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I. Abstract

Whitebark pine (Pinus albicaulis) is a valuable wildlife resource in the
Western United States and Southwestern Canada. Tts large seeds are a pre-
ferred food for a variety of birds and mammals, especially Clark’s nutcrackers
(Nucifraga columbiana), red squirrels (Tamiasciurs hudsonicus),and bears
(Ursus spp.).Whitebark pine communities provide food and shelter for non-
granivorous species as well. (Kendall and Arno, 1989)

The importance of whitebark pine as a wildlife food arises from the large size
and high lipid content of its seeds. The seeds are a concentrated, high quality
food source that can be stored for 12 months or more in squirrel middens or
nutcracker caches; other high elevation foods are more ephemeral. Typically,
birds and mammals harvest almost all the viable seeds produced. (Kendall
and Arno, 1989)

Whitebark pine seed consumption by grizzly bears in the Yellowstone area
is closely correlated with cone crop size. During good cone crop years, Yel-
lowstone bears feed almost exclusively on pine seeds in Autumn. Good cone
crops appear to be positively correlated with grizzly bear cub production and
early weaning of young; poor whitebark pine cone crops are associated with
increased grizzly bear mortalities and conflicts with humans. (Kendall and
Arno, 1989)



I1.1 Presentation of the Problem.

The following research is based on data provided by David Spector and Adam
Morril for their Master’s Thesis “The Influence of Tree-form, Competition,
and Stand Characteristics on Cone Production in Whitebark Pine throughout
the Greater Yellowstone Ecosystem” directed by Kathy Hanson, Associate
Professor of Geoghraphy, M.S.U.

For many reasons related to the bears, environment, economy and areas sur-
rounding Yellowstone National Park, the interest in food resources for grizzly
bears has been increasing, and with it, the interest in whitebark pine due to
the importance of their seeds for the bears’ diet. One of the goals in this
study was to find a measure which could determine whether or not a tree
was a good cone producer. This measure had to be based on the amount of
cones produced over several years and had to characterize both yearly cone
production and regularity in the production process.

The other research question presented was related to the regression analy-
sis. Data corresponding to different variables influencing cone production
were collected for each tree. The goal here was to determine which of those
variables were appropriate for explaining this measure of “goodness of cone
production ” and be able to use this information to predict whether or not a
stand would have trees with good cone production. Another important rea-
son was to determine the potential of managing stands in order to improve
cone production, benefiting both a potentially threatened tree and endan-
gered grizzly bears in the Greater Yellowstone Ecosystem.



I1.2 Background.

The data were collected throughout the Greater Yellowstone Ecosys-
tem. Several measurements corresponding to different aspects of the tree,
such as crown area, cone production and competition with other trees, were
taken to assess the structure and health of whitebark pine trees.

The Interagency Grizzly Bear Study Team has established 19 white-
bark pine cone count transects (or stands) within this enviroment. Of these
transects, 12 were selected for this study based on factors such as:

Jocation within Greater Yellowstone, number of years of cone counts per site,
habitat type and cover types (structure of the forest, dominant vegetation).
Sites with a greater number of cone counts were given preference over those
having data from fewer years. However, sites with fewer years were also cho-
sen based on their habitat and/or cover types. All habitats and all cover
types were represented in the study. This allowed for 120 trees from 12
sites distributed throughout the Greater Yellowstone Ecosystem, with 9 to
18 years of cone counts, in a variety of habitat types and cover types, to be
studied.

The field methodology for each measurement will now be described. The
diameter at breast hight (dbh) was measured for each stem on the subject
tree using a standard dbh measuring tape. Breast height is approximately
4.5 feet from the ground, measured from the uphill side of each stem. Stems
were defined as individual trunks within a tree cluster, and branches that
diverged from any of these trunks below breast height.

Approximately 60 tree cores were taken from trees that had not already been
aged at the time of transect establishment. Tree cores were taken at breast
height from the largest diameter stem on the uphill side of the tree. Growth
rings were counted by eye to determine age of individual trees.

A Spiegel-Relaskop was used to measure tree height and crown height. Mea~
surements were taken from an observation point 50 feet from the subject tree
to the top of the tree, the bottom of the tree and the bottom of the crown.
Further crown measurements were made in order to determine an approx-
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Imate crown area and crown volume. Due to the asymmetric crown shape
of whitebark pine and the large variation in crown structure in whitebark
pine, calculations of crown area were based on 3 rectangle and calculations
of crown volume were based on a hexahedron. Although there are more ac-
curate methods for measuring crown volume, this method was chosen due to
its ease and speed so that it could be easily duplicated in future whitebark
pine stand assessments.

