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1 Introduction

The use of mathematical models to describe population phenomena has been central to the fields of
demographics and population biology. A perennial question in the description of biological populations is
whether or not populations are self-limiting, or density dependent. In its broadest sense, density dependence
refers to phenomena in which per capita growth rate is a non-constant function of population size. Most
commonly, density dependent growth refers to the case in which per capita growth rate is a decreasing
function of population size (though models of growth rate as an increasing function of population size
(Allee effect) are used for small populations [6]). Though difficult to prove empirically, density dependent
demographic phenomena have a certain logical appeal [16, 2]. When the number of individuals is low,
there are more available resources per capita and the population will tend to increase. As the number
of individuals increases, there are fewer available resources per individual which should fesult in lower
fecuﬁdity and higher mortality. When the population becomes large enough, the per capita birth rate
equals the per capita death rate and the population is maintained at a stable equilibrium referred to as
carrying capacity. Models of density dependence are also attractive because of their flexibility, even in
deterministic formulations, to describe a broad spectrum of qualitative phenomena observed in real time

series; logistic growth to a stable equilibrium, damped oscillations, stable limit cycles, and chaos [1]. Despite
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its intuitive appeal, the role played by density dependent demographic phenomena, in the regulation and
persistence of biological populations has been debated in the ecological literature and many methods have
been proposed to test for and estimate the magnitude of density dependence [7, 12, 18].

While deterministic models are useful for describing the qualitative behavior of biological time series,
real time series exhibit stochastic behavior. The sources of variation in population numbers can be broadly
categorized as environmental stochasticity or demographic stochasticity {8]. Environmental stochasticity
refers to the population response to variation in weather paftterns and resource availability that tend to
affect the population as a whole. Populations are composed of individuals for whom reproduction and
survival cannot be predicted. For small populations, this will result in variation in population growth rate.
As populations become large, the mean per capita contribution to the population growth rate will have
variance close to zero. This aspect of stochasticity, which tends to diminish as the population increases in
number, is referred to as demographic stochasticity [8].

A third source of variability introduced in observed population time series is measurement error. In
all but the most trivial cases, population time series are composed of data on estimated population sizes.
Even cases that are purported to be full censuses of the population are often only approximations of
total population size. If the measurement process is unbiased, the observed population size at time ft,
Y%, can be thought of as a random variable with expected value equal to the true population size, N,
and variance 72 (hereafter called measurement variance). The total variance in a population time series
can be decomposed as some function of the variance associated with the population dynamic processes
(environmental and demographic stochasticity), 0% (hereafter called process variance), and measurement
variance, The value of this function will necessarily be greater than or equal to the process variance.
Thus, the observed variance in a time series measured with error will tend to overstate the variance in the
population demographic process [3].

The persistence of biological populations through time results from the interaction of deterministic

processes and stochastic perturbations. A population with a positive growth rate can be driven to extinction



if it is highly responsive to stochastic fluctuation [17, 11, 14]. The strength and form of density dependent
phenomena can also influence the risk of extinction [9]. It is often the goal of conservation and wildlife
management to minimize the risk of future extinction. Modeling and forecasting future population numbers
form an essential part of such management [3]. To do s0 requires the use of empirical data to discern the
form of the population dynamics and to estimate the parameters of the growth function. If the only data
available are the observed population sizes, Y}, then the process variance and measurement variance will be
confounded and possibly unidentifiable. If the measurement variance is not accounted for, estimators of the
process variance based on the observed variance in the time series will be positively biased. This presents
distinct problems in the estimation of the process variance, and may affect the‘ form of the population
dynamic model chosen and the estimation of growth rate parameters.

If the measurement error can be estimated from some independent, auxiliary data, U, then this estimate
can be used to decompose the total variance in the observed time series into process and measurement
components. One approach, pseudo likelihood, would be to estimate the measurement variance parameter,
72, from the auxiliary data, and then treat that estimate as known in the likelihood function for the observed
time series and maximize the likelihood for the remaining parameters. Under general conditions, such
pseudo maximum likelihood estimates are consistent and asymptotically normal [10]. Pseudo maximum
likelihood has been criticized; however, because no compensation is made for the loss of degrees of freedom
associated with the nuisance parameter, 72 [5]. If the auxiliary data can be expressed in a likelihood, and
the data are independent of the observed time series, then the product of the two likelihoods will yield a
joint likelihood for the time series and the auxiliary data which will account for the additional uncerta;inty
in the estimate of 2.

