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The average effect of a factor is defined as the difference between the averages of the
observations when that factor is at its respective high and low levels. The uppercase letter used
to represent a factor is also used to represent its corresponding average effect.

[4; 80-81, 92-94, 103-104) For example, the average effect of factor 4 ina 2* factorial design
is defined as follows:

-7 _T _a+ab+ac+abe+ad +abd + acd + abed
A—yA*_yA—:: 8” -

(1)+b+c+bc+d+bd+cd+bcd_
8n

si_[- (1)+a—b+ab-c+ac—be+abe ~d+ad ~bd +abd - cd + acd ~ bed + abed] (1)
n
The average effect of a factor may be referred to simply as its “effect”. For instance, the average

effect of factor 4 may be called “the effect of factor A 7, “the factor A effect”, or “the 4
effect”.

The two-factor interaction effect between any two factors is defined as one half of the
difference between the average effects of the first when the second is at its respective high and
low levels.[4; 81-82, 94-95, 103-104], [5; 313-3 14]* Two-factor and higher-order interaction
effects are denoted by the sequence of uppercase letters (in alphabetical order) representing the
factors involved.[4; 80-82, 92, 94-95, 103]* As an example, the 4B interaction effect ina 2*
factorial design is defined as

gl ab+abc+abd+abcd_b+bc?|-bd+bcd]_
2 4n 4n

a+ac+ad+acd (1)+c+d+ch]_
4n 4n

1
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* See the final paragraph in 1. Introduction.
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1. Introduction.

The purpose of this paper is to give a brief introduction to two-level factorial and
fractional factorial designs followed by a discussion of fold-over designs. We conclude with two
examples of the full fold-over technique using selected data from a 2° factorial experiment. The
conclusions reached from the analysis of each simulated fold-over experiment are then compared
with those from the analysis of the full 2° factorial experiment.

The reader should note that any given design discussed in this paper has the same number
of replicates, 7, taken at each of its factor level combinations. Furthermore, all factor levels
discussed in this paper are fixed.[1; 1234)

Some statements in this paper of results that apply in general have been made at least in
part based on results and/or comments pertaining to specific examples or cases addressed in the
reference textbooks. This has been done when the example or case appears to have been used to
illustrate the corresponding general result and an asterisk follows the citing of the reference in
those circumstances.

2. »* Factorial Designs.

A 2* factorial design involves k factors such that each has two levels. The name
follows from the fact that each replication of the design consists of 7* factor level

combinations.[4; 79] Also, the factor level combinations are randomly allocated to the
experimental units in these designs.[1; 1237)

Each factor in a 2* factorial design is denoted by a different uppercase letter of the Latin
alphabet. One of the levels of each factor is designated as the Jow level and the other as the high
level with the choice of designation being inconsequential.[4; 79-80, 91, 103]

Any given run where at least one factor is at jts high level is identified by a sequence of
lowercase Latin letters, The presence of a lowercase letter in the sequence indicates that the
factor denoted by the uppercase of that letter is at its high level. Ifa lowercase letter is not in the
sequence, then the associated factor is at its low level. The treatment combination where no
factor is at its high level is designated as “(1)”. In addition to identifying a given run, the
notation described above is also used to designate the sum of the replicates of that run.
[4;81,91,103] Asan example, the sequence of letters be ina 2* factorial design identifies the
run where factors 4 and D are at their low levels and factors B and C are at their high levels.
It also designates the sum of the replicates of this run,
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Table 1, shown previously, provides important information regarding 2* factorial
designs. Note that the treatment combinations in the “Run” column there have been listed in
standard order. Standard order in a 2* factorial design consists of placing the run where all
factors are at their low levels first followed by the run where only factor 4 is at its high level.
Next listed is the run where only factor B is at its high level followed by the run where only
factors 4 and B are at their high levels. The next four runs listed consist of the previous runs
altered so that factor C is at its high level in each respective run. Similarly, the next eight runs
listed consist of the previous runs altered so that factor D is at its high level in each respective
run. The process is continued until all 2* treatment combinations have been listed.

[4; 84, 91, 103-104] Note that the observations are taken in random order in the experiment,
[1; 1237], [5; 323] Consequently, the run order of the experiment is not necessarily standard
order. _

The I column in Tabie 1 contains a plus sign in every row and, as a consequence of the
fact that the runs are listed in standard order, the column for the ith average factor effect

(i=1,...4) contains alternating sets of 2™ minus and plus signs. We can think of the minus and

plus signs as shorthand notation for respective coefficients of “~1” and “+1”. Note that the
coeflicients in any interaction effect column can be obtained from those in the factor effect
columns for the factors involved. Specifically, each interaction effect coefficient results from the
multiplication of the coefficients in the same row of the associated factor effect columns, For
instance, each ABC interaction effect column coefficient results from the multiplication of the
coefficients in the same row of the 4 » B, and C factor effect columns,

A table of algebraic signs similar in fashion to Table 1 can be constructed for any 2*
factorial design. First, list the runs of the design in standard order and place a plus sign in every
rowofthe J column, Next, place in the column for the i th average factor effect (i = 1,2,...,k)

alternating sets of 2" minus and plus signs. The table is completed by determining the signs in
the interaction effect columns using the type of multiplication described in the previous
paragraph.[4; 84, 95, 103-104], [2; 111-112], [5; 322-323] '

Table 1 indicates how the numerators of the factorial effects in any 2* factorial design
are calculated. A given factorial effect numerator is obtained by placing the sign in each row of
its column in front of the entry in the same row of the “Run” column, The resulting linear
combination of run replicate sums is the numerator of that factorial effect. Note that the
humerators of the average effect of factor 4 and the AB and ABC interaction effects obtained
in this way from Table 1 are identical to those shown in equations 1, 2, and 3, respectively. The
factorial effect numerators in any 2* factorial design are determined analogously from its
corresponding table of algebraic signs.[4; 84, 95, 103-104), [5; 322-323)
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The three-factor interaction effect invo lving any three factors is defined as one half of the
difference between the two-factor interaction effects involving the first two when the third is at
its respective high and low levels.[4; 95, 103-104], [5; 315-316]" For example, the ABC

interaction effect in a 2* factorial design is defined as follows:

ABC:%[%H:abc+abcd _bc+bcd]_[ac+acd_ c+cdD__

2n 2n 2n 2n
1([ab+abd b+bd __,ia+ad_(1)+d _
2 2n 2n 2n 2n

si[—(l)-!-a+b—ab+c—-ac—bc+abc—d+ad+bd—abd+cd-—acd—bcd+abcd] 3)
t:

Higher-order interaction effects for appropriately sized 2* factorial designs are defined
analogously.[4; 103] :

Table 1. Algebraic Signs for Calculating Factorial Effects in the 2* Factorial Design

Identity and Factorial Effect Columns
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" See the final paragraph in 1, Introduction,



Lee R. Sutton, Ir. Master’s Degree Writing Project: Fold-over Designs 8/29/01

Two important observations can be made regarding the parameters of the factor effects

model for a 2% factorial design. First, there are two main effects for any given factor and these
have the same magnitude, but opposite signs. Secondly, the number of % -factor true interaction

effects (5 =2,3,...,k ) for a given set of 4 factors is 2. Furthermore, for a given collection of

2" such true interaction effects, all have the same magnitude, but half wil] be positive and haif
will be negative.[1; 1234-1236] These results follow directly from the constraints applied to the
main effects and true interaction effects and the fact that each factor has two levels,

The following relationships exist between the factorial effects froma 2% factorial design
as defined in this paper and the least squares estimates of the main effects and true interaction
effects from the associated factor effects model. The average effect of a given factor is two
times the least squares estimate of the main effect corresponding to the high level of that factor.
Similarly, the %-factor interaction effect involving a subset of # factors (4 < k) is two times the
least squares estimate of the true % -factor interaction effect corresponding to the high levels of
all & factors.[4; 86-87]", [1; 12391 Furthermore, the least squares estimates of the main effects
and true interaction effects are unbiased.[4; 24] Consequently, the factorial effects as defined in
this paper are unbiased estimates of two times the appropriate main effect or true interaction
effect. These results follow because the factor effects model can be expressed as the multiple
linear regression model described in [1; 1234-1236].