The amount of competition for each tree was determined by using a Spiegel-
Relaskop to measure basal area in square feet of competing trees surrounding
each subject tree. The number of trees (stems) counted was multiplied by
the basal area factor (BAF) to determine the basal area in square feet of the
competing trees.



II1. Quality Control Methodology.

The first goal in this study is to find an index for determining whether or
not a tree is a good cone producer. After several meetings with David Spec-
tor, Adam Morill, Katherine Hanson, Courtney Kellum (graduate student
of statistics) and John Borkowski (Associate Professor of Statistics M.S.U.},
the conclusion was that a good cone production tree is not just one that pro-
duces a large quantity of cones but can also the one that produces a certain
amount of cones regularly.

If the measure taken as the index for classifying the trees was the total num-
ber of cones or the mean number of cones, then the masting trees (those
ones with years of large production regardless of the regularity) would be
classified as “good” trees even though they do not produce cones regularly.
As an example, a tree with this pattern of production along 10 years:

000000200000
would be equally clasified as the tree with the following pattern:
| 20 20 20 20 20 20 20 20 20 20.

For this study the second tree is considered a “better” cone producer than
the first one. QOur task is to find an index that will penalize the lack of
regularity in the first tree.

Another index considered for the clagsification was:

mean—of—cone—production
standard—deviation

but since the pattern of cone production is skewed most of the time {(as you
can observe in Figure # 1), the mean is not representative of the center of the
distribution. Therefore, and as suggested by John Borkowski, we decided to
use statistical quality control methods in order to create an index that sat-
isfies the biological aspect of the study as well as the statistical one.



Statistical methods are used in industry to study and improve the per-
formance of a manufacturing process. This performance is related to the
variability of the data from the process (the more variability in the data the
worse the process’ performance) and it is also related to the aim or the tar-
get for the process characteristic of interest. In this case, we will apply these
methods to natural science data. Specifically, each tree will be considered as
a “production factory of cones”.

When a production process is studied statistically, the primary interest is
“how well our manufactoring process meets the specifications required by the
company”. In this research, we will study the production data corresponding
to each one of the trees in order to rank them with respect to a measurement
that indicates the quality of each tree cone production.

In process capability analysis there are indexes (called process capability ra-
tios) that express different aspects of process capability in simple quantitative
ways. When it comes to study the capability of a process many other statis-
tical tools are used: charts, histograms, distributions, etc. Process capability
ratios are a simple way of determining how good the process is. We will now
show how to calculate these process capability ratios.

Most, manufacturing processes have Specification Limits. These limits are
values used to determine whether or not a product meets the specification
required for the manufacturer. The largest allowable value for a quality char-
acteristic is the Upper Specification Limit (USL) and the smallest al-
lowable value for a quality characteristic is the Lower Specification Limit
(LSL). These limits are used to calculate the process capability ratios. For
example, the CP ratio is defined as:

_ USL—LSIL

CP
6c

where o is the standard deviation of the process.

In this case the capability ratio is only a measure of the variability of the
data. I'or example, it does not give any information about the mean of the
production process.

There are different process capability ratios. Each ratio provides different
information about the process we are studying. In this research the CPL
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(Lower process rapability ratio) will be used to order our trees. The reasons
we choose this ratio, were:

(a) We need a ratio that took into account both production quantity,
and variability of production (depending on the year).

(b) We wanted a ratio to measure how good the process was with
respect to the lower part of the process. This means that we are con-
cerned about how well our tree does in producing a minimun amount
of cones per year, but we are not going to put any limit in the upper
part of the process. That is, the greater production of cones we have,
the better. However, we will study whether or not the tree meets the
lower specification limit required for the production of cones.

The theoretical form of the capability ratio that we are going use in our
analysis is:

u— LSL

CPL= Y

where p is the mean of the process and ¢ is the satandard deviation of the
process.

Although the formula for the CPL is theoretical, this ratio will be useful
if the process follows certain assumptions. The assumption for the process
capability ratio is that the distribution of the data has to be normal or almost
normal.