In this paper I first illustrate the impact of auxiliary data on the width of the confidence intervals for
additive variance components in a zero mean, normal process. 1 then examine the effect of incorporating
auxiliary data, via pseudo likelihood and using a full likelihood, on the point and interval estimates of the

process variance for a density dependent population growth model (Gompertz model). Lastly, I consider



the effect of measurement error on the maximum likelihood estimases of the growth rate parameters of the

Gompertz population growth model.

2 Estimation of confounded variance components for a zero mean nor-

mal process.

2.1 Point estimation of variance components

Consider a zero mean random phenomenon, X, with normally distributed deviations; X ~N(0,0? + 72),
Hx=(z1,29,...,2,)" is a random sample of size n; observations of this phenomenon, unique maximum
likelihood estimates of the parameters o2 and 72 do not exist. Let U be an independent random vari
able with distribution, U ~N(0, 7%), and u = (u1,%2,-..,Un,)" be a random sample of size ny from that
distribution, and u be independent of x.

The joint likelihood function for x and u given o and 72 is:

L(e®,7* | xu) = L(0%7? | x)L(r? | u)
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The maximum likelihood estimators of the parameters o® and 72 are given below. Note that without

the use of the auxiliary data only the quantity 82 = 62 + 72 can be estimated.
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Let 9 be the parameter vector (72,62)'. Then the information matrix is the expected matrix of minus

the second partial derivatives of the log likelihood function :

] $2

2 2 n
i=1 “i j=1 %j 1 E:l mf 7]
o2 +12) + (72)13 - 2(c ?3-1' JLE 212:%)E (0’21—72)3 T 2{et4T ) .
Iy x,u) = E - (6)
PRI n DI n

The information matrix, evaluated at the maximum likelihood estimates is the observed information

maftrix,
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which can be rewritten as,

. a+b a
I y) = \
a a
where
a = iat

B+

na

(@(r2))2

Under general conditions, maximum likelihood estimates are asymptotically efficient with covariance

matrix that approaches I"1(4) [15] . Thus the inverse of the observed information matrix, evaluated at the
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maximum likelihood estimates, can be used to estimate the covariance matrix of the maximum likelihood

estimators. Thus the variance of %) can be approximated by

Lon 1 a -—a
™) = -
—a a+b
w2 ey
Var($) = 17Y() = : (8)
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Inspection of the information matrix shows that the variance term associated with the estimate of g2
is composed of two elements, one from the data, vector x and one from the data vector u. Ag n2 increases,
increasing the information about 72, the variance term associated with o2 decreases in magnitude and
converges to M as the sample size nz goes to infinity. If 72 is very small, the increased sampling of
u will result in only small reductions in the standard error of 52 (at most the reduction will be 2(72)2). If
72 is large, the addition of information on u can substantially reduce the standard error of §2. However,
2 remains as a term in the standard error of 6 even when ny = 0o , and larger values of #2 will result in
a larger standard error of 62 for constant ny.

Using the above estimated standard error for o2, an approximate (1 — @)100% confidence interval for

o for large ny and ny is,

) 2A72)2 2o 4 12)2 ; \/ 222 | (02 + 72)2
24 Zopp| L N IT 2 i U C i o)
o° + a/g‘/ _ -+ - S0 L0+ 2y a0 T + ~ ) (9)

where Z, /5 is the /2" percentile of a standard normal distribution.
The interval given in equation 9 is a function of the samnple sizes n; and ny and 72. Figures 1 and 2 show
the behavior of the confidence interval for o2 ag s, function of the sample sizes and the relative magnitude

of 02 to 72, The z-axis represents the reduction in the confidence interval relative to the maximum interval
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width when u is not used. Note that substantial reductions in the confidence interval can be made with
relatively small 15, and that the greater the magnitude of 72 the more there is to be gained by including
the u (Figure 1). Also, as the ratio of measurement variance to process variance increases, the value of the

auxiliary data sample size, ns increases relative to n; (Figure 2).