When the factor effects model ANOVA is conducted for an unreplicated 2* factorial

design, it is not possible to caleulate the MSE if the model contains all 2* —1 main effect and
true interaction effect terms. This is because the sum of squares corresponding to each model
term has one associated degree of freedom while only 2* —1 degrees of freedom correspond to
the total sum of squares (SST ). Thus, no degrees of freedom remain to calculate the AMSE .
[1; 685, 826, 936, 924, 1241, 875, 815-816, 806)

Furthermore, the least squares fitted value for any given run is the sample average of all
the replicates of that run.
[1; 678-679, 672-673, 693-694, 819-820, 814-816, 806, 933-934, 931-932, 927, 924]
Consequently, each observation in an unreplicated 2* factorial design is also its corresponding
least squares fitted value. This, in turn, gives each observation a zero residual which causes the
error sum of squares (SSE ) to be zero.
[1; 680, 682, 672-673, 819-820, 814-816, 806, 875, 821, 933-934, 931-932, 927, 924]

* See the final paragraph in 1, Introduction.
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The numerator of the mean of all the observed responses from the 2* factorial
experiment is obtained from the / column using the method described in the previous
paragraph.[4; 84, 103] Throughout this paper, the term “factorial effect” will refer to average
factor effects and interaction effects. It will not, however, refer to the mean of all the observed
responses from the experiment.

The product of each coefficient in the 7 column with any other coefficient in the same
row yields the other coefficient back again. Consequently, the set of coefficients in the 7
column is an identity element in the row-wise multiplication of coefficients among columns.
[4; 96, 103] Furthermore, the I column is referred to as the identity column.[4; 135, 1501

The row-wise multiplication of coefficients in any set of columns in Table 1 gives the
respective coefficients in one of the columns of Table 1. For example, the products of the
coefficients in the BD, ABC, and ABCD interaction effect columns are the respective
coefficients in the B effect column. The resulting factorial effect column can be determined by
combining the letters designating each column involved, eliminating letters that have even
exponents (e.g. 4>, 4*, 4°,...), and reducing any odd exponents to a “1”. We now show the
use of this procedure for the example Jjust given.

(BDXABCY4BCD)= 4°B°C*D* =B' = B. (4)

Analogous results apply to the table of algebraic signs for any 2* factorial design.
[4;95-96, 103-104] The rules for simplifying exponents follow from the fact that the identity
column results when each coefficient in a given average factor effect column is squared.

The definitions of the fuctor effects model as well as the associated parameter constraints
for 2% factorial designs involving one, two, and three factors are given in the reference text by
Neter, Kutner, Nachtsheim, and Wasserman. Such definitions and constraints for 2* factorial
designs involving more factors follow analogously. It is assumed in these models that the error
terms are independent, normally distributed random variables with true mean, zero, and constant
variance, o .[1; 693-694, 671-673, 815-816, 806, 812, 931-932, 927, 924] Throughout this
paper, we use the terms “main effect” and “true interaction effect” only to denote main effects
or interaction effects as they are defined in the appropriate factor effects model.

* See the final paragraph in 1. Tntroduction,
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The vector of observations from any 2* factorial design follows the multivariate normal
distribution as defined in the reference text by Sen and Srivastava.[3; 288-289] Note that this
definition makes use of Theorem (5.46) regarding equation (5.43) in [1; 197]. Because the
vector of the least squares estimated regression coefficients is the product of a matrix of
constants and the vector of observations[1; 1238, 226-227}, it also has a multivariate normal
distribution. This follows from Lemma B.1 in [3;2891].

Furthermore, the covariance between any pair of estimated regression coefficients is
zero.[1; 1239, 231, 226-227] We now have that the estimated regression coefficients are
mutually independent. This follows from the relationship between covariance and independence
for multivariate normal distributions. Specifically, if all pairs of random variables have zero
covariance in a random vector that follows such a distribution, then the random variables in the
vector are mutually independent.[3; 289] Consequently, the factorial effects are mutually
independent because each is twice its corresponding estimated regression coefficient.

The preceding results imply that if all the main effects and true interaction effects from
the factor effects model are zero, then the factorial effects are mutually independent, normally

distributed random variables with true mean, zero, and constant variance, o et - I this case, the

estimated expected value of the i th ordered factorial effect from any 2* factorial design is given
by

i—.375
(g e ©

Note that z(A4) represents the A(l 00) th percentile of the N (0,1) distribution.[3; 101-102]

The pages cited from reference textbook 1 in the following two paragraphs actually
contain discussion of normal probability plots of the least squares estimates of the main effects
and true interaction effects that correspond to the factorial effects. However, because of the

functional relationship between these two sets of estimators, normal probability plots of either set
are interpreted in the same way.
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One solution to the problem addressed in the previous two paragraphs is applicable if it is
probable that some of the true higher-order interaction effects are Zero or quite small in
magnitude. In such cases, we can drop those true interaction effect terms from the mode] and
use as the SSE the total of their associated sums of squares. The combined degrees of freedom
corresponding to those sums of squares can then be used as the error degrees of freedom.

[1; 875-876, 815-816, 806, 824, 837,937-938, 924], [4; 104] However, the use of this procedure
is incorrect if any of those true higher-order interaction effects that are thought to be unimportant
actually have relatively large magnitudes.[4; 104] A discussion of the consequences of such an
error is given in [1; 882, 876-881, 924].

Terms can also be dropped from a given factor effects model when it is possible to
calculate the MSE for that model. The error sum of squares for the updated model is the total of
the initial error sum of squares and the sums of squares associated with the terms to be dropped.
Simiiarly, the error degrees of freedom for the updated model is the sum of the initial error
degrees of freedom and the degrees of freedom corresponding to the terms to be dropped.

[1; 837, 815-816, 806, 937, 924]

A second solution to the lack-of-the- MSE problem is the use of a normal probability plot
of the factorial effects. The following paragraphs discuss the underlying theory, construction,
and interpretation of these plots. '

The following statements regarding the distributions of factorial effects can be made if
the factor effects model assumptions have been satisfied. First, each factorial effect from any 2*
factorial design is normally distributed with a mean equal to twice its corresponding main effect

or true interaction effect. Secondly, the variance of each factorial effect from any 2* factorial
design is :

5 dg?
o =— (5
effect 21:?1 ( )

where & is the error variance of the observations and 7 is the number of run replicates. This

follows from the use of result (A.3 1) in [1; 1318] after noting that the errors for the observations
are mutually independent,

The proof that the factorial effects from any 2% factorial design are mutually independent
will be outlined in this and subsequent paragraphs. First note that the factor effects model can be
expressed as the multiple linear regression model discussed in the reference text by Neter,
Kutner, Nachtsheim, and Wasserman. The true non-intercept coefficients in this regression

model are the main effects and true interaction effects that correspond to the factorial effects.
[1; 1234-1236]
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The notion that the majority of higher-order true interaction effects are inconsequential is
part of the Sparsity-of-Effects Principle. This principle states that for any process, usually
certain main effects and lower-order true interaction effects comprise the bulk of the effect
parameters that are relatively large in magnitude, [4; 104, 134] When the number of candidate
factors is somewhat large, it is not unusual to expect that three-factor and higher-order true
interaction effects are at most quite small in magnitude.[4; 157] We therefore can assume that
those true interaction effects are zero in the corresponding factor effects model. A second
assumption made when analyzing fractional factorial designs is that no two-factor true
interaction effect will be relatively large in magnitude unless the main effects for at least one of
the factors involved are also relatively large in magnitude.

Fractional factorial designs result from selectively removing runs from an unreplicated
2* factorial design. For example, refer to the 2* factorial design shown in Table 1. We may
decide to perform only the runs in the rows where the entry in the ABCD interaction effect
column is a plus sign. Table 2 shows the fractional factorial design consisting of the runs
meeting the criterion and Table 3 shows the fractional factorial design consisting of the
remaining runs. The fractional factorial designs shown in Tables 2 and 3 are given in “Table
4.11 Selected 727 Fractional Factorial Designs” in the reference text by Myers and
Montgomery.[4; 158-159] ‘

Table 2. The 27,' Design Having ABCD As Its Generator I

Identity and Aliased Factorial Effect Columns

ABC D BD ABD CD ACD BCD ABCD
- - +

'

C
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1 + ] +
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I+l++l
A
I++I
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<+

]
i

A R e O
+I+I+I+I>
+'-++r'+g
oA 4o
+I+ll+l.|_‘>
(@]
L R
O
+ o+ 1 "++é
+I+I
1
+ +
+I+l+l+l
b+ o+t

abed

.I_
+
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Table 3. The 2j,' Design Having — 4BCD As Tts Generator

Identity and Aliased Factorial Effect Columns

Run I A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD
d + - -+ -+ + - + - - + - + + -

a + + - . - - + + - - + + + + - -

b + - 4+ . -+ - + -+ - + + - + -

abd + 4+ + + - - - - + + + + - - - -

c + - -+ + - - + -+ + - - + + -

aed + 4+ - . + o+ - - + o+ - - + + - -

bed + - + . + - + - + - + - + - + -

abc + + + + + + + - - - - - - -

10
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The 7th ordered factorial effect is paired with the standard normal percentile in its
estimated expected value from (6) and the ordered pairs are then plotted.
[1; 1246-1247, 856-857, 818, 713-716] Such normal probability plots in this paper have the
standard normal percentiles on the vertical axis and the factorial effects on the horizontal axis.
The points in the plot should have a relatively linear pattern if the true mean of each factorial
effect is actually zero. Furthermore, the points in the center of the plot should have this type of
pattern because they usually correspond to factorial effects having true means that are zero or
quite small in magnitude. A line is subjectively fit to the points that appear to generally follow
the same line as those in the center of the plot. The factorial effects corresponding to points
located relatively far from this line are considered to have true means that are potentially
relatively large in magnitude.[1; 1246-12477", [4; 104-106] We can then conclude that each
main effect or true interaction effect component in those true means is also potentiaily relatively
large in magnitude.

