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Section One: Introduction

Circular data is data that occurs around a circle, usually measured in degrees from 0° to

'360° or in radiahs from O to 2m. It differs from traditional linear data in that it is closed and has
no beginning or end along the real line. For instance, the angles 10° and 350° have an arithmetic
mean of 180°, whmh is in the opposite direction. Intuitively, the mean should be 0°, Thls isa
simple illustration of why new techniques have been developed to handle the unique nature of
circular data, |

| In the following paragraphs, an overview of the different kinds of circular data, examples
of their use, ways to display it graphically, common measures of location and dispersion, and
common dlStributhIlS fit to it wﬂl be given. Section Two will then deal with one—sample tests
for uniformity and goodness-of-fit, while Sectlon Three will conclude with a brief account

| of several other areas of analysis developed for circular data,

L1 Types of Circular Data

There are two main types of circular data that occur ﬁ'equently——vectonal and axial
(Fisher, 1993, p. xvii). Vectorial data consists of directed line segments in which there is both an
angle and direction associated Mth the point. The vanishing sights of homing pigeons of the
directional preferences of mi graﬁng birds are examples of such, However, sometimes the
direction is not of special importance, giving rise to axial data. Orientations of dragonflies with
respect to the sun or orientations of fractures along a fault line repl;esent axial data. With such
data, both “ends of the axes” are recorded on the circle, yielding a bimodal distribution (two
clusters of points) instead of a unimodal (one cluster) or multimodal (several clusters)

distributions. This difference in data types poses no problem for analysis; simply double all of



the axial data angles, reduce them modulo 360°, treat them as vectorial data in the analysis, and
béck_ transform them at the end when finished.

Circular data occurs in a wide variety of fields—biology, medicine, - geology_,
meteorology, physics, and oceanography. Most studies of circular data are restricted to settings
in which the period of the phenomenon at hand is already well dgﬁned. Estimating the period
- would be the subject of time series analysis, which is beyond the scope of this paper.

- Some examples of situations in which circular data oceur are given below. This list only
scratches the‘:surface of possible applications.

v Studying Ihe_ navigational systems of migrating birds: Birds are placedina plaﬁetarium
with the constellatiqns rrotated, say 30°, clockwise frpm their normal positions. The
number of directed movements made by the birds in a certain direction are recorded.
Nonrandom movement is evidence that the birds are using the stars to navigate (Emlen,
1967).

¥ Studying ozone concentrations: Use wind direction to predict the ozone concentration in
cities (Johnson & Wehrly, 1977). |

" Studying circadian or yearly rhythms: Study body tefnpérature fluctuations, sleep-
wakefulness cycles, or hormone release throughout the day. Determining when the
maximum and minimums occur can help scientists understand the human body better
(Minors & Waterhouse, 1981).

" Studying hospital emergency room entrance times: Record times that people arrive at an
smergency room, and use times to find busiest and slowest times of (iay. This |
information can help determine how many doctors and nurées to keep on staff throughout

the day (Cox & Lewis, 1966, p. 254-55).



1.2: Summary Statistics _ -
The first step in any study is to reduce the collected data into a manageable form using

summary statistics. A visual representation of the data should always be obtained in order to assess
the important characteristics of the sample. The simplest plot, taken from Fisher (1993, p. 16)isa

scatter diagram or raw data plot in which points are plotted all around. the circle (Figure 1.1).

Fig. 1.1 A scatter diagram of arrival times over 24 hour period at an intensive care unit.

Another coﬁamon plot is a histogram, which can be graphed either on the circle or along a line.
A circle must be divided into arcs of equal 1ength, takin-_g the midpoint of each arc to be the
center of each bar. Each rectangular bar then represents the rela-tive frequency of points that fall
into that arc (Figure 1.2a below from Fisher (1993, p 11‘9)). Since the periodic nature of the data
may be lost in a linear plot, it is suggested that two complete cycles of the data be plbtted on the
same axis (Figure 1.2b below from Fisher (1993, p. 20)). Several variations of histo grams are
availabie, including the rose diagram introduced by Florence Nightingale in the 1850’s (Cohen,
1984). Today, there ére also several ndnparametric density estimates in use as well, but the

arbitrary choice of smoothing parameter can greatly affect the plots.
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Fig. 1.2 (a} Circular histogram of arrival times (b) Linear .histogram of the same arrival
at an emergency room over a 24- times \_mth two cycles shown,
hour period.

The next step in summarizing the data is to find 2 measure of location. Obviously, the
arithmetic mean of linear statistics is not applicable here. Two common measures of location are
the mean vector and median direction. Sometimes one or the other will be easier to calculate,

and both are only interpretable with unimodal samples. The mean vector m can be expressed in
reétangular coordinates, [, f], or in polar coordinates, [r, ¢ ] (Batschelet, 1981, p. 231). These
measures are obtained as follows (Batschelet, 1981, pp. 9-11): |
Let ¢,,9,,...,¢, be a sample of vector angles on the unit circle.
Let x; =cos¢,, and y, =sin o..
Define ¥ =L(x, +x, ++--+ x,,)#;‘;(cos:,‘!)1 +cosg, +---+cos¢ ), and
F=10n+y,+ 4 y,) =L (sing, +sin g, +---+sing, ).
These are the rectangular coordinates of the mean vector m, Oﬂen it is useful to have the

components of the mean vector in terms of the polar coordinates. The component r represents

the mean vector length, ranging in value from zero to one, and q) represents the angle of mean



direction, ranging from 0° to 360°. To obtain r from ¥ and ¥, use the formula » = (¥2 + f)}é .