Figure 1: Histograms corresponding to cone production for trees C1, T3, T4
and Ul. Weibull distribution is used to smooth the histograms.
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Figure 4+1 contains the histograms of the data from four trees. None
of these histograms correspond to data coming from a normal distribution.
Then, it is natural to ask what do we do if our assumption is not followed.
The statistical package SAS was used to find the process ratios as well as
provide the solution for this problem.

The first thing to do is to choose an appropiate distribution that represents
the data. As you can see from the graphs in Figure #1 the Gamma, Beta or
Exponential distribution would be appropiate. However, we wanted a sin-
gle, but very flexible family of distributions that could represent every single
tree, with each tree having different estimated parameter values. The family
choosen was the two-parameter Weibull distribution which has the following
density function:

85" eap(-(3)) =>6
px) = { v, <9

where
§ = scale parameter {6 > 0).
(3 = shape parameter (3 > 0).

As you can see in Figure #1, the Weibull density function is smoothing the
histograms and fits reasonably well the data for every single tree. When the
software program SAS {its the distribution, the scale and shape parameters
are estimated for each case (tree) based on the data.

The distribution goodness of fit was checked using the following tests statis-
tics based on the empirical distribution function (EDF): Anderson-Darling
and Cramer-von Mises statistics. For every single case the lack of fit with
the Weibull is not significant, implying that the Weibull distribution fits the
data reasonably well. This is due to the fiexibility of the Weibull distribution.
That is, it can represent data arising from distributions with very different
shapes.

Once we have the fitted distribution, SAS calculates “modified” capability
ratios based on the fitted distribution. The ratios are “modified” because the



ratios are no longer based on statistics, such as the mean or the standard
deviation, but on ordered statistics, such as the median or the percentiles.

These modified ratios are:

Fys — LSL

CPL=
Fos — Po.ooiss

where Fy; is the median for the fitted distribution, LSL is the Lower Spec-
ification Limit, and Py gg135 is the .135 percentile of the fitted distribution.
The percentiles are already included in the Quality Control Package of SAS.

The modified capability ratios for the fitted distribution are used, and not
Just simply the percentiles computed from the raw data, because many of
the trees have data with a median of 0. Therefore, we group the data into
histograms after we fit a distribution and calculate the statistics based on
that distribution.

In conclusion for this first part of the study , we found an index that consid-
ers both quantity of cone production and regularity. This index also satisfies
the classification criteria for the trees approved by the biologists-geographers
implicated in the study. :
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IV Regression Analysis.

As explained in section II.2, data corresponding to different variables hav-
ing an influence on cone production were collected from 1980 to 1997. The
second goal in this study is to use variables from this data set to construct
a multiple regression model of the response: the CPL index, which is the
measure of productivity used for ranking the trees. This information will be
used the future for predicting cone productivity and managing the stands in
order to have better cone producers.

There are two other measures of productivity; average number of cones
and total number of cones. Although a regression analysis has been con-
ducted with these response variables, these measures do not take into account
the variability in the cone production process. Therefore, we will just men-
tion the results for these analysis at the end of this section. The statistical
software packages used for this analysis were SAS and 5-Plus.

IV.1 Scaling and transforming the data.

The situation where predictor variables are closely linearly related to each
other is called multicollinearity. In order to improve this situation, the
variables were standarized, meaning that they were centered and scaled (the
vector of their values has norm one). Therefore, if the columns of the design
maitrix, representing vectors of the explanatory variables, show any type of
linear relationship, this is not because of the difference in the location of
the variables, which could cause a misleading multicollinearity alarm, but
because of ’real’ multicollinearity problems.

The goal is to check which variables are correlated and why, so we can decide
which ones will be in the model. One way we assess the dimension of the
relationship of an independent variable with the rest of independent variables
is using the condition number of the design matriz n;:

T = 1/)\,,1“/)\3-
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where A; is the eigenvalue of the design matrix corresponding to the stan-
darized explanatory variable ;. Then we can judge the size of the eigenvalue
related to the variable z; in relation with the rest of eigenvalues. In Table 1
we have an example of what the condition number of a matrix would be for
the following model:

CPL = 0.6295 (I)
+ 0.0001*Crown Area (CA)
+ 0.00005*Cross Sectional (XS)
+ 0.0036%Total tree height (TH)
- 0.0003*Total Basal Area (BS)
- 0.001*Ensp. Basal Area (EB)

Table 1

EV CN I CA XS TH BS EB
4.390  1.000 0.002 0.011 0.016 0.002 0.005 0.010
0795 2.350 0.001 0.010 0.000 0.000 0.001 0.909
0.466  3.069 0.006 0.010 0.793 0.004 0.023 0.003
0.260 4.107 0.003 0.772 0.187 0.001 0.057 0.018
0.068 8.050 0.188 0.163 0.001 0.059 0.872 0.001
0.021 14.340 0.800 0.034 0.002 0.934 0.042 0.059

EV represent the Eigenvalues corresponding to the design matrix where the
variables have been standarized. The smallest eigenvalue would be 0.021.