If every run has been replicated the same number of times, this analysis procedure may
also be used with replicated 2* factorial designs.[1; 1247] Furthermore, this analysis procedure
may be used if some of the higher-order interaction effects are missing because their
corresponding true interaction effects have been dropped from the model.

Note that the theory for normal probability plots of factorial effects is based on the factor
effects model assumptions, Therefore, these plots should not be used if there is evidence of
serious violations of those assumptions.

An unreplicated 2* factorial design can be projected into a replicated two-level factorial
design involving a proper subset of the initial factors. Suppose, after the original analysis, that
we consider all of the main effects and true interaction effects involving # ofthe k factors
(0 <k < k) to be zero or quite small in magnitude. Then the data from the initial experiment can
be analyzed as if froma 2’ factorial experiment involving the other / = & — # factors,

Furthermore, the projected design will have 2* replicates of each run.[4; 109]
3. 277 Fractional Factorial Designs,

Fractional factorial designs are used in Screening experiments to determine which of
numerous candidate factors have a substantial impact on the process of interest when it is
assumed that some of the higher-order true interaction effects are zero or quite small in
magnitude. Typically, many of the original candidate factors do not have meaningful impact
on the process. The subset of factors that are suggested to be substantively influencing the
process can then be analyzed in greater detail with follow-up experimentation.[4; 134]

* See the final paragraph in 1. Introduction,
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The two-factor interaction effects involving pairs of the factors A » B,and C obtained
from the fractional factorial design shown in Table 2 are

; _1[[ab+abcd bd+bc) [ad+ac (1)+ch]_
a=— - - - =

2 2 2 2 2

i—[(l)—ad—bd+ab+cd-ac—bc+abcd] (18)

1{(ac+abcd__ cd+bc)_(ad+ab _ (1)+bd]] _

lac=3 2 2 2 2

—3[(1)—ad+bd—ab—cd+ac—bc+abcd] 19)

lac=7 2 2 2 2

1 [(bc+abcd _ cd+acJ_(bd+ab _ (1)+adj] _

%[(1)+ ad ~bd —ab-cd - ac + be + abed) (20

The three-factor interaction effect mvolving the factors A » B, and C obtained from the
fractional factorial design shown in Table 2 is

Lisc =:;‘B([ab(’d*bﬂ—’]“[ac-cd])—%([ab—bd]—[ad-—(1)]):, _

%[4-(1)+ad+bd~ab+cd—ac—bc+abcd1 @1).

12
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The following eight pairs of columns in Table 2 are identical:

I=A4BCD (7)
A=BCD (8)
B=ACD (9)
C=4BD (10)
AB=CD (11)
AC=BD (12)
BC=4D (13)
ABC=D. (14)

Master’s Degree Writing Project: Fold-over Designs

8/29/01

The average effects of factors A4 » B,and C obtained from the fractional factorial design

shown in Table 2 are

_ad+ab+ac+abed (1)+bd+cd+be

l4 4 2

-}[——(1)+ad—bd+ab—-cd+ac—bc+abcd] (15)

_ bd+ab+bc+abcd_(1)+ad+cd+ac _

s 4 4

S0 -ad+bd+ab-cd - ac+be+abed] (6)

cd+ac+bc+abed (1)+ad +bd + ab
fe= 4 B 4 B

—i—[—— (1)-—ad—bd—ab+cd+ac+bc+abcd] (17

11
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AC+BD=

%[(1)—a+b—ab—c+ac—bc+abc+d—ad+bd—abd—cd+acd—bcd+abcd]+
%[(1)+a—b—ab+c+ac—bc—abc——d—ad+bd+abd—cd—acd+bcd+abcd]=

%-[(1)-—ad+bd —ab—cd + ac - be +abcd]:l,1c (26)

BC+A4D=

%[(1)+a—b—ab-c—ac+bc+abc+d+ad—-bd—abd—cd—acd+bcd+abcd]+
%[(l)—a+b—ab+c—ac+bc—abc—d+ad-—bd—i—abd—cd+acd—bcd+abcd]=

%[(1)+ ad —bd ~ab—cd —ac+bec +abed|=1,.. (27) -
ABC+D=

%[—(1)+a+b—ab+c—ac.-—bc+abc~—d+ad+bd—abd+cd—acd—bcd+abcd]+
%[—(1)—-:1—13—ab—-c—ac—bc—abc+d+ad+bd+abd+cd+acd+bcd+abcd]=

%[— (I)+ ad +bd —ab+cd — ac — be + abcd]= lizc. (28)

Therefore, each of the preceding estimates from the fractional factorial design is the same
linear combination of run replicate totals as a certain sum of factorial effects from the 7*
factorial design. Consequently, each of these fractional factorial estimates serves as an estimate
of what its corresponding factorial effect sum would have been had a 2* factorial design been
performed.

14
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We now establish the following relationships between the factorial effects fiom the 2

factorial design shown in Table 1 and the preceding estimates from the fractional factorial design
shown in Table 2:

A+BCD=%[—(1)+a—b+ab—-c+ac—bc+abc—d+ad—bd+abd-—cd+acd—bcd+abcd]+
%[—(1)—a+b+ab+c+ac—bc—abc+d+ad—bd—abd—cd—acd+bcd+abcd]=
%[—(1)+ad—bd+ab—cd+ac—bc+abcd]=lA 22)
B+ACD=%[—(1)—a+b+ab-c—ac+bc+abc—d—ad+bd+abd—cd—acd+bcd+abcd]+
%[—(1)+a-b+ab+c—ac+bc—abc+duad+bd—abd—cd-ljacd—bcd-i-abcd]:
;ll-[—(l)—ad+bd+ab—cd—ac+bc+abcd]zlg (23)
C+ABD=%[—(1)—a—b—ab+c+ac+bc+abc—d—ad—bd—abd+cd+acd+bcd+abcd]+
é—[—(l)+a+b—ab—c+ac+bc-abc+d—ad—bd+abd+cd—acd—bcd+abcd]=
%[—(l)—ad-—bd—ab+cd+ac+bc+abcd]=lc 24)
AB+CD=%[(I)—a—b+ab+c—ac—bc+abc+d—adj—bd+abd+cd—acd—bcd+abcd]+

%[(1)+a+b+ab-c—ac—bc—abc—d—ad—bd-abd+cd+acd+bcd+abcd]=

%[(1)—ad—bd+ ab+ed —ac—bec+abed]=1, (25)

13
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The generators for any fractional factorial design are the factorial effects with a
coefficient of “+1” or “-1” that are used in the run selection process. A run is included in the
fraction only if it has a coefficient of “+1” in the numerator of each generator. The defining
relation for a fractional factorial design shows all columns having the same algebraic signs as the
identity column in a table of algebraic signs for the design.[5; 383-384, 379, 377, 409, 4117,

[4; 135, 150, 157]", [2; 149-1517 Therefore, for the fractional factorial designs shown in Tables
2 and 3, ABCD and — ABCD are the respective generators and the respective defining relations
are

I=ABCD (36)
I=-4BCD. (37)

Factorial effects with a coefficient of “+1” or “-1” in the defining relation for a fractional
factorial design are sometimes generically called words.[4; 135, 150, 1697, [5; 4091 For
instance, ABCD is the only word in the defining relation in (36) while — ABCD is the only
word in the defining relation in (37).

Note that the alias structure for the fractional factorial design shown in Table 2 is also
given in equations (8) through (14). Specifically, any factorial effects in the same equation are
aliases of each other. Note that equations (8) through (14) and expressions (29) through (35) P
imply that the defining relation shown in equation (7) and also in equation (36) is the defining
relation for the design. The alias structure for any fractional factorial design can be shown
analogously. :

* See the final paragraph in 1. Introduction.
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In general, each factorial effect calculated from any fractional factorial design serves as
an estimate of what a certain linear combination of factorial effects from the associated full
factorial would have been. Factorial effects belonging to the same linear combination are
referred to as aliases.[4; 136-137, 150, 157]*, [2; 149-151]*

The alias structure for the fractional factorial design shown in Table 2 can be expressed
as shown below and the alias structure for any fractional factorial design can be expressed
analogously. The arrow pointing to the right signifies that the quantity to the left of it Serves as
an estimate of the quantity to the right of it.[2; 149]"

I1— A+BCD (29)
Is—> B+ ACD (30)
Ic—>C+4BD (31)
lis—> AB+CD (32)
lic—> AC+BD (33)
lpc > BC+A4AD (34)
lasc—> ABC+D. (35)

The alias structure shown in expressions (29) through (35) causes ambiguity in the
interpretation of the aliased factorial effects. For example, suppose the aliased factor B effect is
relatively large in magnitude, Note from expression (30) that this effect estimates the sum of the
B effect and the 4CD interaction effect from a full 2° factorial design. Consequently, we
cannot conclude whether the result is due to large magnitude factor B main effects, true 4ACD
interaction effects, or both. All fractional factorial designs are subject to this kind of ambiguity.