. To calculate ¢ , use the following equations, conditioned on the values of ¥ and y:

p
arctan x>0

_ arctan
4

= RI[s

+180°;% <0

R=a
Il

90°,¥=0,57>0
270°%x =0,y <0
(undefined;x=y=0 |

Fig. 1.3 The polar coordinates of the mean vector m.

See Figure 1.3, adapted from Mardia (1972, p. 23). Both the mean vector length and mean angle
are important in hypothesis testing and confidence intervals, For bimodal axial data (Batschelet,

1981, p. 25), the angles should be doubled and the mean vector m; is calculated using

X, =1 cos(2¢,) and ¥, = 1%'sin(29,). Then, r; and ¢, are calculated using the same

=l i=l

formulas as were used for r and ¢ . The mean (undirected angle) ¢ is obtained with either

=

2

[

or ¢ =124180°,

¢ =

|

For convenience, data can be collected in grouping intervals, every 5°, 15°, 30°, etc. This
is called grouped data, and the mean vector length must be adjusted (Batschelet, 1981, p. 37-8),
depending on the number of groups. For a large number of groups, the correction factor can be

dropped. For less than twelve groups though, the corrected mean length is r, = cr where

_ M
"~ sin(%)

, and A is the class length in radians.

For a unimodal sample with n odd, the median direction (Fisher, 1993, p. 35)is a
diameter with angle ¢ (measured on the side where sample points are concentrated) such that

half of the data points lie on one side of the circle and the remaining half lie on the other side of



the circle. In this case, the median is unique. If the sample size is even, the median direction is
not unique, and the diameter passes through two sample poiﬁts.

A measure of location is insufficient to describe the amount of clustering of the data
points on the circle. Several possibilities exist. All depend in some fashion on r which is a
natural measure of concentration because the more closely clustered points are, the closer the
mean vector length is to one, and the more loosely clustered the points are, the smaller r is. The
value 1-r is used instead so that small values will represent closely clustered points and large

values will represent loosely clustered points, Just as in linear statistics. Batschelet (1981, p. 34)
uses s* =2(1—) and s = /2(1—7) as angular variance and angular standard deviation,

respectively. He states that when deviations from the mean angle are small, 2(1-r) is

approximately %Z (¢,. —¢ )2 - Mardia (1972, p. 24), on the other hand, discusses

pur
s, =+-~2In{l—#) as standard deviation, which is also a good approximation of %2 (gb,. -0 )2 .
. i=1

_1gt

He uses a result frpm the wrapped normal distribution (see Section 1.3) that 1—r =¢72" to
obtain the tranformation to 1-r. Mardia goes on to state that r and 1-r are more useful for
theoretical applications. The differences between s and S, are slight for small r. Fisher (1993,
p.42) wﬁtes that when r is near zero, the two measures are approximately the same. The measure

So rangeé from zero to infinity (as r goes to Zero), just as linear standard deviation does, but s

ranges only from zero to /2 . Finally, Fisher (1993, pp. 32-3 4) uses a sample angular dispersion

2

measure & defined as 12_ P2 where D, = ;Z cos2(p, —¢). He uses this measure in
¥ i=1

calculating confidence intervals about the true mean direction and in comparing several mean

directions.



Example 1.1: Using ungrouped, vectorial data of 30 cross-bed azimuths of
palaeocurrents from Fisher and Powell (1989), the mean vector m and the three measures

of variance will be calculated. The data is unimodal in nature, so these measures will be

interpretable. Table 1.1 lists the data, along with their corresponding cosine and sine

values,

Table 1.1
9, (deg) |cos( 9,) |sin(g,) ¢, (deg) [cos( 9.} [sin( 9.} |9, (deg) cos(@,) |[sin( 9.)
284 0.406737 | -0.91355 229 -0.65606 | -0.75471 290 0.34202 | -0.93969
177 -0.99863 | 0.052338 - 239 -0.51504 | -0.85717 245 -0.42262 | -0.90631
257 -0.22495 | -0.97437 | 277 0.121869] -0.99255 245 -0.42262 | -0.90631
301 0.515038 | -0.85717 250 -0.34202 | -0.93969 214 -0.82904 | -0.55919
257 -0.22495 | -0.97437 287 0.292372] -0.9563 . 272 0.034899 | -0.99939
267 | -0.05234 | -0.99863 281 0.190809 | -0.98163 224 -0.71934 { -0.69466
329 0.857167 | -0.51504 166 -0.9703 | 0.241922 215 -0.81915 | -0.57358
177 -0.99863 | 0.052336 229 -0.65606 | -0.75471 242 -0.46947 | -0.88295
241 -0.48481 | -0.87462 254 -0.27564 | -0.96126 186 -0.99452 | -0.10453
315 0.707107 -0.70711 232 -0.61566 | -0.78801 224 -0.71934 | -0.69466