CN represent the Condition Numbers 7; corresponding to each variable, the
highest condition number is 14.34, which indicates no collinearity problems
among these explanatory variables. The rule of thumb commonly used for
considering collinearity problems is the condition number to be larger than

30. The rest are the values corresponding to the proportion of the variances
for each variable.

The results for the final model were:
CPL = 0.695888(I)
+ 0.0043560*Sqrt. Crown Area(SCA)

- 0.000828*Total Basal Area (BS)
- 0.000019555*Int1 (Int1)
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+ 0.000289%Tnt2 (Int2)
- 0.000728*Int3 (Int3)
+ 000033076¥Int4 (Int4)

EV CN I SCA BS Intl Int2 Int3 Intd
2.50870 1.00000 0.0000 0.0213 0.0069 0.0247 0.0099 0.0252 0.0146
1.79470 1.18230 0.0000 0.0180 0.0481 0.0095 0.0326 0.0029 0.0109
1.00000 1.58389 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.89994 1.66962 0.0000 0.0061 0.0142 0.7643 0.0008 0.0205 0.0039
0.56151 2.11371 0.0000 0.2383 0.0097 0.0959 0.0065 0.1794 0.0001
0.17409 3.79608 0.0000 0.0682 0.4411 0.0997 0.3225 0.1089 0.1703
0.06106 6.40971 0.0000 0.6482 0.4800 0.0058 0.6278 0.6630 0.8002

W}iere

e Intl is the interaction between Sgrt. ensp. basal area (which reflects
the amount of competition between the whitebark pine and the En-
gelmann Spruce, another tree grown in areas close to whitebark pines)
and Crown Area.

e Int2 is the interaction between Square root of the total basal area and
Total tree height.

e Int3 is the interaction between the number of stems and Total tree
height.

e Int4 is the interaction between the number of stems and Crown Area.

The condition number for the design matrix of this model is 6.41. We do not
have collinearity problems and the last row shows that the highest proportion
of variance corresponds to the variable Intd. Tnteractions between variables
are explained the following way: the result of combining the two variables
has a joint effect on the response variable. In this case, the ones selected are
significant in the explanation of the variance in the model response.

The procedure was to standarize the variables in order to choose the ap-
propiate ones, study the correlation among them and whether or not they
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have collinearity problems, analyze the model, and find the estimates of the
parameters.

In biological data, a transformation of a variable frequently explains even
more of the variability in the response than the original variable itself. By
plotting each explanatory variable against the response we observe the type
of relation between the two variables. Therefore, we can use these plots to
decide if we need to transform any of the variables and how they should be

transformed. In Figure 2 we observe how the data suggest a square root
transformation for the variables CROWN AREA and CROWN VOLUME.

Figure 2. Crown Area and Crown Volume against the response variable CPL..
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The variable ensp. basal area shows the same pattern suggesting a square
root transformation as well. The rest of the variables, however, do not sug-
gest any possible transformation to improve the multiple regression analysis.

IV.2 Choosing the variables.

David Spector and his master thesis committee decided which variables made
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more bioligical sense for explaining the response variable. These variables
were: Crown Area, Total Tree Height, Total DBH and Total Basal Area,
but as the proportion of the variance explained with these variables was not
satisfactory we decided to use statistical methods to improve the model.

The procedures used for the selection of the variables are called the Foward
Selection Procedure, Backwards Selection Procedure and Stepwise Selection
Procedure. The Foward Selection Procedure starts with no variables in the
model and the variables are sequentially added depending on how much re-
maining variability in the response is explained by an individual variable.
The greater the remaining variability explained the sooner they enter in the
model. The Backwards procedure starts with all the explanatory variables
and sequentially eliminates from the model those variables not needed for
the explanation of the variance. The Stepwise Procedure is a combination of
the two of them. It starts with no variables in the model, adds the variables
which most influence the response and considers if there is any variable which
should be deleted from the model at each step. The variables were chosen
depending on the value of R? or adjusted — R? (if the value of adjusted — R?
increases the variable to be added is 'needed’in the model). That is, it is wor-
thy to be in the model even though adding a variable to the model is going to
increase the number of parameters to estimate and increases the possibility
of multicollinearity among the variables. The influence of the variable with
respect to the response is determined by the p-value for the F-tests.