" See the final paragraph in 1, Introduction.
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The fractional factorial design that resuits from the defining relation in (40) is shown in
Table 4 below.

Table 4. The 2j;* Fractional Factorial Design Using BCDE and ACDF As Generators

Aliased Factor Effect Columns

Run A B C D E-BCD F=ACD
) - - - - - R

af + - - - . +

be -+ - - 4+ -

abef + + - -+ +

cef -~ -+ - 4+ +

ace + - + - + -

bef -+ o+ - - +

abc + + + - - -

def - - - 4+ + +

ade + - - + + -

bdf -+ -+ - +

abd + + -+ - -

cd - - + + - -

acdf + - + + - + T
bede -+ + + + -

abedef + + + + + +

Any fractional factorial design has p independent generators and 22 — p—1 generalized
interactions in its defining relation.[4; 157] The P generators are referred to as being
independent because none is a product mvolving a subset of any of the rest. [4; 122] Also, every
factorial effect is aliased with 27 1 other factorial effects, The number of observations in such
designs involving k factors is 27 and these designs are referred to as 27 fractional Sfactorial
designs or 1/ 2? fractions of the associated full factorial design.[4; 157]

The defining relation for any 2*# fractional factorial design also is a tool to identify its
alias structure. The process involves sequentially multiplying each element in the defining
relation by each of the factorial effects whose aliases have not yet been determined. The

resulting products are simplified by eliminating letters that have even exponents and reducing
any odd exponents to a “1™.[4; 137, 150, 157]
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If we desire to run a fraction of an unreplicated 2° factorial design that only contains one

quarter of the 64 runs, then we must specify two design generators.[4; 150, 157] Suppose that
the BCDE and ACDF interaction effects are chosen as design generators. Therefore, we have
that

I=BCDE = ACDF (38)

in a table of algebraic signs for the design. Consequently, the entries in the

BCDE(ACDF)= ABEF (39)

column of such a table must also be all pluS signs. Therefore, the defining relation for this
design is

I'=BCDE = ACDF = ABEF. (40)

A word in the defining relation for a fractional factoria] design that is not a design
generator is referred to as a generalized interaction. [4; 150, 157] Note that ABEF is the
generalized interaction in the defining relation given by (40). Generalized interactions are
products of design generators that are simplified by eliminating letters that have even exponents
and reducing any odd exponents to a “1”.[4; 121-122]
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The number of letters in the word with the fewest letters in the defining relation for a
27 fractional factorial design is also its resolution.[2; 154], [5; 385], {4; 139] Consequently,
the Y2 fractions of an unreplicated 2* factorial design shown in Tables 2 and 3 each have
resolution IV. These resolution results agree with those reported in Table 4.11 in the reference

text by Myers and Montgomery.[4; 158-159] Note that the 252 fractional factorial design
shown in Table 4 also has resolution IV.

The observations in a 2*7 fractional factorial design of resolution R can be analyzed as
a full factorial experiment in subsets containing R —1 of the initial % factors.[4; 160] Because
fractional factorial designs can be projected into full factorial designs, all analysis procedures
discussed in Section 2 for full factorials also apply to fractional factorials. However, the alias
structures of fractional factorial designs cause ambiguity in the interpretation of their aliased
factorial effects.

Also, the observations ina 2**? fractional factorial design can be projected into either a
fractional or full factorial design in subsets containing / < k£ — p ofthe initial k factors. The

projection will be a full factorial for such subsets whose factor letters do not constitute the letters
of a word in the defining relation for the original fractional factorial design.[4; 160]

- Myers and Montgomery caution that in most cases, conclusions other than those drawn .
from the analysis of the design projections discussed in the previous two paragraphs can be made
in terms of some of the higher-order true interaction effects, Consequently, they advise checking
the results of such analyses with additional experimentation. [4; 160]

4. Fold-over Des-,igns.‘

A strategy referred to as fold-over uses two resolution IIT fractional factorial designs to
eliminate two-factor interaction effect aliases from some or all of the average factor effects.
When comparing the tables of algebraic signs for the two fractions, the average factor effects for
which this is to be done have opposite signs in their respective columns, A Sull fold-over is done
if the signs in every average factor effect column of the initial fraction are changed in the second
fraction.[4; 164-165] The mechanics of the full fold-over procedure will be shown with the
example that follows.

Using Table 4.11 from the reference text by Myers and Montgomery, a 25 design
having resolution I1I is obtained by using ABD, ACE »and BCF as design generators.
[4; 158-159] This fractional factorial design will be used as the first half of the example full
fold-over design and its defining relation is

I=ABD=ACE=BCF = DEF = ABEF = ACDF = BCDE. (57

This design is shown in Table 5. : o
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The alias structure for the 25 fractional factorial design shown in Table 4 is as follows:

I = BCDE = ACDF = ABEF (41)
A=BEF =CDF = ABCDE (42)
B = AEF = CDE = ABCDF (43)
C= ADF = BDE = ABCEF (44)
D = ACF = BCE = ABDEF (45)
E = ABF = BCD = ACDEF (46)
F = ABE = ACD = BCDEF (47)
AB=EF = ACDE = BCDF (48)
AC = DF = ABDE = BCEF (49)
AD =CF = ABCE = BDEF  (50)
AE = BF = ABCD = CDEF  (51)

' AF = BE=CD = ABCDEF (52)
BC = DE = 4BDF = ACEF (53)
BD =CE = ABCF = ADEF (54)
ABC = ADE = BDF =CEF (55)
ABD = ACE = BCF = DEF. (56)

The resolution of a fractional factorial design is a measure of its aliasing properties. If
every factorial effect containing ¢ letters is only aliased with factorial effects containing R —gq

or more letters, then the design has resolution R. Roman numeral subscripts are used to identify

the resolution of a fractional factorial design.[5; 385] The practical implications that follow from
three such resolutions are shown below. '

1. Resolution III Designs. Average factor effect pairs are not aliased, but at least one
average factor effect is aliased with a two-factor interaction effect. Also, pairs of
two-factor interaction effects may be aliased.[5; 385], [4; 138]"

2. Resolution IV Designs. Average factor effect pairs are not aliased and average factor
effects are not aliased with any two-factor interaction effects. However, at least one
pair of two-factor interaction effects is aliased.[5; 385]

3. Resolution V Designs. Average factor effects are not aliased with other average
factor effects or two-factor interaction effects, Furthermore, all pairs of two-factor
interaction effects are unaliased. However, at least one two-factor interaction effect is
aliased with a three-factor interaction effect.[5; 385]

* See the final paragraph in 1. Introduction.
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The second half of the example full fold-over design, shown in Table 6, is obtained by
reversing the signs in every aliased factor effect column of Table 5. The generators for the
second half are — ABD, — ACE, and — BCF , and the defining relation for this half is

I{=-ABD=-ACE =~BCF = -DEF = ABEF = ACDF = BCDE. (72)

Table 6. The 2j;* Fractional Factorial Design Using ~ ABD, ~ ACE, and — BCF As
Generators

Aliased Factor Effect Columns
D=-AB E=-AC F=RBC

Run
abe
bede
acdf
cef
abef
bdf
ade

()

T
w

+
L+ + 4+ A
I++l

1
l++l
l+l++l+l
+ + + 4+

1 + ] + 1 + 1

Furthermore, the alias structure for the 1/8 fraction shown in Table 6 is as follows:

I'4— A~ BD~CE+ BEF +CDF — ABCF - ADEF + ABCDE (T3)
I's = B~ AD~CF + AEF + CDE ~ 4BCE - BDEF + ABCDF  (74)
I'c = C—AE - BF + ADF + BDE~ ABCD - CDEF + ABCEF (75)
I = D~ AB~EF + ACF + BCE — ACDE — BCDF + ABDEF  (76)
I's = E—AC - DF + ABF + BCD~ ABDE - BCEF + ACDEF (77)
I'r = F—~BC~DE+ ABE + ACD ~ ABDF — ACEF + BCDEF (78)
I = AF + BE+CD~ ABC — ADE ~ BDF ~CEF + ABCDEF. (79
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Table 5. The 27 Fractional Factorial Design Using 4BD, ACE , and BCF As
Generators