3 Estimating Parameters for a Random Gompertz Time Series in the

Presence of Measurement Error

3.1 Model description

Consider a discrete time population growth model, J(N), indexed by time, t, such that:
f(Ne) = Nyyy = Neg(Ng)e™. (10)

Where N; is the size of the population at time, t; g(/Vy) is a function describing the population growth
rate as a function of t; Z; is a 0 mean random variable and o2, process variance, is a scaling term for the
variance of Z. If g(IV;) is of the form:

Q(Nt) = ea+bln(Ng)’ (11)

where & is strictly negative, then the population exhibits density dependent growth with decreasing growth
rate as N increases, and negative growth rate above the threshold, K = e~ % (Gompertz growth model).

Let ¥; be a measurement of the population size at time t. Assume that the measurements are imperfect

such that,

Y; = Nye™, (12)

where W; is a random variable and 72, measurement error, is a scaling term for the variance of W;.



If y; is the natural logarithm of Y; we can construct the observed population growth rate, 1, as the

diﬁ'erence, Vi1 — Ys.

(Y1) = In(Ney1) + Ty
= In(Ny) +a+bn(V;) + oz + TWit1
= In(Y;) —rw; +a+ b(In(Y;) — run) + o2 + TWeyy
Yerr = Yeka+ by —brwy— Twp + oz + TWet]
Yer1 — Y = a-+by— brwg — Twp + o2y + Tweyy
Tt = a+bys—(1+brw, + oz + OWets.

If Wy and Z; are assumed to be independent and identically distributed standard normal random
variables, and W, is independent of Wis1, and Z; is independent of Zy1, then 7y, given 1, is distributed
N(a + bys, (1 + 8)2r2 + 72 + 62). This statement assumes that the Markov property holds so that the
transition r; is independent of Yt-1;-..,%0- In practice this assumption is likely to be violated as many
biological processes exhibit time lags. For example, the per capita forage resources available when an
herbivore population is in decline may be significantly less than that available to an increasing population
of the same size due to the time required of plants to grow following intense herbivory. For the sake of
simplicity; however, I will assume that the time scale on which the time series is measured is great enough
to allow replenishment of resources so that the growth rate is dependent only on the current population

size. Conditioning on y;, the log of the joint likelihood of a,b,a%, 72, for a time series of length £+ 1 is,

—k k k_ — 2
InL(a,b,0% %r,y) = - In{27) — 3 nf{(1 + 8)* + 1}r2 + 6?] - —% [Ef;rlg; T ;"]szf*i oD (13)

where r is (r1,...,7;) and y is (Y1, ).



3.2 Maximum Likelihood Estimation of o2

The parameters o2 and 72 in equation 13 are confounded and unique maximum likelihood solutions do not
exist. Estimates can only be formed for the sum of o2 and 72. Thus, estimates of the process variance in
the time series will always be confounded with the measurement error and yield biased estimates of the
process variance.

There are several ways to address the problem of estimating the process variation. First, oﬁe could
assume the measurements are taken without error. Second, one could provide an independent estimate of
72 and pass it into the likelihood as a known quantity (a pseudo-likelihood approach). Lastly, one could
form a product of the joint likelihood, L(a, b,02, 7%|r,y), and the likelihood for an independent, auxiliary
data vector, u, dependent on on 7% only, L(7?[u). Both the pseudo-likelihood and full likelihood methods
result in unique estimates for o2. For simplicity I will consider the case in which the parameters a and b

are known and focus on the estimation of the variance components ¢2 and 2.

3.2.1 Method 1;: “Error Free” Measurement

This approach is appealing for its simplicity, and is common in practice. However, the estimates of o2 are
inherently biased, with the scale of the bias dependent on the scale of the measurement error.
In this case the measurements are assumed to be taken without error, so that y; = In N; and

¢ ~ N(a + by, 02). In this setting the maximum likelihood estimator of o2 is :
" 1E
0'2 = —]; Z(’)“t —a— byt)z. (14)
=1

If, however, there is measurement error, the o2 in (14) estimates the quantity [(1 + b)% + 1]72 + o2

3.2.2 Method 2: Pseudo-Likelihood
If 72 is assumed known, the maximum likelihood estimator of o2 is:

ol =

Eol

k
> (re — a— byg)® ~ [(1 + 5)% + 1]7% (15)
=1
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3.2.3 Method 3: Full Likelihood

A logical source of auxiliary data might be a series of log population counts, z; and z, 5, made independently
of the time series, y, using the same methodology, where & is an increment short enough to allow the
assumption that the population size has not changed. The difference in these log counts u;, = z, — Zyyrs will
be distributed U ~N(0, 272). For a sample of m such repeated log counts, u = (u,...,uy), the log of the
full likelihood is the product of the likelihood for the time series and the likelihood for the auxiliary data,