30 .
Therefore, ¥ =4; )" cos(d,) = 4 (~8.9432) = -0.2981, and
i=l ‘

L)

0

Y =355 0 sin(@;) =+ (~21.7155) = —-0.7239 . The mean vector length r is

i=]

r = ((~0.2981)% + (~0.7239)2 ¥ = (0.6128)% = 0.7828 . Since % < 0, the mean angle is

— -0.723
9= arctan(—~97—2 )+ 180" =247.62". So, the mean vector m is can be expressed

—0.2981

either as [— 0.2981,—-0.7239] in rectangular coordinates or as [0.7828,247.62"] in polar

coordinates. The three measures of angular variance are computed as follows:

5 =/2(1-0.7828) = 0.6591, 5, = /= 2In(1— 0.7828) = 1.7475 , and

= 1-0.0417 n el
0 =—T"""_-0.7819 where =L1N cos2(p. —247.62y =L 1.2519)Y=0.0417. O
207828 P, 21 (@, ) =2( )
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When one variable is linear and the other circular, there are two correlation measures
available. Which one to use depends on what type of relationship may exist between the two
variables. If a cosine association exists betweeﬁ the two variables (a cosine curve performing a
single cycle on a cylinder), then the multiple corrélation between the linear variable X and the

trigonometric components of the circular variable ©, (sin ¢, cos ¢), must be computed. The

sample correlations ry, ry3, and rp3, between X and sin ¢, between X and cos ¢, and between sin (0}

and cos ¢ , respectively, are calculated. To find the sample correlations, use the formula for any

R

z (ui - E)(vi - ‘7)

i
set of numbers (uy, vy), ..., (uy, Vo), = — Wwhere i =-3;2u , and

[Z:l,(u,. —i:')zg(vi —g)f]a =

V= -};zn:v ; - Then, the multiple correlation between X and the circular variable © ig found using
A

R? = (’ig +"1§ _2"12"13"23)
" (1"7'223)

. This is called C-linear association. Ifno particular form of

-association is in mind beforehand, C-association can be caléulated, which is much more
involved. See Fisher (1993, p. 141-144) for more details. Testing for a significant relationship
between the two variables can also be done.

The association between two circular variables can also be described. The more general
T-monétone association can be used when no particular type of association is anticipatéd, and
~ the more specific T-linear association is for strictly positive or negative relationships between the
two variables. Computation of either correlation is very involved. Refer to Fisher (1993, pp.

146-154) for a more complete description of both.
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3.5: Regression Models
'To use circular data in simple and multiple linear regression settings, distinctions must be

made between which role the circular variable plays and between when to use linear or nonlinear
regression techniques. Three different regression models must be used for the three kinds of
regression involving circular variables. These three cases, summarized in Table 3.2, are linear-
circular regression, circular-linear regression, and circular-circular regression. In linear-circular
regression, the circular variable is used to explain changes in the linear response variable, vice
versa in circular-linear regression, and angular variables are both the explanatory and response
variables in circular-circular regression. In each case, both linear and nonlinear forms of

regression can be used.

Table 3.2
Regression Category ~ Response Variable Explanatory Variable
Linear-circular Linéar Circular
Cifcular—]jnear Circular Linear
Circular-circylar Circular Circular

The most commonly used form of regression is the linear-circular case. The C-linear
regression model used here can be viewed as a cosine curve performing a single cycle on a

cylinder and can be fitted using ordmary least squares. It is written as
¥; = B, + Acos(wt ~wet ) +¢, G.1

where f§, is the mean level, A is the amplitude, w is angular frequency, and t, is the peak phase.

The independent angular variable is t. The known period is T and is related to w by w= ETE or
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w= 360° - The error terms may be independent and normally distributed, but they need not be.

For example, repeated measurements on the same individual over time may be made and a curve
fit to the data, but inference only applies to the individual that was measured and not to the
population from which the individual was drawn. ‘Minors and Waterhouse (1981) give many
cxamples of studies done on circadian rhythms where this is usually the case,

Equation 3.1 does not look like a simple linear regression model until it is rewritten as
¥y =B, + B, cos(wt) + B, sin(wr) +¢, (3.2),
using the trigonometric identity cos(wz ~ ¢) = cos(wr) cosg +sin(wr)sin ¢ (letting ¢ = wt,)
where 8, = Acos¢ ana B,= Asin&) . Equation 3.2 is the simplest case of the more general
trigonometric polynomial
Y =B, + 4, cos(wt — ¢,) + A, cos(2wt —9,)+...+ A, cos(hwt — 9, ) + £, (3.3),
which can provide a better fit of the data at the expense of estimating more parameters.