Aliased Factor Effect Columns
Run A B C D=AB E=AC F=RC

def - = -+ + +
af + - - - - +
be -+ . - + -
abd + 4+ - o+ - -
cd - -+ + - -
ace + -+ - + -
bef -+ 4+ - - +
abedef + + + + + +

The alias structure for the 1/8 fraction shown in Table 5 is as follows:

l4—> A+ BD+ CE + BEF + CDF + ABCF + ADEF + ABCDE (58)
Is—> B+ AD+CF + AEF + CDE + ABCE + BDEF + ABCDF (1))
Ic > C+ AE+ BF + ADF + BDE + ABCD + CDEF + ABCEF (60)
Ip—> D+ AB+ EF + ACF + BCE + ACDE + BCDF + ABDEF (61)
le—> E+AC + DF + ABF + BCD + ABDE + BCEF + ACDEF (62)
Ir~» F +BC+ DE + ABE + ACD + ABDF + ACEF + BCDEF (63)
l.=—> AF + BE + CD + ABC + ADE + BDF + CEF + ABCDEF. (64)

If we assume that all three-factor and higher-order true interaction effects are zero, the
alias structure shown in expressions (58) through (64) can be reduced as follows:

l4—> A+ BD+CE (65)

Is~—>B+AD+CF (66)

le>C+AE+BF (67)

ip—=> D+ AB+EF (68)

le>E+AC+DF (69)

Ir—> F+BC+DE (70)

lar > AF+ BE+CD. (71
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o~

Aliased average factor effects from each half can also be combined as shown below to
obtain the following two-factor interaction effect sums:

la—14 A+BD+CE—(A—BD—CE)= 2(BD +CE) _

_ =BD+CE (93)
2 2 2

Is—1's :B+AD+CF—(B—-AD-—CF):2(AD+CF)=AD+CF 94)
2 2 2

le—=1Ic =C+AE+BF—(C—AE—BF)=2(AE+BF)=AE+BF ©5)
2 2 2

In—Ip :D+AB+EF—(D—AB—EF)=2(AB+EF)=AB+EF 96)
2 2 2

Ig=I5 _ E+AC+DF~(E-AC-DF) _ 2(AC+DF)=AC+DF o7
2 2 2

;F;IF _ F+BC+DE—2(F-BC—DE):2(Bc;DE)=BC+DE_ 98) .

Note that the respective generators for the two halves only differ in their algebraic signs.
In general, the generators for the second half of any full fold-over design will be the same as
those for the first half except that some signs will be reversed. Specifically, design generators
having odd numbers of letters will have opposite signs between the two halves.[4; 166]

The generators for the fractional factorial design consisting of the runs in both halves of
any fold-over design can be obtained from the generators for each half. Ofthe L+ U generators
for each half, L pairs of generators will be identical and [/ pairs of generators having the same
letters will have opposite signs between the two halves. Each generator in the I pairs of
identical generators will also be a generator for the combined design. The remaining U —1
generators for the combined design result from the multiplication of even numbers of the {/
words having opposite signs between the two halves. These IJ — 1 generators must be
independent in that none can be expressed as a product involving a subset of any of the rest.

Furthermore, the I/ words used in the multiplications must all be from the same defining
relation.[4; 169, 122]"

" See the final paragraph in 1. Introduction.
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If we assume that all three-factor and higher-order true interaction effects are zéro, the
alias structure shown in expressions (73) through (79) can be reduced as follows:

[+—>A-BD-CE (80)
Iy > B-AD-CF (81
Ie >C~4E-BF (82
I'n >D~AB-EF (83)
I —>E-AC-DF (84)
[r—>F-BC-DE (85)
[+ —> AF + BE+CD. (86)

Therefore, the aliased average factor effects from each half can be combined as follows
to obtain average factor effects that are not aliased with two-factor interaction effects:

Iatls _A+BD+CE+A~BD-CE 24

= =—=4 (87
2 2 2 @7)

In+lg =B+AD+CF+B—AD—CF=_2£:B 88)
2 2 2 _

Ie+ic =C+AE+BF+C~AE—BF=EQ=C (89)
2 2 2

In+Ip =JI)+AB%—EF+D—A£‘>’~-EF=312=D (90)
2 2 2

1E+1E=E+AC+DF+E—AC—DFZEI_E=E ©1)
2 2 2

lF-;],; =F+BC+DE;—F—BC—DE=%E_=F. ©2)
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However, it may be necessary to run the second half of a fold-over design in order to
gain more information. As an example, suppose that in the first half shown in Table 5, only the
aliased effects of factors B, C, and E are relatively large in magnitude. Note that the aliases of
these effects are respectively given in expressions (66), (67), and (69). The following are three
different sets of factorial effects whose corresponding main effects and true interaction effects
could plausibly be relatively large in magnitude and thus causing these results:

1. B,C,and E
2. B,C,and AC
3. C, AC, and CF.

Because these and several other explanations are also possible, the second half of the fold-over
design must be run in order to reach a conclusion.

5. Full Fold-over Design Examples.

The code shown in the Data Appendix was written for and the corresponding edited
output shown there was generated using SAS/STAT® software, Version 8, of the SAS System.
Copyright © 1999 SAS Institute Inc. SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA.! This
software was run on a UNIX® operating system.’ T

The following problem scenario and the associated data set were obtained from the -
reterence text by Box and Draper. The response variable was the strength of dyestuff made in an
industrial setting and higher strength values are considered better. The six factors thought to
potentially have meaningful influence over the process and their corresponding alphabetic letter
designations are listed below.

Polysulfide Index Factor 4
Reflux Rate : Factor B
Moles of Polysulfide Factor C
Reaction Time Factor D
Amount of Solvent Factor E
Reaction Temperature Factor F

The factor Time was measured in minutes, the factor Solvent in cubic centimeters, and the factor
Temperature in degrees Celsius.[2; 114-1 16]

! SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

UNIX®isa registered trademark of The Open Group in the United States and other countries,
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The procedure discussed in the previous paragraph will now be used to determine the
generators for the fractional factorial design consisting of the runs in Tables 5 and 6. Recall that
the designs shown in those two tables were the respective first and second halves of the ful] fold-
over design example. The generators for the first half were ABD, ACE, and BCF while those
for the second half were — ABD, — ACE , and — BCF . There were no identical generators
between the two sets so L =0. We now will determine the remaining U/ -1 =3—1=2 words.
The generators for the first half will be used in the computations,

ABD(ACE) = A>BCDE = BCDE (99)
ABD(BCF)= AB*CDF = ACDF. (100)

Note that the runs in the combined halves of the full fold-over design are the same as those in the
23,* fractional factorial design shown in Table 4 because the same generators correspond to each

design. Furthermore, the corresponding effects from each design involve the same linear
combinations of runs. The difference between the two designs is that the combined full fold-
over design is run in two blocks where each half constitutes one block. No blocking is used in
the design shown in Table 4.

In general, the runs in the combined halves of any fold-over design will be the same as
those in a certain fractional factorial design. The only difference between the two designs is that
each half constitutes one block in the combined design while no blocking is used in the other
design.

In any combined fold-over design, it is assumed that the variance of the observations is
the same within and between the blocks and that there is no interaction between the treatments
and blocks. The confounding scheme associated with the type of blocking used in fold-over
procedures will not be discussed in this paper. However, blocking in this fashion can result in a
reduction of the variance of the factorial effects over that associated with performing the fraction
consisting of the runs in the combined design without blocking. Note that all blocks discussed in
this paper are fixed.

The assumptions made when analyzing fractional factorial designs might make it so that
only the first half of a fold-over design needs to be run. For example, suppose that in the first
half shown in Table 5, only the aliased effects of factors C and D aund the aliased CD
interaction effect are relatively large in magnitude. We may therefore conclude that the main
effects of factors C and D and the true CD interaction effects are relatively large in magnitude.
This follows because none of the aliases ofthe C and D effects or the CD interaction effect,
shown in expressions (67), (68), and (71), respectively, involve factors C or D. :
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The data from the 2° factorial experiment was then projected into a 2° factorial design
involving the factors Polysulfide Index, Time, and Temperature. It was assumed during the data
analysis that all true interaction effects are zero. The analysis included construction of
diagnostic residual plots to check for outliers and serious violations of the factor effects model
assumptions. The SAS code used to perform this analysis and the corresponding output are
respectively shown on pp. 5-7 and pp. 8-18 of the Data Appendix,

The ordinary and studentized deleted residuals for the projection design are listed on pp.
8-9. The columns containing these residuals are labeled “Resid” and “RSTUDENT”,
respectively. Neither the plot of the studentized deleted residuals against the fitted values shown
on p. 10 nor the normal probability plot of the studentized deleted residuals shown on p. 16
suggests that any of the observations are outliers.

