to
⋃
κ<1 Σ0(κ) = T (1) puts us in the realm

of Teichmüller theory. TT considered this “period mapping”

P̂ : T (1) ↪→ B1(B(`2))

and showed

Theorem (TT (Appendix B), Shen)

P̂ is a holomorphic inclusion of Banach manifolds.

See Shen’s paper for details on what this means and a fairly simple
proof (which uses some Teichmüller machinery).

Stated in this framework, our desired theorem becomes

P̂−1(C(`2)) = Asymptotically-conformal quasidisks/ ∼
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As an aside, an interesting (and open?) question: characterize the
range of

P̂ : T (1)→ B1(B(`2))

(Perhaps answering our question if ‖G‖ = κ⇔ f is 1+κ
1−κ -QC would

help.)
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Overview

1. “Crash course” review of compact operators

2. G compact iff f asymptotically conformal
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Bounded operators

Let A,B be normed vector spaces, T : A→ B a linear map. Recall:

I T is bounded if there exists M ≥ 0 such that ‖Tx‖ ≤ M‖x‖
for all x ∈ A.

I The operator norm of T is ‖T‖ := sup{ ‖Tx‖ : ‖x‖ = 1 }

I Note ‖Tx‖ ≤ ‖T‖‖x‖ for all x ∈ A.

I Boundedness of T is equivalent to continuity of T .

I B(A,B) := {T : A→ B : T linear, bounded} is itself a
normed vector space, and, if B is Banach, so is B(A,B).
B(A) := B(A,A).
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Compact operators

T : A→ B is compact if the image (Txn) of any bounded
sequence (xn) in A has a convergent subsequence.

I Equivalently, the image T (B1) ⊂ B of the unit ball B1 ⊂ A is
pre-compact (we’re in a metric space, so compactness ⇔
sequential compactness).

I Note that if T is compact, then T is bounded.
I Otherwise, find a sequence (xn) with ‖xn‖ = 1 such that
‖T (xn)‖ → ∞. Contradicts subsequential convergence.
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Compact operators: examples

Let’s build our intuition with several simple examples.

1. T ∈ B(A,B) with finite rank is compact.
I Suppose T (A) ⊂ F , a finite-dimensional subspace.

I Closed, bounded sets are compact in F , since they are in
Euclidean spaces, and any two norms on a finite-dimensional
normed space are equivalent.

I Now, (xn) bounded ⇒ (Txn) bounded, and the closure of
(Txn) is compact.

I In particular, all linear operators on finite-dimensional vector
spaces (matrices) are compact.
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Compact operators: examples

2. The identity map I : H → H on a infinite-dimensional Hilbert
space is not compact. (The unit ball in H is not pre-compact:
the sequence of basis vectors (en) has no Cauchy
subsequence.)

3. T ∈ B(H), T = diag(λ1, λ2, . . .), i.e.

T (en) = λnen

for a basis (en) for H. Then T is compact iff λn → 0.
I Hint for ⇐: Use truncation operators

TN(
∑∞

n=1 αnen) :=
∑N

n=1 αnλnen. TN compact, argue
‖TN − T‖ → 0, and use the next theorem.
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Compact operators

C(A,B) := {T ∈ B(A,B) : T compact}.

Theorem
If A and B are Banach, C(A,B) is a closed subspace of B(A,B)
with respect to the operator topology.

Proof sketch: Easy to see C(A,B) is a subspace. Closed?
Diagonalization + ε/3 argument.
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Diagonalization argument

We have (Tn) compact, ‖Tn − T‖ → 0.

Let (xn) ⊂ A with ‖xn‖ ≤ M. We want to find (xnk ) ⊂ (xn) such
that (Txnk ) converges.

I Extract a subsequence (x1
n ) ⊂ (xn) for which (T1x

1
n )

converges.

I Extract a further subsequence (x2
n ) ⊂ (x1

n ) for which (T2x
2
n )

converges.

I Continue in this manner. Then the “diagonal” sequence (xnn )
is such that (Tmx

n
n )∞n=1 converges for every m.

Show (Txnn ) converges.

Tim Mesikepp Geometry and the Grunsky operator



1. “Crash course” review of compact operators
2. G compact iff f asymptotically conformal

ε/3 argument

‖Txnn − Txmm‖ ≤ ‖(T − Tp)xnn‖+ ‖Tpx
n
n − Tpx

m
m‖+ ‖(T − Tp)xmm‖

≤ ‖T − Tp‖M + ‖Tpx
n
n − Tpx

m
m‖+ ‖T − Tp‖M

<
ε

3
+
ε

3
+
ε

3

for all n,m > N = N(p).
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A last observation: T ∗T

I Note that C(A) is a two-sided ideal of B(A): For T ∈ C(A)
and S ∈ B(A),

Txnk → y ⇒ STxnk → Sy ,

‖xn‖ ≤ M ⇒ ‖Sxn‖ ≤ ‖S‖ ‖xn‖ = M ′.