~(k+m)
2

1 —a-— 2 1
2 [(1%(?)2 + 1]:;3,,2 o? 2 ln(2 9~ 22:; (16)

In L(a,5, 0%, 72Jr, y, u) In(2n) ~ 5 Infl(1 +5)° + 1jr2 4 07 -

When o and b are assumed known, the thaximum likelihood estimators for 72 and o? are,

2 = 2m Zu (17)

i=1

k
o? = %;Tt‘a-‘byt) —[(1+b)2+1 Zﬂf (18)

3.3 Confidence intervals for o2
Confidence intervals can be solved for each of the above cases by inverting the likelihood ratio test statistic,

Ay) = U 1Y)

e 19
L(o? | y) 19

where o2 is the maximum likelihood estimate of ¢2. For large sample sizes, —2In A ~ Xf, where p is
the number of parameters to be estimated, so an approximate confidence interval can be calculated using

the appropriate x? critical value.
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3.4 Comparison of Confidence intervals for methods 1-3

I wrote a program in MATLAB to find numerical solutions for the bounds of an approximate 95% confidence
interval for o2, when a and b are assumed known, using the constrained optimization function *fmincon’

[4]. The routine solved for the maximum and minimum value of o2 subject to the constraint,

X%,.QS = _2(]-“]:’(03 I Y, u) - IIIL(O"\g I r,y, 11)), (20)

which is equivalent to equation 19.

I investigated the effect of the strength of density dependence, magnitude of measurement variance,
and sample size of auxiliary data on the pérformance of the confidence interval and point estimates of
the process variance, o2 (Tables 1-6). Tables 1-3 present results from time series with weak density
dependence (a = 0.004,b = —0.005; Figure 3), and Tables 4-6 present results from time series with strong
density dependence (e = 6.4,b = —_-0.8; Eigure 4). Tor each density dependence, measurement variance,
and sample size combination I generated 1000 time series with measurement error according to equations
10-12 and solved for point and interval estimates of o2 using methods 1-3 above. All time series were of
length 100 with carrying capacity of approximately 3000 and initial population size of 3000 individuals.

In all scenarios, the maximum likelihood esti.ma,tes for o2 using the “error-free” method were quite
biased, and confidence intervals generated using that method rarely contained the true value (Tables 1-6).
The 0% coverage probabilities are likely an artifact of the specific parameter values used, but are certainly
indicative of poor performance of the estimation method. In all cases the full-likelihood approach resulted
in slightly wider confidence intervals, and coverage probabilities that were closer to the nominal 95% rate
than the pseudo-likelihood based intervals. This fits the concerns of Davidian and Carroll [5] that pseudo
likelihood may underestimate the variance in the estimator.

Surprisingly, despite the difference in the behavior of the time series (Figures 3 and 4), the strength of
density dependence does not appear to have a strong affect on the performance of the confidence intervals

for 02 as the results in tables 1-3 are quite similar to tables 4-6. Coverage rates increased with larger
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auxiliary data sample sizes, and equaled or exceeded the nominal rate with sample size of 30 when the
magnitude of measurement variance was equal to the process variance. Coverage probabilities tended to

be slightly lower when the measurement variance exceeded the process variance.

3.5 The estimation of the growth rate parameters of a Gompertz population growth

model in the presence of measurement error

Clearly the assumption that the growth rate parameters, o and b, are known is unrealistic. Much debate
has focused on statistical tests for density dependence in population time series (i.e. the sign of b). Many
methods have been proposed, though their performance is often dependent on the choice of population
model and the various tests rarely agree [7]. The estimation of the parameters, a¢ and b, has received
comparatively little attention, though is quite important in such applications as predicting extinction risk.
A common method for estimating the parameters, a and b, of a Gompertz population growth model has
been to regress r; on In(N;), where 1, = In(Ny (1) —In(N,), and N, is the population size at time,f, measured
without error [7, 13]. Then & is the intercept and b the slope of that regression.

In the absence of measurement error (7* = 0) the MLEs of @ and b from the likelihood given in equation
13 reduce to the above regression estimates [7]. The MLEs show a negligible bias for short time series
and appear to be asymptotically unbiased. However, because T}8 are not independent, confidence intervals
based on standard regression results are not valid [7).