The plot of the ordinary residuals against the fitted values is shown on p. 11 and the plots
of the ordinary residuals against the factor levels are shown on pp. 12-14. These plots as well as
the plot of the studentized deleted residuals against the fitted values do not suggest any
substantial violations of the assumption of constant error variance in the factor effects model.

The plot of the ordinary residuals against the ordering of the runs is shown on p. 15. The
plot does not suggest serious problems with the assumption of independent error terms in the
factor effects model. '

The normal probability plot of the ordinary residuals is shown on p- 17. Neither this plot
nor the normal probability piot of the studentized deleted residuals suggests that the assumption
of normally distributed error terms is inappropriate in the factor effects model.

The average factor effects and the observed F statistics and p-values from the
corresponding ANOVA F tests are shown on p. 18. Note that we again can conclude that the
main effects for Polysulfide Index, Time, and Temperature are nonzero using the .5%
significance level for each individual hypothesis test. The p-values from those ANOVA F tests
are .0005, <.0001, and <.0001, respectively. The R? value of .585475 suggests a somewhat
large degree of experimental error variance for this process, as was expected. |

We therefore have that the diagnostic plots as well as the analysis of variance for the

projection design support our earlier conclusion. We now discuss two simulated full fold-over
experiments using selected observations from the 2° factorial experiment.
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Each of the following observations could be made prior to data collection based on the
process history. First, the process appears to have a somewhat large degree of experimental error
variability. Secondly, the possibly substantive main effects and true interaction effects would
probably not be large in magnitude relative to this variability.[2; 116] This suggests that the
ANOVA F tests for main effects and true interaction effects might be conservative.

The observations from the unreplicated 2° factorial experiment involving the previously
listed factors are shown in standard order in “TABLE 4.4. A 2° factorial design and resulting
observations of strength, hue, and brightness” in the reference text by Box and Draper. '
[2; 114-115] The observed strength values are also shown in the SAS code on p. 1 of the Data
Appendix and are in standard order there if one reads from left to right starting with the top row.

The history of the process prior to this experiment as well as other experimental results
did not provide conclusive evidence of substantive true interaction effects.[2; 116] We therefore
have assumed in our analysis of the 2° factorial experiment that all three-factor and higher-order
true interaction effects are zero.

The SAS code used to perform the analysis of the 2° factorial experiment and the
corresponding output are respectively shown on P- 1 and pp. 2-3 of the Data Appendix. The
factorial effects are shown on p. 3 and the observed F statistics and p-values from the ANOVA F
tests for the corresponding main effects and true interaction effects are shown on p. 2. Note that
only the main effects of Polysulfide Index, Time, and Temperature can be concluded to be
nonzero at the .5% significance level for each individual hypothesis test. The p-values from
those ANOVA F tests are .0007, <.0001, and <.0001, respectively. Ifthe .5% significance level
is used for all 21 ANOVA F tests, then an upper bound for the family significance level as given
by the Kimball inequality[1; 1240, 83 1, 937, 924) is approximately 10%.

The normal probability plot of the average factor effects and two-factor interaction
effects is shown on p. 4 of the Data Appendix along with the SAS code that generates it. The
plot suggests that only the main effects of Polysulfide Index, Time, and Temperature are
potentially relatively large in magnitude. ‘

It should also be pointed out that we would conclude that the _
Polysulfide Index X Reflux Rate, Reflux Rate X Time, and Polysulfide Index X Temperature
true interaction effects are nonzero if the 10% significance level were used for each individual
hypothesis test. The p-values from those ANOVA F tests are 0696, .0796, and .0931,

- respectively. However, recall that there was not conclusive evidence of substantive true

interaction effects from the process history or other experimental results. Based on that lack of
evidence and the results discussed in the previous two paragraphs, we conclude, as did the
authors, that only the Polysulfide Index, Time, and Temperature main effects are relatively large
in magnitude. It is important to note that the authors arrived at their conclusion without
assuming that any main effects or true interaction effects are zero.[2; 116-119]
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The SAS code used to perform the analysis of the second half of Fold-over Design | and
its corresponding output are respectively shown on p. 25 and p- 26 of the Data Appendix. The
aliased factorial effects that are relatively large in magnitude are listed below.

Effect Aliased
Type Effect

Polysulfide Index 4.1500
Reflux Rate 1.6500
Time 2.6000
Temperature 3.6500

The normal probability plot of the aliased factorial effects from the second half of Fold-
over Design 1 is shown on p. 27 of the Data Appendix along with the SAS code that generates it.
Note that we again cannot conclude that any linear combinations of main effects and true
interaction effects are potentially relatively large in magnitude.

The SAS code used to perform the analysis of the combined halves of Fold-over Design 1
and its corresponding output are respectively shown on p. 28 and p. 29 of the Data Appendix.
Each half of the design was treated as a separate block and a Block main effect ANOVAT test
was performed. Table 7 shows the effects having relatively large magnitudes along with the —~
observed F statistics and p-values from the corresponding ANOVA F tests. ’

Table 7. The Effects with Relatively Large Magnitudes and the Corresponding ANOVA F Test
Results from the Analysis of the Combined Halves of Fold-over Design 1

Effect Type Effect  F Statistic  P-value
Polysulfide Index 3.1875 12.20 1775
Reflux Rate 22625 6.15 2441 .
Time 3.6875 16.33 1544
Temperature 29625 10.54 .1902

Despite the fact that the factor effects in Table 7 are large relative to the other effects, we
cannot conclude that any of the associated main effects are nonzero using the 10% significance
level for each individual hypothesis test. The reference distribution used to calculate each
p-value is the F(1, 1) distribution and the critical F value for this distribution is 39.86 when the
10% significance level is used. However, the critical F value drops to 8.53 for the F(1,2)
distribution when the same significance level is used.[2; 611] Consequently, the F tests are
conservative because of the single error degree of freedom available. Furthermore, recall our
conjecture at the beginning of this section that the ANOVA F tests for main effects and true
interaction effects might be conservative because of process characteristics. Consequently, one
could conclude that the main effects corresponding to the average factor effects in Table 7 are
potentially nonzero.
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The generators for the first half of Fold-over Design 1 are ABD, ACE, and BCF which
correspond, respectively, to the following three-factor interaction effects:

Polysulfide Index X Reflux Rate X Time
Polysulfide Index X Moles Polysulfide X Solvent
Reflux Rate X Moles Polysulfide X Temperature.

The runs for this half are listed in Table 5 and, as was discussed in Section 4, this design has
resolution I11.

The SAS code that generates all 1/8 fractions of a 2° factorial design using + ABD,
* ACE, and + BCF as generators is shown on p- 19 of the Data Appendix. The corresponding
output showing the 1/8 fractions is on pp. 20-21 of the Data Appendix. The fraction denoted on
p. 20 as “FRACTION=1" is the first half of Fold-over Design 1. Note that the order of the runs
in this fraction in the SAS output differs from that in Table 5.

The SAS code used to perform the analysis of the first half of Fold-over Design 1 and its
corresponding output are respectively shown on p- 22 and p. 23 of the Data Appendix. The
aliased factorial effects that are relatively large in magnitude are listed below.

Effect Aliased
Type Effect
Polysulfide Index  2.2250 -
Reflux Rate 2.8750
Time 4.7750
Temperature 2.2750

The normal probability plot of the aliased factorial effects from the first half of Fold-over
Design 1 is shown on p. 24 of the Data Appendix along with the SAS code that generates it, The
plot does not suggest that any linear combinations of main effects and true interaction effects are
potentially relatively large in magnitude.

Because the analysis of the first half was inconclusive, the experimenters would run the
second half in order to gain more information. The second half of Fold-over Design 1 is
obtained using — 4ABD, — ACE, and — BCF as design generators. This fraction is denoted as
“FRACTION=8" on p. 21 of the Data Appendix and is also shown in Table 6. The order of the
runs in this fraction in the SAS output differs from that in Table 6,
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A comparison of p-values between the analysis of the blocked 2* factorial design and
that of the combined halves of Fold-over Design 1 shows that the F tests from the latter design -
are much more conservative. Note that we can conclude from the analysis of the blocked 2*

factorial design that the Polysulfide Index, Reflux Rate, Time, and Temperature main effects are
nonzero using the 1% significance level for each individual hypothesis test.

However, there is not enough evidence to suggest that the
Polysulfide Index X Reflux Rate or the Reflux Rate X Time true interaction effects are nonzero
using the 10% significance level for each individual hypothesis test. The p-values from those F
tests are .1447 and .1905, respectively.