Among the models resulting from the different methods, the final model was
chosen based on the variables included (under David Spector’s criteria) and
on the value of R? and adjusted — R2. The results are:

CPL = 0.695888(T)
+ 0.0043560*Sqrt. Crown Area(SCA)
- 0.000828*Total Basal Area (BS)
- 0.000019555*Int1 (Intl)}
+ 0.000289*Int2 (Int2)
- 0.000728*Int3 (Int3)
1 000033076*Int4 (Int4)

The summary of this model is the following:
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Coef. Variables Estimate Std.Error t-value p-value

INTERCEP 0.695888 0.05305885  13.115  0.0001
SCA 0.004356 0.00247137 1.763  0.0809

BS -0.000828 0.00020879  -3.963 0.0001
Intl -0.000019555 0.00000558  -3.505 0.0007
Int2 0.000289 0.00007421 3.896 0.0002
Int3 -0.000728 0.00032294  -2.254 0.0263

Int4  0.000033076 0.00002422 1.366  0.1750

Residual standard error: 0.11034 on 105 degrees of freedom
Multiple R-Squared: 0.335
F-statistic: 8.814 on 6 and 105 degrees of freedom, the p-value is <0.0001

Summary

The model explains 33.5% of the variability in the CPL response and has
p-value less than 0.0001, which measures the ‘goodness of the model to fit
the data’. Tn this case we can accept the model. The variables have a
significant influence on the response (small p-values), and the standard errors
are reasonably small.

CORRELATION MATRIX

SCA BS Intl Int2 Int3
BS -0.05682
Int1 0.22348 0.14519
Int2 0.11745 0.84003 0.31211
Int3 0.38256 0.17193 0.17007 0.30223
Int4 0.74098 0.00412 0.13733 0.07355 0.75911

The correlation matrix shows how each variable is linearly related to the
rest. In this study the correlation matrix has been mainly used to choose the
variables {at the same time using the procedures and the recommendations
made by David Spector and his committee) to build the model, as well as to
avoid collinearity problems.
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IV.3 Diagnostics

Once we have chosen the model for the data:

CPL = 0.695888(I)
+ 0.0043560™Sqrt. Crown Areca(SCA)
- 0.000828*Total Basal Area (BS)
- 0.000019555*Int1 (Int1)
+ 0.000289*Int2 (Int2)
~0.000728*Int3 (Int3)
+ 000033076*Int4 (Int4)

we have to check the diagnostic plots for the residuals in order to determine
whether or not any of the Gauss Markov conditions needed to use these
methods:

o E(e;) =0, (expected value for the residuals = 0),
s E(e?) = o?, (homocedasticity),
e E(e;e;) = 0 when 1 # j, (uncorrelated errors),

have been violated. The first plot to study is the residuals of the selected
model vs. the predicted values given in Figure 3:
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Figure 3. Residuals vs. Predicted values.

Plot of the Residuals w the Prediciad Values
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The plot shows residuals randomly scattered about the horizontal line Resid
= 0. The interpretation of the plot is that no special pattern is observed in
the plot, implying that residuals are uncorrelated, the equality in the variance
of the different explanatory variables and the mean of the distribution for
the residuals being zero.

A particular pattern could indicate several situations such as not including
a variable that is needed in the model, some of the variables included should
be transformed or weighted or the conditions of homogeneity in the variance
or uncorrelation have been violated . The situation for this model is ideal in
the sense that we do not observe any strong particular pattern.
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The next plot displays observed values vs. predicted values. This plot is use-
ful to check how well our model predicts the actual values.

Figure 4. Observed values vs. Predicted values.

Observed vs Predicted Values
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In Figure 4 we observe how well the predicted values (straight line) fit the
actual data. The desirable plot would show the actual data (dois) close to
the line, which would indicate a R2%-value close to one. For biological data
is frequent for the model to explain between 30 and 50% of the data, in our
case the model explains 33.5% of the data.

Another assumption we need to check is whether or not the residuals follow
a normal distribution by using a ¢}@plot of the residuals, as shown in Figure
a0
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Figure 5. Normal QQplot of the residuals.

