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1 Introduction

Estimation of unknown parameters is an important component of nearly all
conventional data analyses. Statisticians are rightly concernedwith the lack of
robustness that characterize many of the usual estimators. Often, the parameters to
‘be estimated also suffer from lack of robustness. That is, a small change in the
underlying distribution can result in a large change in the value of the parameter.

In this paper, robust estimation and related topics are considered, especially
the influence function and its application. In section 2, robust estimation, the
influence function, and the breakdown point are defined and illustrated. In section
3, estimates of standard error based on the influence function are described. In
section 4, applications of the influence function are illustrated. An example of
variance of trimmed means is illustrated in section 5.

Much of material in this paper was obtained from Wilcox (1997) and Staudte
and Sheather (1990). '

2 Robust Estimation and Properties

Location and scale measures are two types of measures that characterize a
distribution. These measures are said to be robust if they are insensitive to slight
changes in a distribution. The basic tools for judging robustness of the measures of
location and scale are infinitesimal robustness and quantitative robustness.

2.1 Infinitesimal Robustness

An estimator or parameter is said to have infinitesimal robustness if its influence
function is bounded. The influence function measures the effect on an estimator or
parameter of deviation in a distribution.

Let F' be a distribution function. A parameter of F', say 6, can be expressed as

a functional of F":
0 =T(F).

To define the influence function, another distribution function is needed. Let z
be an arbitrary value in the support set of F' and let

_ [0, ify<uz;and
0 (y) = { 1, ify> .
Note that d, is a degenerate distribution with probability mass one at z.
The influence function IF(z) of T" at F' is defined (Hampel, 1974) as
0—0 |
[F(z) = lim , (1)

e—=0 €

where R
0 =T(F;.),

3



Robust Estimation 3

and
Fre=(1—€F +€by.

The distribution function, F, is a mixture distribution, where an observation is
randomly sampled from distribution F' with probability 1 — € and from distribution
0, with probability e.

In equation (1), IF(z) is the relative influence of z on 6 when the probability of
sampling from §, is arbitrarily close to 0. To illustrate the influence function,
suppose that F' has mean p. It follows that F, . has mean (1-¢)u + ez. The
difference between the mean of F; . and the mean of F' is ¢(z — u). This shows that
F, . is similar to F' when ¢ is small.

2.1.1 Influence Function of the Population Mean

Consider the influence function of the population mean, if
0 = E(X), then § = (1 — €)0 + ez,

and

D

-6
€

Thus, IF(z) = = —  which does not depend on F'. Also the influence function is
unbounded in z. That is § does not have infinitesimal robustness.

=z -—0.

2.1.2 Influence Function of Quantiles

Consider the influence function of a quantile. Let z, be the ¢'" quantile of F. That is
F(z,) = q. To find the influence function of a quantile, first define the ¢'t quantile as

zq = inf{zg; F(zq) > ¢}

Let f(z) represent the probability density function. Assume that f(z,) > 0 and f is
continuous at z,. :
It is shown in Appendix A that the influence function of z, is

L ifx < g

f(zq)? i
IF,(xz) =< 0, if z = z4; and (2)
'quﬁ’ if z > z,.

This influence function is bounded, so the quantiles have infinitesimal
robustness.

2.1.3 Influence Function of Correlation Coefficient

A principal utility of correlation is to determine the linear relationship between two
random variables, X; and X,. The corresponding measure of correlation is

Oz

P12 = .
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The limiting value of p;2 = 0 occurs when X; and X, are independent or
uncorrelated. In contrast, the value of p12 = 1 occurs when X5 is a linear function of
X]_ (X2 =qo -+ ﬂXl)

The conventional estimator of pq is

(X1 — X1) (X — Xo)
\/E(Xlz - X1)2E(X2Z - X2)2

T =

This estimator is called the Pearson’s correlation coefficient. It is a biased
estimator of p;, for all pyy satisfying |p1a| € (0,1). The bias is small when sample
size is large. If p;o= 0, then r is unbiased and if po = +1, then r = £1.

A problem with p;s is that it lacks robustness. It is sensitive to slight changes
of the marginal distribution and its estimator can be affected by outliers.

Consider the influence function of the correlation coefficient. The parameter P12
is a functional and it can be written as

E(X1X2) — E(XI)E(XZ)
VIE(X?) — E(X1)2)[B(X3) — E(X2)?]