The conclusions regarding the Block main effects are contradictory between the two
analyses. We do not have enough evidence to conclude that there are nonzero Block main
effects using the 10% significance level in the analysis of the combined halves of Fold-over
Design 1. However, we do have enough evidence to make such a conclusion at the 3%
significance level in the analysis of the blocked 2* factorial design. The conclusion of nonzero
Block main effects in the analysis of the blocked 2* factorial design may have been caused, at
least in part, by the relatively large degree of experimental error variability that appears to be
associated with the process. :

Recall that our conclusion from the analysis of the 2% factorial experiment was that only '
the Polysulfide Index, Time, and Temperature main effects are relatively large in magnitude,
Thus, we consider the conclusion reached from the analysis of the combined halves of Fold-over
Design 1 and the subsequent data projection regarding the Reflux Rate main effects to be
incorrect. This erroneous result may be at least partially explained by the apparent large degree
of experimental error variability in the process. However, we suspect that the analysis of an
unreplicated 2* factorial design involving the factors Polysulfide Index, Reflux Rate, Time, and
Temperature using new observations would suggest that the Reflux Rate factor is unimportant,
The correct conclusion would then presumably be reached using a total of 32 experimental runs
— 16 for both halves of Fold-over Design 1 and 16 for the follow-up 2* factorial design. Note
that this is half the number of runs used in the 2% factorial experiment. Furthermore, the fold-
over procedure has the benefit of incorporating blocking into its design.

.
¥ .
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The normal probability plot of the average factor effects, the aliased two-factor
interaction effects, and the Block effect from the combined halves of Fold-over Design 1 is
shown on p. 30 of the Data Appendix along with the SAS code that generates it. The plot
suggests that only the Polysulfide Index, Reflux Rate, Time, and Temperature main effects are
potentially relatively large in magnitude. We therefore conclude, based on these results and
those of the ANOVA F tests, that the main effects of these four factors are the only sizeable
effect parameters from the factor effects model.

The p-value of .2900 from the Block main effect T test is well above the 10%
significance level. Consequently, using this result and that of the normal probability plot, there
is not enough evidence to suggest a lack of homogeneity of experimental conditions between the

blocks.

The preceding conclusions were then checked by projecting the 16 observations into a
blocked 2* factorial design involving the factors Polysulfide Index, Reflux Rate, Time, and
Temperature. We again treated each halfas a separate block and performed a Block main effect
F test. The Polysulfide Index X Reflux Rate and Reflux Rate X Time true interaction effects
were the only true interaction effects not assumed fo be zero in the corresponding factor effects
model. Recall that we would have concluded that both sets of true interaction effects are _
nonzero if the 10% significance level for each hypothesis test were used in the analysis of the 26
factorial experiment. Because of this and the fact that both sets of true interaction effects involve
the factor Reflux Rate, we were interested in checking if, in addition to the Reflux Rate main

effects, the data also suggested that these true interaction effects are nonzero in the projection of
the combined design.

The SAS code used to perform this analysis and its corresponding output are respectively
shown on p. 31 and p. 32 of the Data Appendix. Table 8 shows the effects having relatively

large magnitudes along with the observed F statistics and p-values from the corresponding
ANOVAF tests.

Table 8. The Effects with Relatively Large Magnitudes and the Corresponding ANOVA F Test
Results from the Analysis of the Projection of the Combined Halves of Fold-over
Design 1 into a Blocked 2* Factorial Design

Effect Type Effect  F Statistic  P-value
Block -1.8625 7.66 0244
Polysulfide Index  3.1875 22.44 0015
Reflux Rate 22625 11.30 .0099
Time 3.6875 30.03 0006
Temperature 2.9625 19.38 0023
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The normal probability plot of the aliased factorial effects from the first half of Fold-over
Design 2 is shown on p. 38 of the Data Appendix along with the SAS code that generates it. The
plot suggests that the linear combination of effect parameters involving the appropriate
Temperature main effect is potentially relatively large in magnitude. Note from expression (107)
that none of the two-factor interaction effects aliased with the Temperature effect involves the

factor Temperature. Therefore, we can conclude that the Temperature main effects are
potentially relatively large in magnitude.

The generators for the second haif of Fold-over Design 2 are — BCD, — ABE, and
— ACF and its defining relation is

I'=—-BCD =—~ABE = -ACF =—DEF = ABDF = ACDE = BCEF. (109)

This half also has resolution I and is denoted as “FRACTION=8" in the SAS output on p. 35 of
the Data Appendix.

The alias structure for the second half of Fold-over Design 2 is as follows when three-
factor and higher-order true interaction effects are assumed to be Zero:

J4— A—BE-CF (110)

[s—B-AE-CD (i11) o
Ic >C-4F-BD (112)
Ip—>D-BC—-EF (113)
Is > E—-AB-DF (114)
[r >F—-AC-DE (115
s = AD+BF +CE. (116)
The SAS code used to perform the analysis of the second half of Fold-over Design 2 and
its corresponding output are respectively shown on p. 39 and p. 40 of the Data Appendix. The
aliased factorial effects that are relatively large in magnitude are listed below.
Effect Aliased
Type Effect
Polysulfide Index 4.5000
Time 4.0000
Temperature 4.9000
.'//_\'
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The generators for the first half of Fold-over Design 2 are BCD, ABE,and ACF which
correspond, respectively, to the following three-factor interaction effects:

Reflux Rate X Moles Polysulfide X Time
Polysulfide Index X Reflux Rate X Solvent
Polysulfide Index X Moles Polysulfide X Temperature.

The defining relation for this half is
I=BCD = ABE = ACF = DEF = ABDF = ACDE = BCEF. 101

Note that this half has resolution III because the

words with the fewest letters in its defining
relation contain three letters,

The alias structure for the first half of Fold-over Design 2 is as follows when three-factor
and higher-order true interaction effects are assumed to be zero:

la> A+BE+CF  (102)

Is—>B+AE+CD (103)

lce=>C+AF+BD (104)

Ip—>D+BC+EF (105)

lr>E+AB+DF (106)

lr>F+AC+DE (107)

lip—> AD+BF +CE. (108)

The SAS code that generates all 1/8 fractions of a 2° factorial design using + BCD,

* ABE, and + ACF as generators is shown on p. 33 of the Data Appendix. The corresponding

output showing the 1/8 fractions is on pp. 34-35 of the Data Appendix. The fraction denoted on

p- 34 as “FRACTION=1" is the first half of Fold-over Design 2.

The SAS code used to perform the analysis of the first half of Fold-
corresponding output are respectively shown on p. 36 and p. 37 of the Dat
aliased factorial effects that are relatively large in magnitude are listed bel

over Design 2 and its
a Appendix, The

ow.
Effect Aliased
Type Effect
Polysulfide Index  2.0250
Time 1.8750
Temperature 3.7750
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The preceding conclusion was then checked by projecting the 16 observations into a
blocked 2’ factorial design involving the factors Polysulfide Index, Time, and Temperature. All
true interaction effects were assumed to be zero in the subsequent analysis, The SAS code used
to perform this analysis and its corresponding output are respectively shown on p. 45 and p. 46
of the Data Appendix. Table 10 shows the effects having relatively large magnitudes along with
the observed F statistics and p-values from the corresponding ANOVA F tests. We can conclude
that the Polysulfide Index, Time, and Temperature main effects are nonzero using the .5%
significance level for each individual hypothesis test.

Table 10. The Effects with Relatively Large Magnitudes and the Corresponding ANOVA F Test
Results from the Analysis of the Projection of the Combined Halves of Foid-over
Design 2 into a Blocked 2* Factorial Design

Effect Type Effect  F Statistic P-value
Polysulfide Index 3.2625 15.26 0024
Time 29375 1237 .0048
Temperature 4.3375 = 26.97 0003

The p-value of .9417 from the Block main effect F test is well above the 10%

significance level. Consequently, there is not enough evidence to suggest a lack of homogeneity
of experimental conditions between the blocks.

We have reached the same conclusion through the analysis of the combined halves of
Fold-over Design 2 and the subsequent data projection as was reached from the analysis of the
2° factorial experiment using four times fewer observations, Also, the fold-over procedure
incorporated blocking into its design. :

The usefulness of the full fold-over technique has been shown for a process that appears
to satisfy the factor effects model assumptions quite well. The robustness of fold-over

procedures when applied to processes with experimental etrors that depart from those
assumptions will not be covered in this paper.
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The normal probability plot of the aliased factorial effects from the second half of Fold-
over Design 2 is shown on p. 41 of the Data Appendix along with the SAS code that generates it.
The plot does not suggest that any linear combinations of main effects and true interaction
effects are potentially relatively large in magnitude.