Normal QG—Plot of the Residuals
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The residuals are supposed to follow & Normal distribution N (0, 1), which
is represented by the straight line. The residuals for this model do not
differ significantly from the line, although there is a small discrepancy in the
tails (extremes of the plot due to the positive kurtosis (the probability is
concentrated in a single peak)) and the slight left skewness of the residuals’
distribution, as you can observe in Fiqure 6
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Figure 6. Histogram for the residuals. Normal line smoothing the histogram

Histogram of the Residuals
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Once the assumptions of normality, homocedasticity and uncorre-
lated errors are accepted for the distribution of the residuals in this model,
we can accept the model. That is, the conditions required for the method
used are appropriate.

IV.4 Other models

Although the model chosen was the best model from the statistical point of
view, some other models were studied and analyzed. David Spector and his
commitiee decide that the following model was the best one from the biolog-
ical point of view:

CPL = 0.599148 (I)
+ 0.005886*Sqrt. Crown Area (SCA)
- 0014438*Stems (STE)
- 0.000288*Total Basal Area (BS)
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+ 0.003012*Total Tree Height (TH)
- 0.014438*Stems (STE)
- 0.005314%Int.1 (X1)

where I1 is the interaction between number of stems (STE) and sgrt. ensp.
basal area. The summary of parameters’ estimates, the corresponding p-
valyes and the correlation matrix are:

Coef. Variables Estimate Standard Error t-value p-value

Intercept  0.599148 0.06642125  10.619 0.0001
SCA  0.005886 0.00149591 3.934  0.0001
TH  0.003012 0.00101929 2.955 0.0038

STE  -0.014438 0.01051829  -1.373 0.1728

BS -0.000288 0.00011394  -2.526 0.0130

11 -0.005314 0.00171506  -3.099 0.0025

Residual standard error: 0.11209 on 106 degrees of freedom.
Multiple R-Squared: 0.3071
F-statistic: 9.398 on 5 and 106 degrees of freedom, the p-value < 0.0001

CORRELATION MATRIX
SCA BS STE TH
INT1
BS -0.05682
STE 0.30477 0.00317
TH 0.28678 0.41155 -0.03597
I1  0.07920 0.15168 0.08494 0.28422

The selection of this model was based on the biologicul sense of the explana-
tory variables and the possibility of finding a biological explanation to the
interaction used. Diagnostic plots were conducted for this model and we did
not observe any type of violation of the Gauss-Markov conditions. Good
results are obtained when we analyze the collinearity among the variables.

Before choosing the CPL capability ratio as an index for ranking the trees,
the measures taken as indexes were average number of cones and total
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number of cones, for both measures a multiple regression analysis was con-
ducted. The methods used to find the 'best’ model were the same as the ones
used for the CPL ratio. This is the model for the average number of cones:

Average number of cones (AV) = - 6.572350 (I)
1 1.143099*Sqrt. Crown Area (SCA)

_ 0.011645%Cross Sectional (XS)

+ 0.016171*Total Basal Area (BS)
+ 0.000013011*Int1 (T1)

_ 0.000061408*Tnt.2 (12)

where I1 is the interaction between CROWN AREA (without taking the
square root) and X8, 12 is the interaction between CROWN AREA and

BS. The corresponding analysis is:

Coef. Variables  Estimate Standard Error t-value p-value

INTERCEPT -6.572350 5.20050560  -1.264  0.2091
SCA 1.143099 0.22441993 5004  0.0001

I1  0.000013011 0.00000274 4740  0.0001

BS 0.016171 0.01175320 1.376  0.1718

12 -0.000061408 0.00001819  -3.377  0.0010

XS -0.011645 0.00229407  -5.076  0.0001

Residual standard error: 7.95695 on 106 degrees of freedom
Multiple R-Squared: 0.4904
F-statistic: 20.402 on 5 and 106 degrees of freedom, the p-valueis < 0.0001

All the variables appear significant in this model. The proportion of variance
explained with the model is 49%, the errors seem stable, and there are no
collinearity problems, as we can observe from the following matrices: the
condition number matrix to check collinearity and the correlation ma-
trix to see how corvelated the variables are.
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CONDITION NUMBER MATRIX

EV CN I SCA  Intl BS Int2 XS
3.08138 1.00000 0.0000 0.0138 0.0125 0.0013 0.0107 0.0155
1.16938 1.62328 0.0000 0.0028 0.0039 0.2516 0.0141 0.0073
1.00000 1.75539 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.58473 2.29560 0.0000 0.0982 0.0175 0.0417 0.0329 0.1415
0.09367 5.73546 0.0000 0.3638 0.6909 0.0712 0.0774 0.5960
0.07084 6.59534 0.0000 0.5213 0.2751 0.6343 0.8648 0.2396

The condition number for this model is 6.59, we do not have collinearity
problems, although from the last line (as it is expected) we have a strong
correlation among Sqrt. Crown Area, Total Basal Area and the interaction
between these two variables.