So both ST ,TS ∈ C(A).

I In particular, T ∈ C(A)⇒ T ∗T ∈ C(A). Thus T ∗T is a
compact, self-adjoint operator. For T ∈ C(H), a separable
Hilbert space, the spectral theorem for such operators states
that there exists a complete orthonormal sequence (en) such
that T ∗Ten = λnen.
I Note λn → 0.
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2. G compact iff f asymptotically conformal

Asymptotic conformality is any of the following equivalent
properties:

Theorem (Becker-Pommerenke ’78, Gardiner-Sullivan ’92)
Let f ∈ Σ such that E = C\f (D∗) is a Jordan domain. TFAE:

1. f (S1) is a Jordan curve J ⊂ C satisfying

max
w∈J(a,b)

|a− w |+ |w − b|
|a− b|

→ 1 as a, b ∈ J, |a− b| → 0,

where J(a, b) is the arc of J of smaller diameter between a and b.

2. The welding homeomorphism ϕ : S1 → S1 of f (S1) is “symmetric,”
i.e. its lift ϕ̂ : R→ R defined via ϕ(e2πix) = e2πiϕ̂(x) satisfies

lim
t→0

ϕ̂(x + t)− ϕ̂(x)

ϕ̂(x)− ϕ̂(x − t)
= 1 uniformly in x ∈ R
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Theorem (asymptotic conformality equivalences, cont)

3. (1− |z |2) f
′′(z)
f ′(z) → 0 as |z | → 1+.

4. (1− |z |2)2S(f )(z)→ 0 as |z | → 1+.

5. f ∈
⋃
κ<1 Σ(κ) where µ := ∂f /∂f satisfies µ(z)→ 0 as

|z | → 1−.

Tim Mesikepp Geometry and the Grunsky operator



1. “Crash course” review of compact operators
2. G compact iff f asymptotically conformal

Lemma: Grunsky coefficients and the Schwarzian

log
f (z)− f (ζ)

z − ζ
= −

∞∑
m,n=1

bmnz
−mζ−n,

and so

∂2

∂z∂ζ
log

f (z)− f (ζ)

z − ζ
=

f ′(z)f ′(ζ)

(f (z)− f (ζ))2
− 1

(z − ζ)2

= −
∞∑

m,n=1

mnbmnz
−m−1ζ−n−1.

Now let ζ → z . Taylor expand f (ζ) and f ′(ζ) at ζ = z , and be
careful. You get:
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Lemma: Grunsky coefficients and the Schwarzian

Lemma

−1

6
S(f )(z) =

∞∑
m,n=1

mnbmnz
−(m+n+2)
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Proof ⇒

We present Shen’s argument.

Suppose first that G is compact. We show

(1− |z |2)2S(f )(z)→ 0 as |z | → 1+.

Idea: build a cleverly-chosen sequence x(z) = (xm(z)) ∈ B1(`2) for
each z ∈ D∗ such that 〈Gx(z), x(z)〉 gives a multiple of
(1− |z |2)2S(f )(z), but where we know, via compactness, that
〈Gx(z), x(z)〉 → 0 as |z | → 1+.
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Proof ⇒

For z ∈ D∗, define

x(z) = (xm(z))∞m=1 =

(
1− |z |2

|z |
·
√
m

zm

)∞
m=1

. (1)

Claim 1: ‖x(z)‖ = 1.

Indeed,
∑∞

m=1 mxm = x
(1−x)2 for |x | < 1. Therefore,

‖x(z)‖2 =
(1− |z |2)2

|z |2
∞∑

m=1

m

(
1

|z |2

)m

=
(1− |z |2)2

|z |2
· 1/|z |2

(1− 1/|z |2)2
= 1,

as claimed.
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Proof ⇒

Claim 2: x(z) ⇀ 0 as |z | → 1+. I.e. for any fixed y ∈ `2,

〈x(z), y〉 → 0 as |z | → 1+

Indeed, choose M such that
(∑∞

m=M+1 |ym|2
)1/2

< ε/2. Since for
each fixed m we have xm(z)→ 0 as |z | → 1+,

〈x(z), y〉 =
M∑

m=1

xm(z)ym +
∞∑

m=M+1

xm(z)ym

≤ ε

2
+ 1 ·

( ∞∑
m=M+1

|ym|2
)1/2

< ε

for all |z | close to 1+, as claimed.
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Proof ⇒

Claim 3: Gx(z)→ 0 as |z | → 1+.