In the presence of measurement error (7? > 0), the maximum likelihood estimates of ¢ and b from
equation 13 also reduce to the sbove regression estimates, but the measurement error can introduce sig-
nificant bias (Figure 5). Interestingly the estimate of the ratio —/b is unbiased for —a/b, the natural log
of the carrying capacity. I present here only results on the bias in b, noting that they imply a similar, but
opposite in sign, bias in &. The bias in b ig greatest when the strength of density dependence is weak and
is positively related to the magnitude of the measurement error . The bias in b s smallest in time series

that contain observations far from the carrying capacity (Figure 6).
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4 Conclusions and Comments

Measurement error in the monitoring of biological populations is a necessary evil. However, the solution
to measurement error need not be restricted to assumptions that “measurement error is negligible”, or
that the model predictions are “conservative”. Neither statement is necessarily true. Population time
series measured with error do result in overestimates of environmental variance which will result in higher
predicted extinction risk. While this would result in more c;onservative management and conservation, the
overestimation of environmental variation is not the only consequence of measurement error. A least in
the Gompertz population growth model, ﬁeasmement error can result in quite biased maximum likelihood
estimates of growth‘rate and density dependence parameters. Populations with low growth rate and weak
density dependence will tend to have positively biased estimates of the growth rate and strength of density
dependence. Ginzburg et al. [9] showed that density dependence can, in fact, result in reductions in
extinction risk. Thus overestimates of the strength of density dependence may lead to under-estimates of
extinction risk, or time to extinction, confounding the argument for conservative estimates.

Biological monitoring very often involves a tradeoff between the number of observations made, and
the rigor with which each observation is made. Because many interesting ecological phenomena oceur on
relatively long time scales, we often put the bulk of our monitoring resources into obtaining time series
of maximal length. The above results suggest that such monitoring protocols come at a reasonable cost.
One solution may be to allocate some effort to estimating the error in the measurement process. Even
a relatively small investment in auxiliary data can result in greatly improved estimates of the process
variance.

The source of this auxiliary data is a subject for further investigation. Throughout the above discussion
I have assumed that the auxiliary data are a random sample from a normal distribution with mean 0 and
variance 272, independent of the time series. This is a reasonable assumption if the auxiliary data are
differences of repeated measurements, u; = 2 — Z14.8, made by the same observer, under similar conditions,

using the same protocol. In practice this is difficult to achieve as there is frequently an observer bias, and
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the second measurement may be influenced by results of the previous count (e.g. the observer now knows
where to look for individuals). These issues, however, ca.n be minimized through rigorous field protocol.
Double counts made by two separate observers at the same time may also provide reasonable auxiliary
data assuming the protocol is follbwed exactly by both observers. Indeed, this method might be preferred
if the time series data are collected by multiple observers.

The use of independent, auxiliary data on the measurement error may also be an inefficient use of
resources. An auxiliary data set of size 10 would actually involve 20 counts (10 pairs), It may be possible
to incorporate double counts, ¥; and Yiis, where Y; is an observed point in time series. This would
reduce by half the number of additional measurements needed, but the a.uxilié.ry dats, would no longer be
independent of the time series and that dependence would need to be accounted for in the joint likelihood.

These results would have the most direct application in the development of future monitoring programs
in which data on the measurement variance can be collected simultaneously with population counts. These
results may also be applied to existing monitoring programs if it can be assumed that the measurement
process, in particular the measurement variance, has been constant since the beginning of the monitoring

program.,
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Table 1: Summaery of point and interval estimation of o2 for 1000

simulations of a Gomperts time series of length 100 with growth

parameters ¢ = 0.04, b = —.005, process variance o2 = 0.005, mea-

surement variance 72 = 0.005 and sample size for auxiliary data

m=10.
"Error free”  Pseudo-Likelihood Full Likeiihood
Mean g2 0.0148 0.0054 0.0054
MSE(52) 0.1015 0.0159 0.0159
Mean CI length 0.0085 0.0074 0.0095
Mean Upper Bound 0.0198 0.0102 0.0118
Coverage Probability 0.00 0.824 0.89
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Table 2: Summary of point and interval estimation of o2 for 1000
simulations of a Gompertz time series of length 100 with growth
parameters ¢ = 0.04, b = —0.005, process variance o2 = 0.005,

measurement, variance 72 = 0.005 and sample size for auxiliary data

m=30,
"Error Free” Pseudo-Likelihood Full Likelihood
Mean o2 0.0150 0.0051 0.0051
MSE(o2) 0.1048 0.0101 0.01011
Mean CI length 0.0086 0.0080 0.0100
Mean Upper Bound 0.0200 0.0101 0.0117
Coverage Probability 0.00 0.91 0.95

Table 3: Summary of point and interval estimation of 2 for 1000
simulations of a Gompertz time series of length 100 with growth
parameters a = 0.04, b = —0.005, process variance o2, measurement

variance 7% = 0.008 and sample size for auxiliary data m=10.

