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Overview

Daniel: Inverse limits from Dynamic systems, and Browns
theorem giving a condition for planarity.

Hrant: Inverse limits with Poincaré inequality

*Today: How to make inverse limits with Poincaré planar, and
relationships. Motivation.

*Today: Claytors Theorem on planar metric spaces

*Today: Explanation of context/interest of planar setting.
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Why consider? Sierpinski Carpet

Interested in if there is an Ahlfors metric space Y and a
Quasisymmetry f : S3 — Y, so that Y is Loewner.

The space Y would be planar, Loewner.
Haissinski: Equivalent to attaining the " conformal dimension”
Problem: Examples?
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Scheme

B = B(x,r)

/If—fsl dMSCf/ng
B B

Ahlfors regular and (1, 1)-Poincaré sufficient for Loewner.
(Heinonen-Koskela: Almost necessary.)

Cheeger-Kleiner Inverse Limits can be made Ahlfors regular
and with (1, 1)-Poincaré.
What about planar?
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Cheeger-Kleiner Inverse Limits

{o o}
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Combinatorial irreducible objects: Each graph has a
measure p which is a multiple of the Lebesgue measure on
each edge. X; connected graphs equipped with path metric.

Compatibility with metric: 7; 1-Lipschitz, surjections,
isometry on edges

Compatibility with measure: 71 (pit1) = pi

Bounded geometry: X; each vertex degree < A and length
IT_y myt, u(e) ~ p(f) for adjacent edges.
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Axioms to focus on

m; is open
diam(7;(x)~1) < m=(+1)

Balancing: 71—?(:“’1'+1|Strv) = CiHi|Str7Ti(,,)
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Two notable examples: Laakso space

Ahlfors regular but not planar m; = 271
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Two notable examples: Laakso Diamond

Planar but not Ahlfors regular
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General way to get Ahlfors regular

X/ copies of X;, subdivided by m;;

Xit1 = |_|JN:"1 X{ identified at some subdivision points
Equally distribute measure on copies.

For any edge e, in X,, we have

unen) = [T T (mi) ™
k=1

k=1
Note

n
Diam (ep) = [ [(mi)~"
k=1
@ By choosing Nj, m, constant, or varying within a given range,
then we can ensure

fin(€n) ~ Diam (e,)?
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Example Ny = 2, my = 4 gives Diam (e,) = 272", and
tin(en) = 273" = Diam (e,)3%/2.
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Wormhole graph: Captures connectivity and diameter

For each edge e € X;, define a graph G, with edges e; for each
copy of Xj in Xjy1, j =1, dots, N;, and edges (e;, e) if some point
is identified in the copies.

Basic Lemma: If Wormhole graph is connected and m;, N;
constant, then the inverse limit space arising will satisfy all
properties and the limit is Q-Ahlfors regular and satisfies

1, 1-Poincaré.
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Ahlfors regular and planar problematic

Planar graphs, Kuratowski: A graph is planar if and only if it
does not contain the forbidden subgraphs K33 and Ks (as a
minor).

K3,3 .

Ks
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Proof of non-planarity

No double edges.

If G is a planar graph with drawing, then v — e + f = 2.

Each edge belongs to exactly two faces, but each face is
counted by at least three edges 2e > 3f. So f < %e, and
2:v—e+f§v—%e

e <3v-—06.

In Ks: 3v—6=09, but e =10

In K33: every face has at least four edges, so e < 2v — 4, but
12 -4 <9.
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Kuratowski Proof

Induction on size of graph, K; ok.
Hardest case 3-connected.

Contract an edge xy so that resulting graph is 3-connected.
Possible unless Kj.
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Ahlfors regular Cheeger-Inverse limits never planar

Consider a degree four vertex v, it will be copied infinitely often,
thus eventually there will be an embedded Ks-minor.
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Modify by quotienting:Explicit example, Substitution rule

If one quotients the vertex neighborhoods in the vicinity of a
vertex. But, how to prove Poincaré?
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Organizational Structure: Quotiented Inverse limit
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Axioms

Edge lengths of X2, s, = [[;_4

H Rows, inverse I|m|ts ' .