It is shown in Appendix B that the influence function of pis is

P12 = T(FX1,X2) =

1
IF(w) = 2129 — §P12(Z% +125), (3)

where z; = “#. Note that E(IF(w)) = p12 — 5,012(1 +1)=0.
This 1nﬁuence function is not bound. That is pi2 does not have infinitesimal
robustness.

2.2 Quantitative Robustness

The minimum value of €, for which a functional, T'(F} ), goes to infinity as z gets
large is called the breakdown point of T'. To illustrate this concept, again consider

Fpe=(1—¢€)F +¢d,

which has mean (1 — €)u + ez. Thus for any € > 0, the mean of Fj . can go to
infinity by increasing z.

An estimator is said to have quantitative robustness if its breakdown point is
greater than 0. Also the breakdown point of any equivarient location estimator
cannot exceed 0.5 (Goodall, 1983, p.357). The general idea of breakdown point is to
describe the effect of a small change in F' on some functional T'(F).

The breakdown point of the population mean is 0 because for any € > 0, the
mean can go to infinity by allowing x to go to infinity. In contrast, the breakdown
point of the median is 0.5. This is the largest possible value for a location estimator.
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3 Influence Function Estimates. of’ Standard
Error

The standard error of estimate is a measure of dispersion of the distribution of the
estimator, so it indicates the accuracy of the estimator. '
Let T, = T(1, ..., T,) be an estimator of a parameter §. The standard error of

an estimator T, is SE[T,] = \/Var(T,). If there exists a function V(T F) that
satisfies nVar[T,] — V(T F), then the standard error can be approximated as

SE[T,} = /AEEL _
In many cases, V (T, F) = Ep[IF(x)]* therefore we can estimate V (T, F) by
V(T,F) = Ep, [IF(z ZIF2 (). (4)

Accordingly,

SE[T,] = \) 515 i IF (z;)2. 5)

The influence function estimate of the standard error is obtained by dividing (4) by
n and taking the square root. The result is given in (5). For example, the influence
function of mean is IF(z) =z — T'(F'), and an estimate of asymptotic variance is

equal to & Y% (x; — Zn)? Thus the influence function estimate of standard error is

SRS EEND YR

1=

—

where
n—1

3.1 Justification for Equation (5)

This material is taken from Staudte and Sheather (1990, p.62-63). Let 1, ..., z, be
a random sample from a population with cdf F' and let F;, be corresponding
empirical cdf. If a statistic 7}, = T,,(z1, ..., z,) can be written as a functional 7" of
Fn, T,, = T(F,), where T does not depend on n, then T is a statistical functional.

Von Mises introduced statistical functionals and proposed that a form of Taylor
expansion be used to approximate a given statistical functlonal T(F,,) in order to
analyze its asymptotic properties. ’

The influence function appears as the first derivative term in a von Mises
expansion, which is an expansion for T'(F},) for F,, in a neighborhood of F*:

T(F) = T(F) + [ Wr.n(z)d(F, ~ F)(z) + R,
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where R is a remainder term and satisfies n'/2R,, — 0. Tt can be show that
JIFr p(z)dF(z) = 0. Accordingly, the difference

nl2|T(F,) — T(F) — / TP p(z)dF, (2)
converges to zero in probability. Hence, we have the approximation

n*?[T(F,) — T(F)] = n/? znj IFr 7 (X5). (6)

=1
The right hand side of equation(6) satisfies
and

Varp[lFrp(X)] = E[Fgp(X)]? - [E[lFr (X))

= [E[IFT,F(X)]]2.

Hence,
V(T,F) = E[IFz,r(X)]%

Also, it follows from (6) that
_ L
T(Fn) = T(F) + — Y IF7p(X) + Ra,
=1
where n'/2R,, — 0. Furthermore, by the central limit theorem,

i IFr» S5 N[0, V(T, F)].

4 Applications

4.1 Standard Error of a Quantile Estimator

The influence function for the ¢ quantile was given in (2). Using (5), the estimated
standard error of the sample quantile is

1 7
E ZIFq($i)2,

=1

S/-'E(Xq) = \I

where .
?"@, if z < zg;
IF,(z) = ¢ 0, if z = z4; and

—qulqj’ lf.’L’ > Zlfq.
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smaller than z, and

[n — ng = n(1 — q)] values are larger than z,. Thus, the standard error of the ¢**

sample quantile is

SE(X,)

q(1 - q)

The standard error of the median, for example, is W

(zq)
4.2 Standard Error of the Sample Correlatio

n Coefficient

The influence function for the correlation coefficient was given in (3). Using (5), the

estimated standard error of the sample correlation coefficient is

e

SE(r) = |~

E

IF(.’L‘Z) = 21iR9; —

Z IF(ZI?z)Z,
=1

where

T1y — M1
01

Lo; — M2
09

21 = ) R —

4.3 Variance of Vector of Trimmed Mean

The 2 - trimmed mean is defined as

09 uf(u) |
-1 1-—28

T2ﬁ = log = /F U.