CORRELATION MATRIX

SCA XS BS 11
XS 0.55688
BS -0.05682 0.03324
I1  0.72730 0.87620 0.01767
I2  0.78449 0.50080 0.43879 0.66243

The analysis for the response total number of cones is very similar to the
previous one. Therefore we would just show the final model and the results
for the correlation matrix:

Total number of cones (T'C) = - 69.709795 (I)
+ 10.602894*Sqrt. Crown Area (SCA)
- 0.103586*Cross Sectional (X8)
+ 0.163485*Total Basal Area (BS)
+ 0.000116%Int.1 (I1)
- 0.000569*Int.2 (I2)
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Below is the correponding analysis:

Coef. Variables Estimate Standard Error t-value p-value

INTERCEPT -69.709795 46.71485704  -1.492  0.1386
SCA  10.602894 2.01590876 5.260 0.0001

XSE  -0.103586 0.02060708  -5.027  0.0001

BS 0.163485 0.10557607 1.549 0.1245

I 0.000116 0.00002466 4.702 0.0001

12 -0.103586 0.02060708  -5.027  0.0001

And the correlation matrix would be:

SCA XS BS I1

XS 0.55688

BS -0.05682 0.03324

I1 0.72730 0.87620 0.01767

I2  0.78449 0.50080 0.43879 0.66243
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V. Conclusions and Final Comments.

After several meetings with David Spector, Adam Morill, Kathy Hanson,
Courtney Kellum and John Borkowski, the goal was to find an index to rank
the whitebark pine trees depending on the quantity of cone produced and
the regularity in the cone production process. Tn section 111 we explained
how the CPL was chosen as cone production index among the diferent op-
tions, but it has not been explained why the lower specification limit in the
capability analysis is “zero’.

The use of pine seeds by the bears was studied over several years, {Mattson
Reinhart, 1990). Tt was concluded that the heavy use of the tree occurs when
the crop’s average was at least 13-23 cones per tree. Somehow, we wanted to
consider this boundary into the index CPL making the lower limit to be 20.
This resulted in indices with large negative values since many of the trees
have a median of zero cones produced. Therefore, because the ranking of the
trees did not change, we decided to choose a lower limit of zero.

From the regression point of view, the most important conclusion from
this study for me has been the difficulty of finding a model that reason-
able explains the collected data due to the large variability found in natu-
ral/biological data.

The fact that variables involved in the study were highly correlated made
the selection of the model more complicated, (i.e. the Crown Volume data
were obtained based on the Crown Area values, there were different meaures
of Basal Areas, the Number of Stems was highly correlated with the DBH).
Although we knew apriori which variables should not be together in the
model because they were highly correlated and they would explain the same
proportion of the variability, the selection was complicated in the sense that
there were many different combinations among those variables equally valid
for explaining the variability in the data. One of the decisions was to choose
between the Crown Volume and the Crown Area. For some models, the Vol-
ume was a better regression variable than the Area, and, viceversa. Both
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variables also explained the same proportion of variance. Finally, we decided
to use the model with the Crown Area because David Spector thought it was
more biologically accurate.

Another concern about the chosen models was the lack of significance of the
Interaction term in the models. Thus, it makes sense biologically to remove
the Interaction term from the model: If the tree has height or area ’zero’, it
is not going to produce cones. Therefore, the CPL (response variable) would
be ‘zere’. The problem would be that we could not use R? as measure for
the proportion of the variance explained by the model, and since R? is the
standard accepted and use for biological studies, we decided not to remove
the Interaction term from the models.

The fact that the model chosen under the statistical method based on the
inclusion of statistical significant variables is not the same as the one cho-
sen by the biologists/geographers involved in the study is mainly due to the
difference in explanatory variables used. Even though the model selected by
David explains less variability of the data, the interactions in this model can
be understood and explained from the biclogical point of view more easily.
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