“Brror Free” Pseudo-Likelihood Full Likelihood

Mean o2

0.0209 0.0065 0.0065
MSE(c?) 0.2637 0.0344 0.0344
Mean CI length 0.0120 0.0099 0.0126
Mean Upper Bound 0.0280 0.0130 0.0152
Coverage Probability 0.00 0.82 0.93
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Table 4; Summary of point and interval estimation of o2 for 1000
simulations of a Gompertz time series of length 100 with growth pa-
rameters ¢ = 6.4, b = ~.8, process variance o2 = 0.005, measurement

variance 72 = 0.005 and sample size for auxiliary data m=10.

"Error free” Pseudo-Likelihood Full Likelihood

Mean o 0.0152 0.005 0.005
MSE(s2) 0.0295 0.0066 0.0066
Mean CI length 0.0059 0.0056 0.0071
Mean Upper Bound 0.0137 0.0085 0.0096
Coverage Probability 0.003 0.87 0.91

Table 5: Summary of point and interval estimation of o2 for 1000
simulations of a Gompertz time series of length 100 with growth pa-

rameters ¢ = 6.4, b = —.8, process variance g2 = 0.005, measurement

variance 72 = 0.005 and sample size for auxiliary data m=30.

"Hrror free” Pseudo-Likelihood Full Likelihood

Mean o2 0.0102 0.005 0.005
MSE(02) 0.0293 0.0039 0.0039
Mean CI length 0.0059 0.0058 0.0078
Mean Upper Bound 0.0137 0.0085 0.0096
Coverage Probability 0.001 0.93 0.97
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Table 6: Summary of point and interval estimation of ¢2 for 1000
simulations of a Gompertz time series of length 100 with growth pa-
rameters ¢ = 6.4, b = —.8, process variance o2 = 0.005, measurement

variance 72 = 0.008 and sample size for auxiliary data m=10.

?Error free” Pseudo-Likelihood Full Likelihood

Mean o 0.0134 0.0054 0.0054
MSE(c?) 0.0738 0.0125 0.0125
Mean CI length 0.0077 0.0069 | 0.0088
Mean Upper Bound 0.0179 0.0097 0.0114
Coverage Probability 0.000 0.84 0.89
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Figure 1: Relative reduction of confidence interval width on o2 as a function of the ratio of 72 : 62 and the
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Figure 2: The relative reduction of the confidence interval width on o2 as a function of 71 and ng for four
ratios of 72 : 02, n; is the number of observations of the process, and ngy is the number of observations of
the auxiliary data. The four panels represent increasing magnitude of 72 from a ratio of 72 : g2— 1:20 to

a ratio of 20:1.
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Figure 3: 25 Gompertz time series generated with low population growth rate and weak density dependence

(6 =0.04,5 = —0.005) and o2 = 0.005 and 2 = 0.005,

22



14000 T T T T ; T T T T

12000

10000

8000 - -

6000

4000

2000 N

0 10 20 30 40 50 60 70 80 80 100

Figure 4: 25 Gompertz time series generated with high population growth rate and strong density depen-

dence (e = 6.4,6 = —0.8) and 02 = 0.005 and 72 = 0.005.
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Figure 5: The relative bias in MLE of b as a function b and the measurement variance 72, for time series

of length 100 with carrying capacity 2981 and o2 = 0.005. Relative bias is (b — b)/b. The curves for each

level represent the mean relative bias for 200 time series at each combination of 72 and b.
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Figure 6: The relative bias in MLE of b as a function b and the initial population size Ny, for time series
of length 100 with carrying capacity 2981 and o2 = 72 = 0.005. Relative bias is (b ~ 8)/b. The curves for

each level represent the mean relative bias for 200 time series at each combination of Ny and b.
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