It is a symmetrically trimmed mean in which § is trimmed at each end where

B € (0, 3). Let X be a random p - vector with cdf Fy. The pertu

F.(X) = (1 - &) Fx + edw,

rbed joint cdf of X is
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where w € support of F; and

_ ]_, if Xz Z Wi, i= 1,,p,
O (x) = {0, otherwise.

From (1), the influence function of the trimmed mean is

T(Fe) - T(Fx)

IF(w) = lim ,
e—0 €
where
Hog,1
H2p,2
T(Fx) = pop = : ;
M2/af,p
H2p8.1,¢
H28,2,¢
T(Fe) = . ;
H2B,p.e

F7l1-p) o
/‘62,3,2 </Fi_1(,3) 1 o 2/3 z(u))

Fi—el(l_ﬂ) U
ie = ’ —dE € ;
/‘I/Zﬂy ) /F;:El(ﬂ) 1 . 2/6 3 (u)
F; is the marginal cdf of X;; ]

F; ¢ is the perturbed marginal cdf of X; ; and

Fie = (1 — €)F; + €0,;. Accordingly,

IF(w;) = lim

e—0 €

(1—¢) /F{f(l—ﬁ) u w;
F;. —Iix.. . ;
F;El(ﬁ) 1 — Zﬂd 2 ('U/) + 1 _ 2/6 (Xﬁ,z,mxl—,ﬁ,'z,e)(wz)

1/Fz‘—1(1—"3) U
el 1-28

where T is an indicator function and X 8.i¢ is the 1008 quantile of F; .. Note that

Xﬁ,i,f = Fjiye-—.l(ﬂ)‘ A
The expansion of F; '(8) and F;'(1 — ) around e=0 is
d

F(B) = F'(B)+ 2 Fil(B)| e+ O(¢), and

dF (), | (7)

€

F1-F) = F'(1-§)+2Fi(1-p)

P T O(€).

€=
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Using Equation (19) from Appendix A, the first expansion is

Fi . (B) = zpi + - —f(z;; ?)ﬁ’i) e+0(€),

where z5; = F; *(8).
Substituting these expansion in equation (7) yields

B—dw;(21_g.4)

. (l—¢) m-sit—Fm_pn u w;
F(w) = lim / iE1opi dF; (1) + Tix. . N
(wi) = lim-— sp i, 1-28 () + 755 s Xampi) (90)

1 rei-g,
_E/W 1—2ﬁdF( w)-

Let a = zg;,b = &M,c =z_pg;and d = (1=B)—du; (@1-p,) . Then,

fi(@p,s) fi(@1-p,1)
tr(e) = tim O [ s o) [ 5
- S L P b
AR T
- 11_1)%% chde lui(?éd %/:H’f fi(;)ﬁdu +1 fizﬁj(xﬁ,i,uxlwﬁ,i,e)(wi) — U2g -

Let g(u) = uf(u) and by L’Hospital’s rule,
c+de —
i/ g(u) du = d Glec+ de] — G(c)

dele 1-28 — de 1—-28
glc+ deld
1-28

Therefore,

1 petdeyf(u) 1 potbeuf(u)  cf(c)d—af(a)b
lim= /. 1—25d“_e/a 1—2ﬁd”_ 1-28

Now substitute a, b, ¢, and d back in to the equation for the influence function to
obtain

21-,4[(1 — B) + 6w, (T1-p,)] — 25,46 + 0w (75,6)]
1-28

w.
+ 1 _12ﬁ I(Xﬁ,i,ﬂxl—ﬁ,i,e)(wi) — H28- (8)
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Consider the Winsorization of a random variable. It consists of setting

zg, if z < xp;
Wos(z) =< z, if zg <z < z1_p; and . (9)
T1-g, ifz>z1_.

The Winsorized mean is

EWap) = s = | Waple)fi(w)ds,

= ﬁiﬂ + (1 = 28) piop + Br1_p.