The nonlinear regression model of linear-circular assdciation can no longer be thought of
asa coéine curve on a cylinder. The only requirements that the curve meet are that it has one
peak and one trough and has equal values at zero and 2. One distortion of the cosine curve is
when the peak and trough do not follow each other at an equally spaced interval. When this is
the case, the correct model'to use is |
y; =B, + Acos(y +veosy) +e, 3.4)
for ¥ = wt —¢ . The additional parameter to estimate, v, is a skewness parameter ranging from
—30°to 30°. A value of v.= 0° reduces the model to-the_: linear regression form in 3.1. A second
possible distortion of the cosine pattern is when the peak is flatter or steeper than a cosine

curve’s peak is making the model
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y; =B, +Acos(y +v, siny) +¢, (3.5)
appropriate. The parameter v is a measure of peakedness; values close to —60° have flat peaks,
and values close to 60° have steep ones. Solving for the parameters in these two nonlinear
models requires using generalized least squares. See Figure 3.1 from Fisher (1993, p. 140) for

both linear and nonlinear linear-circular regression model comparison,

(a) Ganeral {C+) assoclation {b) G-linear assaciation {a cosine lunction)

x g m X
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¢} a0 180 270 60 : 0 a0 180 270 360
e a

Fig. 3.1 (a) nonlinear linear-circular regression model—a periodic function from 0 to 2m. (b) lincar linear-circular
regression model—a cosine function from 0 to 2.

Switching the roles of the angular and linear variables changes the nature of the model
dramatically. In circular-linear regression, either the mean angle, dispersion, or both may
depend on the explanatory variables. To model mean direction, use
Mo =u+g(Bix + Box, +...+ Box, ) +e, (3.6)
where p; is the mean direction, and g is a link function mapping the real line to the circle.
Maximui;n likelihood estimates of y and § can be obtained using a system of iterative equations
(Fisher, 1993, pp. 158-9). Since dispersion is not an easily definable characteristic of samples,
modeling dispersion or both dispersion and mean angle requires the assumption of having drawn
the sample from a von Mises population.

A model defining circular-circular regression is a probleny that is not yet resolved.
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3.6: Conclusion
This overview of multi-sample testing, computer procedures, confidence intervals,

correlation analysis, and regression of circular data is intended to emphasize some interesting
applications of circular data and some of the methods developed to support those applications.
As more experience is gained in a wide range of experiments, the theory and methods for
circular data will become more standardized and succinct, and as they gain publicity, fields that

do not use them today may find applications for them in the future.
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Section Three: Additional Topics

Significant contributions to the field of circular data continue to be made regularly. It is
aﬁ active field in which much work remains to be done until circular data acquires the breadth
and depth of theory that linear data has. Some additional areas of application of circular
statistics will be highlighted here—multi-sample tests, automated procedures, parameter
estimation, correlation, and regression.
3.1: Multi-sample testing

In addition to testing a single sample of data, it is often useful to have procedures
available for testing two or more samples of data. These procedures are designed to detect
differences among samples, such as among a control treatment and different levels of a single
factor. These tests rest on the following assumptions: each sample was a simple random sample
from a population, samples are independent of each other, and grouping .class sizes, if used, must
be less than 5°. For the most part, it is also assumed that the data were drawn from a um'modal-
distribution and are most assuredly not uniformly distributed. Once satisfied, tests designed to
be used with any of the following alternative hypotheses can be used: differences in mean angle
exist; diﬂ'erences in angular deviation exist; differences in mean angle, angular deviation,' or both
exist; or differences in mean angle 6, or concentration parameter K exist given a von Mises
disfribqtion. There are also omnibus testé that detect differences of any type. Finally, tests to
detebt differences in median direction or in overall distributional patterns exist. Both two-sample
and multi-sample versions of tests are available.

One must keep in mind that just because significance is determined in any one test, the
conclusion must still be drawn cautiously. A visual inspection of plots will aid the researcher in

determining what it is about the samples® characteristics that cause significance to occur. For
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small mumbers of samples, two useful plots for comparing them are scatter diagrams with
different plotting symbols used for each sample and angular qq plots. Angular qq plots compare
the general shape of two samples. Ifthey are the same, the points will lie roughly along a 45°
line through the origin (for construction details, see Fisher, 1993, pp. 1 11-2). For multiple
samples that are all unimodal, side-by-side boxplots (constructed in the same way that boxplots
for linear data are) can be used for comparison purposes.
- These methods are best used in experimental designs with one factor at multiple levels.

When additional factors are added with levels of each factor, the analysis becomes increasingly —
complex. Much work is being done in this area to determine what assumptions must hbld, if any,
in order to dei/elop a general approach to analysis of variance of circular data.
3.2: Automated Procedures

The success of the tests and confidence intervals described hereafter is based to a great
extent on the evolution of computer intensive procedures such as bootstrapping and
randomization. When the sample size is small, between seven'and twenty-five, or the sampling
distribution of the statistic is not known, bootstrapping can provide reasonably accurate estimates
of standard errors, and randomization (or permutation) can aid in completing hypothesis tests.
Fisher (1993, pp. 200-18) gives some algorithms for programming bootstrapping and
randomization methods. These procedures become especially useful in correlation analysis
where cémputhlg the test statistics can be very involved.
3.3: Parameter Estimation and Confidence Intervals ‘

The statistics for mean vector, von Mises parameters, and median direction have already

been introduced in Sections 1.2 and 1.3. Here, the corresponding parameters for each of the
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statistics will be given in Table 3.1, and then methods for forming confidence intervals about

each of them will be discussed.