Indeed, along any sequence (zn) ⊂ D∗ with |zn| → 1+, we have
that (Gx(zn)) has a convergent subsequence Gx(znk )→ y ∈ `2 as
k →∞. Therefore

〈Gx(znk ), y〉 → 〈y , y〉 = ‖y‖2 ,

while simultaneously

〈Gx(znk ), y〉 = 〈x(znk ),G ∗y〉 → 0,

showing y = 0.
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Proof ⇒

Follows that any subsequence of (Gx(zn)) has a further
subsequence which converges to 0, and hence Gx(zn) itself
converges to 0.

Since this holds for any sequence (x(zn)) where |zn| → 1+, we
conclude Gx(z)→ 0 as |z | → 1+, as claimed.

In particular, 〈Gx(z), x(z)〉 → 0 as |z | → 1+.
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Proof ⇒
Recall Gx :=

(∑∞
n=1

√
mnbmnxn

)∞
m=1

, and so

〈Gx , x〉 =
∞∑

m=1

∞∑
n=1

√
mnbmnxnxm.

In particular, for x(z) =
(

1−|z|2
|z| ·

√
m

zm

)
m

,

〈Gx(z), x(z)〉 =
(1− |z |2)2

|z |2
∞∑

m,n=1

mnbmnz
−(n+m)

=
( z

|z |

)2
(1− |z |2)2

∞∑
m,n=1

mnbmnz
−(m+n+2)

= −1

6

( z

|z |

)2
(1− |z |2)2S(f )(z)→ 0.
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Proof ⇒

So

|(1− |z |2)2S(f )(z)| → 0

as |z | → 1+, yielding asymptotic conformality.

Q: If we merely assume that ‖G‖ ≤ κ, can we use an argument
like this with the pre-schwarzian P(f ) or S(f ) for f ∈

⋃
κ<1 Σ(κ)?
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Proof ⇐

Suppose f is asymptotically conformal. Idea: Work with continuity
of µ at ∂D to build a sequence of “truncated operators”, each of
which is clearly compact, which converge to G (in operator norm).
Will need to borrow from:

I Yilin’s talk tomorrow.

I Teichmüller theory
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Proof ⇐

Truncations: For 0 < r < 1, set

µr (z) := χrD(z)µ(z).

Then the associated conformal maps fµr are conformal on the
larger region {|z | > 1− r} ⊃ D∗, and now the quasicircles fµr (S1)
are actually analytic Jordan curves.

From Yilin’s talk tomorrow, the operators Gr := G (fµr ) are
Hilbert-Schmidt, and hence compact.

Suffices to show ‖Gr − G‖ → 0 as r → 1−.
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Aside on Teichmüller theory

Recall that one model of the universal Teichmüller space T (1) is

T (1) :=B1(L∞(D))/ ∼
= {µ ∈ L∞(D) : ess supz∈D|µ(z)| < 1 }/ ∼,

where ∼ is as follows:

For µ ∈ B1(L∞(D)), extend µ to zero in D∗, and solve the
Beltrami equation to obtain fµ conformal on D∗ with
hydrodynamic normalization f (z) = z + o(1) as z →∞. Then
µ ∼ ν iff fµ|D∗ ≡ fν |D∗ .

Tim Mesikepp Geometry and the Grunsky operator



1. “Crash course” review of compact operators
2. G compact iff f asymptotically conformal

Aside on Teichmüller theory

The Teichmüller distance between points [µ], [ν] ∈ T (1) is

τ([µ], [ν]) := inf

 1

2
log

1 +
∥∥∥ µ1−ν1

1−µ1ν1

∥∥∥
L∞(D)

1−
∥∥∥ µ1−ν1

1−µ1ν1

∥∥∥
L∞(D)

: µ ∼ µ1, ν ∼ ν1

 .

Claim: τ([µ], [µr ])→ 0. Easy to see:∥∥∥∥ µ− µr1− µµr

∥∥∥∥
L∞(D)

= ess sup|z|≥r |µ(z)| → 0

as r → 1−, by asymptotic conformality.
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Note that the Grunsky operator is well-defined on universal
Teichmüller space via G ([µ]) = G (fµ|D∗).

Recall that this period map P̂ : T (1)→ B(`2) is actually
holomorphic. In particular, it is continuous, and so

µr → µ ⇒ Gr → G

in B(`2). Thus G is compact, as claimed.
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Summary of equivalences

Geometry Area(E) = 0 E quasidisk E asymptotically-conformal quasidisk

Conformal map QC extension to Ĉ (1− |z|2)2S(f )(z)→ 0, |z| → 1+

Welding Quasisymmetric Symmetric

Dilitation Exists, ‖µ‖L∞(C) < 1 |µ(z)| → 0 as |z| → 1−

Operator G unitary ‖G‖ < 1 G compact

Some questions:

I What would the operator property be for
asymptotically-smooth quasidisks (can we fill in that column)?

I What can we say about the spectrums of the G ’s in the
various columns?
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