Accordingly,
Pwap — Bg — BT1-g
= . 10
Hap - 20 (10)
Now substitute s from equation (10) into equation (8). The result is
21-p4l(L = B) + 0w (B1-p3)] — TpalB + 0w (s)] | wi
IF(wz) = 1 _ 2ﬂ ‘ + 1 _ 2ﬁj(xﬁ,i,e7xl—ﬁ,i,e)(wi)
Puwsg ; Brs;  BTi_p;

_1—26+1—2ﬁ+1—2ﬁ’

T1-pi — T1-p,i00; (T1-p4) + Tpi0u, (Tp4) + Wil(xp ;0 X0 pse) (Wi) = B
1-98 !

T1-p4(1 — dwi(1-5,)) + Tpi0wi(Tps) + Wil(xy, 0 pi0) (Wi) = Humg s
1- 28 ‘

Therefore, the influence function for the trimmed mean is

TR, MHwyB,i : .

SR PugBii - Bi o ifw; <zpy;
Wi — . i .

IF(wi) = § =152, ifw; € (wg,71-p,) ; and (11)
zc1—g1,i_—2l~[;w26,i, if w; > xl—ﬁ,i-

Using (5) to estimate the covariance matrix of sample trimmed means result is

— 1 n
Var(fing) = — > IF(X)[IF(X)],
i=1
1 & — e
= 'n_gzl(WZﬂ,i_W2ﬂ,i)(w2ﬂ,i_w2ﬁ,i)/, (12)
i=

where Wyg; is the Winsorized sample mean,

—_ 10
Wog; = p > Wag, (13)

=1
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Wag (i)
Wag 2 (2i2) :
and Wyg; is the vector . . In practice, sample quantile are substituted

Wag, p(ﬁzp)
for population quantiles to compute Wyg,;. When there is 1o trimming, then

equation (12) simplifies to :
— n—1)8
Var(fiag) = #,

n
where S = X_(ﬂ)ﬁ , X is the n x p matrix of responses and H=1,, 1 but 1S is
used because it is unblased Accordingly, to be consistent with how the Standard

error of the sample mean is usually estimated,

):21 _ Zﬁ) Z(WQﬁ, WZB,Z’)(WZﬂ,i - W—Zﬂ,i),

Var(fizps) = -

will be used rather than equation (12). The quantity

1 o — —
Suzp = ——7 2 . (Waps = Wap) (Waps — Wagy)', (14)
i=1 '
is called the samplé Winsorized variance. Accordingly,
— I ,
Var(fizp,;) = n =2y s » (15)

5 Trimmed Mean Example

Bernard G. Greenberg (1953) reported data which consisted of the ages in months
and the corresponding heights in centimeters of children from a private school.

In order to compute the covariance of sample trimmed means, first order data
in Table 5.1 from the smallest to the largest separately. Using equation (9) compute
the Winsorized random variable which § = 0.2. Compute the Winsorized sample
means by equation (13); Ws ., = 126.83 for age and Wop 4, = 143.87 for height.
Using equation (14), Sy9s is compute to be

S _(70.8530 31.8186)
w2\ 31.8186 39.9504

and using the equation (15), covariance matrix of the sample trimmed mean is

Var <uoﬁ1> _ (10.9342 4.9103) .
H2B,2 4.9103 61652

Furthermore, the Winsorized correlation coefficient is 7, = —=—=208_ — (.59805.
+/10.9342(6.1652)

In order to compare these robust statistics with the usual statistics, the
arithmetic means were compute, T; = 126.83 for age and Z, = 144.54 for height.
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Table 1 Table 5.1 Age and Height of Children in a Private School.

Child Age (months) Height (Cm)
1 109 137.6
2 113 147.8
3 115 136.8
4 116 140.7
5 119 132.7
6 120 145.4
7 121 135.0
8 124 133.0
9 126 148.5

10 129 148.3
11 130 147.5
12 133 148.8
13 134 133.2
14 135 148.7
15 137 152.0
16 139 150.6
17 141 165.3
18 142 149.9

These results show that the arithmetic mean and the Winsorized mean of age are
the same. The arithmetic mean and the Winsorized mean of height are quite
similar. The usual sample correlation coefficient, » = 0.6077. These results show
that the usual statistics and the robust statistics of this example are very similar.

~ Consider the plot of height (cm.) versus age (month) in Figure 5.1. The child at age
141 months seems to be an outlier of this data set, however it is not an extreme
departure from the other points. So it is not a serious problem. The usual statistics
are not affected much by this point. Therefore both the usual statistics and the
robust statistics are almost the same in this example. For comparison, a scatter plot
of the Winsorized data appear in Figure 5.2. As noted, one of the (z,¥) coordinates
represents form data points. :
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Figure 5.1: Piot of Height (cm.) versus Age (months) of Children in a Private School

170

165

160

155

150

145

140

135

T

130
105

110

115

120 125 130 135
Age (months)

140

145

Figure 5.2: Plot of Winsorized Height (cm.) versus Winsorized Age (months) of Children in a Private School
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6 APPENDIX
6.1 APPENDIX A |

The Influence Function for the ¢*® quantile.
To derive the influence function for the ¢*® quantile, denote the ¢** quantile of
F by z,. That is,
F(z,) =q and F;(q) = z,.