Table 3.1
Sample Statistic Population Parameter
Mean Vector m 1
Mean Vector Length r o3
Mean Angle/Direction ) 8,
von Mises Concentration K K
Median Direction ) i

The confidence interval procedure for the mean direction 8, has already been described

in Section 2.2 (jii). To summarize it once more, use a bootstrap procedure for samples less than

25 in size (Fisher, 1993, pp. 205-6). For samples with # > 25, calculate the formula

¢ *sin™'(z,,6) where 6 =

= | O

A confidence interval for the median direction I can only be constructed if the data are
relatively concentrated on one arc of the circle. To find the upper and lower endpoints of the
confidence interval, (qb( 1y 9w, ), count off m observations to the left and right of the sample
median ¢ (not including ¢ itself). The smaller of the observations that the count ends on is the

lower endpoint, and the larger observation is the upper endpoint. The integer m depénds on the

sample size and the desired a-level. If n <16, use Appendix A6 of Fisher (1993, p. 226) to find

m toryi‘eld exact o—levels. If #>16, use m= 1 + integer part of (%«/;z%) where Zyy is the upper

100(24 )% of a N(0, 1.) distribution to obtain an approximate a—level (Fisher, 1993, pp. 72-3).
When the sample data fits a von Mises probability distribution, estimates of g,, x,and

P, can be used to form confidence intervals for both 8, and k. The maximum likelihood
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estimate of 6, is ¢ , and the MLE of « is the solution of ﬂfl =y for €. An approximate

1, (%)
2r+ 1 +57 r < 0.53
solution is &), =<-0.4+1.39r +943/_ :053<r<0.85,. When the sample size is small, and r

' —4r° +3r

is less than 0.70, then the MLE of & can be heavily biased. For <15 , use the estimate

max(Ky, —2(nk,, )" 058, <2

o 1y
K=<(n 31) KML;AM;:?Z
(n” +n)

The MLE’s can then be used to create confidence intervals for the mean angle and

concentration parameter. The estimate of the standard error of ¢ is 6, = where Zy i

o

nrx

the upper 100(44 ) critical value from a N(0, 1) distribution. Then, the confidence interval for the

mean angle 6, is ¢ %sin™ (z%o"m) (Fisher, 1993, p. 89). When £ > 2, a two-sided 100(1-a)%

confidence interval for k can be calculated using the values g = ——gw— and b= (12_-—@
p A (1 - %) Xr (%)

1++/143a 1+4/1+38

such that the upper and lower bounds are
4a 4b

} (Fisher, 1993, p. 91). Fisher

(1993, pp. 88-91) also describes bootstrapping methods for each type of confidence interval.

3.4: Correlation Analysis ,
Correlation in linear statistics measures the strength of the linear association between two

variables. New numerical measures of correlation have been developed for circular data. There

are two settings of interest to consider: only one variable is circular while the other is linear or

both variables are circular.



1.3: Circular Distributions :
A brief summary of major families of distributions used for circular data 1s required here,

A host of probability density functions (pdf) for circular data have been suggested. All are non-
negative functions, either continuous or discrete, and have finite support from 0 to 2. The most

simple is the uniform distribution, in which any angle between 0° and 360° is equally likely. The
pdfis f(¢)= :2-1-— , 0<¢ <2r. Tt is most commonly used as the null hypbthesis model against
T

which various alternative models are tested. The von Mises distribution plays the same role in

circular statistics that the normal distribution does in ]jnea; statistics. It is a two paramgter
unimodal, symmetric distribution with pdf f (9) = (27, (x)) " exp(x cos(p—0,)), 0o <2rx,
and 0 <k <oo. In this pdf, I,(k) is a modified Bessel function of order zero (see Fisher 1993, p.
48 or Batschelet 1981, p. 297 for a complete description), 6, is the population mean angle, and «
is a parameter of concentration. This is the only distribution for which the sample mean angleis
the maximum likelihood estimate (MLE) of the population mean angle, and the MLE of p,

(population mean vector length) is r (Bingham and Mardia, 1975). (Note, r can be converted into

an estimate of x by means of the equation %-‘Efl =r.)
K

Aside from these two most important distributions, various other linear distributions,
such as the normal, cauchy, and poisson, have been modified and “wrapped” around the circle to
obtain circular distributions. Distributions with multiple modes can be thought of as mixtures of
several unimodal distributions. There are families of skewed distributions and of distributions
with parameters that can alter the shape of their unimodal peaks (making them either flatter or
steeper). A detailed presentation of some of these other distributions can be found in Mardia

(1972, pp. 49-53), Fisher (1993, pp. 43-55), and Batschelet (1981, pp. 278-290).



This brief introduction to circular data, statistics, and distributions should suffice to make

the presentation of subsequent material comprehensible.