3] q’ preserve measure (q})*(1_,) = 47!

qJ- isometries on edges, need not be open

There are maps h{ : X,j — %51 that commute with the
diagram.

@ Doesn't distort too much: g, = gj0---0qj,,

(g;) 1 (B(x,ds))) < Cs
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Proof of Doubling/Ahlfors Regularity

Sufficient to prove uniform bounds for the graphs, and then
Measure preserving + pull to an appropriate scale. Choose / so
that r ~ s

B(y, Cs1) C (q;) "' (B(x,r)) < B(y, Cs1).
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Poincaré inequality

Sufficient to find ¢ so that for say edgewise linear functions

/\f—fgldu§/|f—c|du§0/ V| du.
B B cB

By Cheeger-Kleiner 4+ doubling, we can get the inequality on
X" at scales comparable to s;.

So, question about bigger scales.
Pull back.
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Verifying Quotient condition: in specific example

Fix x and B(x, dsy) in X/
Push to XF.
Lift along diagonal.

Lifting a connected set A from X] to X,:’:ll increases diameter
of h(A) by at most s,_1/4.

Diameter increases to at most 26s; + s/(1/4 +1/4%---) < s.
Only one vertex!!
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Why limit Planar?

Every X} is planar. X is Gromov-Hausdorff limit of these. Is it
planar?
Not automatically!
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Planarity theorem

Suppose X, are a sequence of planar graphs without cut points

which converge to an X, which has no cut points. Then X, is
planar.
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Proof, due to Kleiner

Theorem

(Claytor) If X is a locally connected continuum (Peanian
continuum) without cut points, then it is planar if and only if it
does not contain any embedded copy of K33 or Ks.

Proof involved. Somewhat cleaner proof in Moise, E. E., Remarks
on the Claytor embedding theorem, Duke Math. Journal, vol. 19
(1952) p. 199-202. Uses Brick partitions, approximation by graphs
and Moore's theorem.
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Proof of planarity theorem

Suppose X, not planar, i.e. has an embedded copy of K33 or
Ks. Lift to Xj,.

Lift approximately to X,
Connect locally.

Quotient to form a forbidden minor.
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Further comments

Planar embedding can be chosen to be a quasisymmetry.

There are uniquely defined peripheral components, which are
uniformly relatively separates and uniform quasicircles (for us,
bi-Lipschitz to circles).

The second is necessary, and can be used to prove general
embedding results.
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If time, No cut points and Loewner and Poincaré

Tools: Modulus, Chained balls

If Q-Ahlfors regular X satisfies a (1,1)-Poincaré inequality, then it
is Loewner.

Theorem

If X is Q-Loewner then it is locally connected and does not have
local cut points.
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Loewner, Poincaré and cut points

I" a family of curves, often I'(E, F) connecting curves from E to F.
Mod (") defined as:

Definition Loewner: X is Q-AR and Q-Loewner: For all
connected, non-degenerate, disjoint continua E, F

d 5
A(E7 F) = min{ Diam ((E), Diam (F)}
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No cut points.

Theorem

If X is Q-Loewner then it is locally connected and does not have
local cut points.

Modulus through a point null: p = WlB(x,l)\B(x,z—")-
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Poincaré inequality

X satisfies a (1, 1)-Poincaré inequality if for every f : X — R
Lipschitz and with p an upper gradient

V¢ [F(4(0)) — F(3(1)] < / p ds.

Y
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Heinonen-Koskela: (1,1)-Pl implies Loewner

Let p be admissible for Modg(E, F).
Define u(x) = inf, fv p. Upper gradient bound:
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Heinonen-Koskela: (1,1)-Pl implies Loewner

Let p be admissible for Modg(E, F). Consider first only E, F at
unit scale (an iteration for other sets)

Define u(x) = inf, [ p.

Construct cover of E or F Depending on average.

[ g9 dp > rQlem@

— 1
aaoa=g
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