The influence function IF(z) of T" at F' is defined as
Im@:nmﬂﬂﬂ_Tw)

e—0 €

Therefore the influence function for the ¢ quantile is

IF(z) = lim Freld) — Fo (@)

e—0 €

(16)

In case I, it is assumed that z # z,. Begin by expanding Fm_yel(q) around ¢ = 0.
The expansion is

d
FH0) = @) + Pl (0)| e + O(€).

Now,substitute.this expansion in equation (16). That is

F; Y (q) + £F;(q)] _ e+ 0(€) — Fy''(q)

IF(z) = lim . (17)
To find £F}(q), use
¢ = FulF;l(0)] (18)

= (1 - ) Fa[Fo (@) + 0o Fr . (a)).

Take the derivative of both sides of equation (17) with respect to € and evaluate the
- derivative at € = 0. The derivative of the left-hand side is 0. Accordingly,

2= 0= R @)+ (1 - O LI QN R ) + 0P

using £6,(y) = 0 for z # y. Thus,

d . _ B[F e (@)] = 6[F,(9)]
Tl = 0 - OhEi(g] = (19)
Fy[FyH(9)] = 6:[Fy (q)]

|
fal P51 ()]
_ 49— Jg(%q)
fazg)
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Now replace —d—F—l(q). _, of equation (19) in the definition of IF(z) (equation 17) to

de T,€
obtain

F(g) + (120 | o) - Fri(g))

[F(z) = lim £ (x")e
q — 6z(zq)
fa(zq)
{ '_(]10(77(]1)_’ ?f z < z4; and
_q__f(:cq)’ _1f z > T4

In case II, it is assumed that z = z,. It can be shown that

F_l(q) = Ty,

x,€

for any € > 0. By the definition of IF(z), it follows that

Fm—l<q);Fm_l(q) - g =0, for all e > 0,

therefore IF(z,)=0.
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6.2 APPENDIX B

Influence function of Correlation Coefficient
Let X be a p x 1 random vector with cdf Fx. The perturbed joint cdf of X is

FE = (1 - E)FX + 650),

where w € support of Fx and

. . 1, if Xz > Wi, i= 1,...,p;
O (x) = {0, otherwise.

Let
E(X1Xs) — E(X1)E(X,)

VIE(X?) — B(X1)2[E(X3) — BE(X2)?]

T(FX) = P12 =

for p=2.
From (1), the influence function of the correlation coefficient is

T(Fe) - T(Fs)

[Flw) = 11_1;[(} -
Ec(X1X2)—Ee(X1)Ec(X2) _  B(XiX2)—B(X1)E(Xs)
— VIE(X2)~Ee(X1?)[E«(X3)—Ec(X2)?]  /|E(X?)—E(X1)?][E(X3)—E(X,)?]
€ )
where

CE(XiXs) = [ [ XiXadF.
= (1 - ¢E(X1Xs) + ewiwy
= (1 —€)(o12 + i) + ewrwo;
E(X1) = (1-BEXy)+ ews;
E(Xs) = (1-¢)E(Xs)+ ews;
B (X)) = (1- B} + ]
= (1—¢)(o7 + p7) + ew}; and
E(X3) = (1-¢B(X2) +ew?

= (1—¢€)(03 + p3) + ews.
The quantity T'(F,) — T'(F') simplifies to

012 — €012 + (€ — €)) (w1 — 1) (w2 — o)

T(F) -T(F) =
¢W—wh«famemwﬁ—@+&—&m_mm

012
b
\/0203
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N pra — €p1a + (€ — €2)z12 p
= — P12
| \/[1 —e+ (e—€2)2[1l — e+ (e — €2) 73]

where z; = —“’%i’ﬂ, and z, = ﬂa:zfﬁ Note that

IF(w) = lim L = TF) - d

Ry p E(T(F) — p12)

e=0

—pP12 + (1 - 26)/5122

= 7 — p12|

1422 —1+22
1+ 2]
2 2

1
= 2%y — 5,012(2% +23).

Note that E(IF(w)) = p1a — $p12(1 + 1) = 0.
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