Section Two: One-Sample Tests

2.1: Introduction _
One-sample tests fall into one of two broad categories: tests for randomness and tests for

goodness-of-fit. In testing for randomness, the question posed is whether or not there is a pattern
in the sample data, For example in experiments; many times a researcher wants to know if the
treatment induced causes the experimentalh units to prefer a particular direction over another. If
not, then the observations will tend to be randomly scattered (or uniformly distributed) around
the circle. If so, the points should be clustered together in some way. Once the null hypothesis
of random distribution of the points has been rejected, the researcher may attempt to fit a
probability model to the data. Goodness-of-fit tests determine whether the particular model
chosen is appropriate or not. Examples of the commonly used tests of each type will be given.

A variety of creative tests have been developed over the years. Some are very easy to
apply while others are computer intensive; some are well-used by scientists while others are not
very popular; some are more powerful in rejecting certain typ.es of alternatives than others; and
some are better used with unimodal samples than with multimodal ones. All of the tests assume
that the sample of vectors is independent and is a random sample from a population of interest.
The tests also depend on one or both of the following assumptions: if the data are grouped, r has.
been adjusted (*), and if the data are axial, the angles have been doubled (¥). The corresponding
symbol will be placed next to the test name to indicate which of the assumptions is required for
the test to be performed cotrectly. Also, note that some tests can be used with several different

alternative hypotheses. Nonstandard tables of critical values or p-values for tests can be found in
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Batschelet (1981) as well as straightforward examples of most of the tests. Mardia (1972) gives

a theoretical treatment of most of the tests described here.

Before choosing one of the tests for randomness or goodness-of-fit from those described
below, a probability plot of the data against the nuil hypothesis model can be useful. For the

uniform model, order the angles from smallest to largest, and let

%, =h¢<i,x2 =ﬂ?’7,...,x,, =£(‘"“),—- Plot the pairs L , X, 2 Xy beens] ——,x, | For
360° 360 360 n+l n+l n+l

- a von Mises null distribﬁtion, calculate the quantiles qy, o, ..., ¢, for a von Mises distribution,

and then calculate z; =sin 1 (¢, = @) for every observation. Order the z; from smallest to largest,
and plot the points (sin(1q;),7,, ) 6in(3q, ),z )-... bin(Lq, ), z,,,) In either case, there is

evidence that the correct model has been chosen if the points lie along a 45° line passing through
the origin. Since there is an aribitrary starting point for circular data, Fisher (1993, p. 65)
desribes a method for extending the ends of the plot by a percentage of the data. A uniform
probability plot for the paleocurrent data of Example 1.1 is shown in Figure 2.1. The points do
not fall along the 45° line through the origin. However, formal testing should still be done since

a visual assessment of the correct model is sometimes not trustworthy.
Uniform Probability Plot

1.0

Sample Quantiles

00 02 04 06 08

I T 1 I T
0.0 0.2 04 08 08 1.0

Uniform Quantiles
Fig. 2.1 Uniform probability plot for paleocurrent data.
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2.2: Tests for Randomness :
a) When there is an unspecified alternative direction, any of the following four tests can be used,

The null hypothesis (H,) in each case is that the parent population is uniformly distributed.

i) Rayleigh Test *¥
Lord Rayleigh (1880) first studied the importance of using the mean vector length r in
assessing uniformity of a sample of vectors. The concept is quite simple. Ifthe points are
randomly scattered about the circle, then r should be small. If the points are clustered in one
area, then r will be close to one. When r is statistically significantly different from zero, the null
hypothesis is rejected to conclude that there is some direction in the data. See Tablé H
(Batschelet, 1981, p. 334). The Rayleigh test is very popular and can be used with the alternative
of a von Mises distribution. It is the unifﬁnnlj/ most powerful (UMP) test when testing against a
von-Mises alternative (Mardia, 1972, p. 137).
Example 2.1: Using the data listed in Table 1.1 of 30 cross-bed azimuths of
palacocurrents, the Rayleigh test statistic is r = 0.7828. Table H indicates that for a
sample size of 30 and an r of 0.7828, the p-value is less than 0.001, Therefore, there is
statistically significant evidence that the palacocurrents are not uniformly distributed.

See Figure 2.2 taken from Fisher (1993, p. 61) below.

v;"

Fig. 2.2 Scatter diagram of 30 cross-bed azimuths of palaeocurrents.
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ii) Hodges’ and Ajne’s Test ¥
Ajne’s test (Ajne, 1968) is a special case of the bivariate sign test by Hodges (1955). Its
attraction is the ease of calculation of the test statistic. Rotate a diameter around the circle until a
maximum and minimum number of points lie on either side of the line. Let k equal the
minimum number of points on one side. Ifk is small relative to the sample size, then there is
evidence that the population has some direction to it. Use Table J (Batschelet, 1981, p. 337) to
assess significance. If the parent population is a von Mises distribution, then this test is not as
powerful in detecting deviations from the null hypothesis as the Rayleigh test is.
Example 2.2: For the paleocurrent data, k = 0. Fora sample size of thirty, the p-value is
less than 0.001, evidence enoﬁgh to reject the hypothesis of uniformity,
iif) Rao’s Spacing Test *
Rao’s Spacing test (Rao,1.969, 1976) is unique in that it can detect deviations from

uniformity in both unimodal and multimodal samples, If n points are randomly spaced, then the

o

distance between neighboring points should be roughly —3-& CIf not, then very large or small
n

distances between points might be expected. The test statistic U = §Z| T; -3 | is based on T},
=1

which is the distance between adjacent points. Large values of U provide evidence against the
null hypothesis. Use Table L of Batschelet (1981, p. 339).
| Example 2,3: For the paleocurrent data, first arrange the angles from smallest to Jargest,
and find the arc length between consecutive angles to get each T;. Subtract twelve from
each one, take the absolute value, sum the deviations, and divide by two. Here, U = 205.
From Table L, the p-value is less than 0.01, statistically significant evidence that the data

is not uniformly distributed.
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iv) The Range Test ¥
The range test (Laubscher & Rudolph, 1968) uses the smallest arc, w, capturing all of the
data points as its test statistic. The premise is that the smaller the arc, the more concentrated the
data, ruling out uniformity. Table M of Batschelet (1981, p. 340) provides critical valyes. This
test only works well with distributions having small angular standard deviations.
E:éample 2.4: The smallest arc capturing all of the paleocurrent data points is w = 329° —
166° = 163°. The p-value from Table M is less than 0.005, again indicating a non-
uniform distribution of the data.

Table 2.1 below summarizes the results of the tests done on the paleocurrent data in

examples 2.1 through 2.4.

Table 2.1
TEST STATISTIC P-VALUE DECISION
Rayleigh r=0.7828 <0.001 Reject H,
Hodges/Ajnes’ k=0 <~ 0.001 Reject H,
Rao’s Spacing U =205 <0.01 Reject H,
Range Test | w=163° < 0.005 Rejeét H,

b) In some studies, there is a specified alternative direction in mind beforehand, A homing location,
topographic landmark, or magnetic orientation may have some hypothesized effect on the units.
This particular direction is denoted by 68,. The hypotheses for the next two tests are H,: the

parent population is uniformly distributed versus H,: the parent population is clustered about 9,

i) The V Test "%
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This test, developed by Greenwood and Durand (1955), rests on the concept of the homeward
component v defined as v = rcos(p —8,). This component is the projection of m onto the

‘hypothesized direction 6, and can range in value from —1 to 1. The test statistic used is

u=w2n. Rejecting the null hypothesis using Table I (Batschelet, 1981, p. 336) means that
significant evidence exists that values are clustered around 6,. When it is appropriate to specify

an alternative direction, this test is more powerful than Rayleigh in detecting deviations from the

null. This test and the next should only be used to test for uniformity. Testing if the mean

direction diﬁ“ers from the homeward direction is the role of the test in part (iii). |
Example 2.5 The directions that one hundred ants chose to travel when they were |
exposed to a black target are graphed in Figure 2;3 below. This data was taken from
Fisher (1993, p. 243) and is reproduced in Table 2.2. Ifit is hypothesized that the ants

will run toward the target, then 8, = 180° is the homeward direction.
[

Table 2.2
330 200| 60 | 2001 200| 180| 280 220] 190{ 180
1801 160] 280 180} 170 190| 180| 140{ 150] 150
160] 200] 180[ 250 180} a0 | 200| 180[ 200{ 350
200|180} 120] 200§ 210] 130| 30 | 210] 200| 230
180{1860| 210 190} 180] 230] 50 | 150| 210 180

N
\x‘\s 190) 210{ 220| 200| &0 | 260] 110} 180| 220] 170

10 1220] 180) 210{ 170] 90 { 160] 180{ 170] 200
160] 180] 120 150 300{ 190] 220{ 160{ 70 | 190
110] 2701 180 200) 180] 140] 360| 150} 1680{ 170
140] 40 | 300] 80 | 210] 200] 170] 200{ 210| 190

Fig, 2.3 Scatter diagram of 100 ant directions in
presence of black target placed as shown.

The summary values needed to compute the test statistic are r=0.6101 and ¢ =183.14".

Therefore, v=0.6101cos(183.14 — 180)=0.6092, and u = 0.6092+/200 = 8.6152. From
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Table I, the p-value is less than 0.0001, so there is significant evidence that the directions
are clustered around 180°.
ii) Competitor of V Test ¥
This is a modification of the Hodges-Ajne test proposed by Batschelet (1981, pp. 64-6). The
idea is to draw a diameter line perpendicular to the proposed direction, and let k equal the
numbér of observations that. fall on the side of the circle opposite that of 8. The test statistic is
k, and the smaller it is, the more likely the sample was not drawn from a uniform distribution and
that the points are clustered around 6,. Table K (Batschelet, 1981, p. 338) lists p-values for a
givenn and k. This test is very easy to use.
Example 2.6: The number of observations that fall on the arc of the circle from 90° to
270° opposite the black target isk = 23. The p-value is less than 0.001, evidence that the
points are not uniform and that they are clustered around 180°. |
iii) Testing Mean Direction ¥
This test should be used (Fisher, 1993, p. 76) when the true mean direction is desired for a

unimodal sample. The hypotheses are H,: 8 =8, versus H,: 0 = 0,. Itis easiest to calculate a
100(1-0)% confidence interval and see if 6, is included in the interval. For small samples of

less than 25 observations, a bootstrapping method is required (Fisher, 1993, p. 75), and for

samples with more than 25 observations, the confidence interval formula is ¢ +sin ™ (z,yc?)

~

20 . "
where ¢ =— and z,, is the upper 100(%) critical value from a N(0,1) distribution. (Recall
R \

s

2

that 8 =

1-5, . . .
> 18 a measure of sample dispersion.)

r
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Example 2.7: Using the ant data of example 2.2, the values needed for a 95% confidence
interval are ¢ =183.14°, r =0.6101, p, =0.4452, & = /S5 =0,0863, and
Z s =1.960. The confidence interval is then 183.14° +sin ™' (1.960-.0863), and the

upper and lower bounds are (173.40°, 192.88°). Since the homeward direction 180° lies
within these bounds, do not reject the null hypothesis that 6, = 180°.

Table 2.3 lists the results from the three tests done on the ant data.

-Table 2.3
TEST STATISTIC P-VALUE DECISION
V-Test u=_8.6152 < (.0001 Reject H,
V—Competit(;r k=23 <(.001 Reject H,
Mean Direction 95% CI (173°, 193°) na - Fail to Reject H,

2.3: Goodness-of-Fit Tests
The hypotheses for the first three tests given are H,: the parent population fits a particular model

versus H,: the parent population does not fit the proposed model where the model can be any
probability model of interest. Note that goodness-of-fit tests can double as a test for randomness
if the model of interest chosen 1s the uniform distribution, but they are usually used with more
interesting distributions,

i) Chi-squared Test

This is the same chi-squared test that is used in linear statistics. The circle should be divided
into arcs (not necessarily of equal length), and the frequency of sample points in each arc is
counted (n;). Then, the expected number of observations falling into each arc based on the

chosen distribution is calculated, ;. Let k equal the number of arcs, The test statistic is
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k _ 2
xl= ZM— and has an approximate y*(k —1) distribution. Reject H, for large values of
=l &;

x*. There is one special assumption here that cannot be violated: the expected frequency in
each arc must be greater than or equal to four. Complying with this restriction implies that the
sample size must be large, at least 5k, to be reasonably accurate, but when it is, it will work for
both unimodal and multimodal samples.
Example 2.8: Applying the chi-squared test to stronély unimodal data, like the
paleocurrent data, can be difficult, if not impossible. Even with only six arcs, three of the
arcs have counts of zero in them, violating the assumption for this test. The sample size
would have to be much bigger than tlﬁrty to apply this test to the paleocurrent data.
if) Kuiper’s Test "
In Kuiper’s test (Kuiper, 1960), the empirical step cumulative distribution function (cdf) and
theoretical cdf of a chosen model are graphed on top of one another. The test statistic uses the

largest deviation of the emﬁirical cdf above the theoretical cdf (DY) and the largest deviation
below the theoretical cdf (D). Define V,=D"+D" .. The test statistic is K =¥, /n. Large
deviations indicate a departure from the cﬁosen model, so K large is evidence against the null
hypothesis (see Table N in Batschelet, 1981 » P. 341). This test is actually more powérful than
the chi—squared test when unimodal or bimodal data is involved.

iif) Watson’s U? Test "

Watson (1961) modified the method of using mean square deviation for circular data. Let

F (q)) be the cdf of the theoretical distribution. Rearrange the data into ascending order

Oy Sy £... < @y » and the test statistic is U = ivf - i (—c%)+ n[{- -(v- -;-)2] where
. i=1

i=I
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v; = F(9;) and ¢, =2i—1. Intheory, each of the observations is being subtracted from its

expected value; the deviations are squared and averaged. A large mean square deviation from

Table O (Batschelet, 1981, p. 342) would imply that the model does not fit the data well, This

test can be used for mulitmodal samples and is particularly powerful for small sample sizes.
Example 2.9: From Examples 2.1-2.4, it is known that the palacocurrent data is
distributed significantly differently from the uniform distribution. Watson’s test can be
used to check if the data fits a von Mises distribution. Using Table E to get estimates for

the von Mises cdf (Batschelet, 1981, p. 322-31) with a Ky, = 2.7 (See Section 3.3.),
Watson’s U? =1.09. Table O then gives a p-value of less than 0.005. Therefore, there is

significant evidence that the von Mises distribution fits the paleocurrent data very well, |
2.4: Conclusion :

The sheer number of tests can be overwhelming, but each test has its strengths,
weaknesses, and purpose. By no means has every possible wone-sarnple test been examined here,
Modifications to these described here and tests simply for symmetry or for median direction are
also available, Table 2.4 lists the salient facts pertaining to each test described here for quick

reference use and side-by-side comparison.