The defining relation for the fractional factorial design consisting of the runs in the
combined halves of Fold-over design 2 is

I = ABDF = ACDE = BCEF. (117)

Note from this defining relation that the combined design has resolution IV,

The SAS code used to perform the analysis of the combined halves of Fold-over Design 2
and its corresponding output are respectively shown on p. 42 and p. 43 of the Data Appendix.
Table 9 shows the effects having relatively large magnitudes along with the observed F statistics
and p-values from the corresponding ANOVA F tests. '

Table 9. The Effects with Relatively Large Magnitudes and the Corresponding ANOVA F Test
Results from the Analysis of the Combined Halves of Fold-over Design 2

Effect Type Effect  F Statistic  P-value
Polysulfide Index 3.2625 20.97 1369
Time 2.9375 17.00 1515
Temperature 4.3375  37.06 .1036

Given the conservative nature of the ANOVA F tests that was described earlier, we can again
conclude that the main effects corresponding to the average factor effects in Table 9 are
potentially nonzero.

The normal probability plot of the average factor effects, the aliased two-factor
interaction effects, and the Block effect from the combined halves of Fold-over Design 2 is
shown on p. 44 of the Data Appendix along with the SAS code that generates it. The plot
suggests that the Polysulfide Index, Time, and Temperature main effects are potentially
relatively large in magnitude. We therefore conclude, based on these results and those of the
ANOVA F tests, that the main effects of these three factors are the only sizeable effect
parameters from the factor effects model. )

The p-value of .9443 from the Block main effect F test is well above the 10%
significance level. Consequently, using this result and that of the normal probability plot, there

is not enough evidence to suggest a lack of homogeneity of experimental conditions between the
blocks.
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The variability of the aliased factorial effects from each half of any fold-over design is
higher than the variability of the factorial effects from the associated full factorial design, Also,
if the associated Block main effects are sufficiently small, the variability of the effects from the
combined design is also higher than the variability of the factorial effects from the corresponding
full factorial design. This can be seen from equation (5) when it is noted that any 27 fractional
factorial design is a fizll factorial in certain proper subsets of the initial £ factors. Consequently,
the conclusions reached from the analysis of a fold-over design are usually more likely to be
crroneous than are those reached from the analysis of the corresponding full factorial design.
Furthermore, this problem is made worse when the substantive main effects and true interaction
effects are not large in magnitude relative to the size of the experimental error variability. It is
worth mentioning that the simulated full fold-over experiments were effective for this industrial
process even though it appears to present the above challenge.

6. Conclusion.

This paper has given a brief introduction to two-level factorial and fractional factorial
designs followed by a discussion of fold-over designs., Furthermore, the full fold-over procedure
and its utility have been illustrated with two examples. The potential for reducing the number of
runs required in screening experiments and the convenience of running fractional factorial
designs in blocks are the primary benefits of the fold-over technique.
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data.app

Lee R. Sutton, Jr. Data Appendix

The 276 Factorial Experiment analyzed Assuming Three-factor
And Higher-order True Interaction Effects Are Zero.

The GLM Procedure

Dependent Variable: Strength

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 21 370.9107812 17.6624182 4.83 <.0001
Error 42 153.7240625 3.6600967
Corrected Total 63 524,6348438
R—Sqﬁare Coeff var Root MSE Strength Mean
0.706988 . 17.1991s 1.513138 11.12344
Source DF Type III SS Mean Square F Value Pr > F
Plyslf_3i 1 48,8251562 48.8251562 13.34 0.0007
Reflux 1 7.9101563 7.9101563 2.16 0.1490
Plyslf i*Reflux 1 12.6914063 12.6914063 3.47 0.0696
Plyslf m 1 0.1701562 0.1701562 0.05 0.8303
Plyslf i*Plyslf_m 1 0.3164062 0.3164062 0.09 0.7702
Reflux*Plyslf m 1 5.7001563 5.7001563 1.56 0.2190
Time 1 142.5039062 142,5039062 38.93 <.0001
Plyslf_ i*Time 1 0.3451562 0.3451562 .09 0.7603
Reflux*Time 1 11.8164062 11.8164062 3.23 0.0796
Plysli_m*Time ° i 2.6001563 2.6001563 0.71 0.4041
Solvent 1 2.7639063 2.7639063 0.76 0.3898
Plyslf i*Solvent 1 2.7639062 2.,7639062 0.76 0.3898
Reflux*Solvent 1 1.7885062 1.7889062 0.49 0.4883
Plyslf m*Sclvent 1 0.0976563 0.0976563 0.03 0.8710
Time*Solvent 1 1.5939062 1.5939062 0.44 0.5129
Temp 1 115.8314062 115.8314062 31.65 <.0001
Plyslf_ i*Temp 1 10.8076563 10.8076563 2.95 0.0931
" Reflux*Temp 1 0.5076563 0.5076563 0.14 0.7114
Plyslf_m*Temp 1 0.7439063 0.7439083 0.20 0.6544
Time*Temp 1 0.0039082 0.0039062 0.00 0.9741
Solvent*Temp i 1.1289062 1.1289062 ¢.31 0.5816
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*The following code analyzes the full 276 factorial experiment when*;
*three-factor and higher-order true interaction effects are assumed*;
*to be zero.*;
Options nodate nonumber ls = 75 ps = 64;
Data Example;
Do Temp = ~1 to 1 by 2; Do Solvent = -1 to 1 by 2; Do Time = -1 to 1 by 2;
Do Plyslf m = -1 to 1 by 2; Do Reflux = -1 to 1 by 2;
Do Plysif i = -1 to 1 by 2;
Input Strength @€; Output;

End; End; End; End; End; End;

Datalines;
3.4 9.7 7.4 10.6 6.5 7.9 10.3 9.5 14.3 10.5 7.8 17.2
9.4 12.1 9.5 15.8 8.3 8.0 7.9 10.7 7.2 7.2 7.9 10.2
10.3 9.9 7.4 10.5 9.6 15.1 8.7 12,1 12.6 10.5 11.3 10.§
8.1 12.5 11.1 12.9 14.6 12.7 10.8 17.1 13.6 14.6 13.3 14.4
il.0 12.5 8.9 13.1 7.6 8.6 11.8 12.4 13.4 14.6 14.9 11.8
15.6 12.8 13.5 15.8

Proc Glm Data = Example;
Class Plyslf i Reflux Plyslf m Time Solvent Temp;
Model Strength = Plyslf_i|Reflux[Plyslf_m|Time|Solvent]Temp@z / ss3;

Estimate *Plyslf_i-’ Plyslf i -1 1;
Estimate ’'Reflux’ Reflux -1 1;
Estimate ’'Plyslf_m’ Plyslf m -1 1;
Estimate ‘Time’ Time -1 1;

Estimate ‘Solvent’ Solvent -1 1;
Estimate 'Temp’ Temp -1 1;

Estimate ‘Plyslf_i*Reflux’ Plyslf i*Reflux 1 -1 -1 1 / divisor = 2;
Estimate ‘Plyslf i*Plyslf m’ Plyslf i*Plyslf m 1 -1 -1 1 / divisor = 2;
Estimate 'Plyslf_i*Time’ Plyslf i*Time 1 -1 -1 1/ divisor = 2;
Estimate ‘Plyslf i*Solvent’ Plyslf i*Solvent 1 -1 -1 1 / divisor = 2;
Estimate ‘Plyslf_i*Temp’ Plyslf_i*Temp 1 -1 -1 1 / divisor = 2;
Estimate ‘Reflux*Plyslf m’ Reflux*Plyslf m 1 -1 ~1 1 / divisor = 2;
Estimate ’'Reflux*Time’ Reflux*time 1 -1 -1 1 / divisor = 2;

Estimate ‘Reflux*Solvent’ Reflux*Solvent 1 -1 -1 1 / divisor = 2;
Estimate ‘Reflux*Temp’ Reflux*Temp 1 -1 -1 1 / divigsor = 2;

Estimate 'Plyslf m*Time’ Plyslf_m*Time 1 ~1 -1 1 / divisor = 2;
Estimate ’Plyslf_m*Solvent’ Plyslf m*Solvent 1 -1 -1 1 / divisor = 2;
Estimate ‘Plyslf m*Temp’ Plyslf m*Temp 1 -1 -1 1 / divisor = 2;
Estimate ‘Time*Solvent’ Time*Solvent 1 -1 -11/ divisor = 2;
Estimate 'Time*Temp’ Time*Temp 1 -1 -1 1 / divisor = 2;

Estimate ‘Solvent*Temp’ Solvent*Temp 1 -1 -1 1 / divisor = 2;

Titlel‘The 276 Factorial Experiment Analyzed Assuming Three-factor’;
Title2’And Higher-order True Interaction Effects Are Zero.’;
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*The following code constructs a normal bprobability plot of the*;
*factorial effects from the full 276 factorial experiment when*;
*three-factor and higher-order true interaction effects are assumed®;
*to be zero,*;

Data Example2; Input Effects @@; Datalines;

1.746875 0.703125 0.103125 2.984375 -0.415625 2.690625 0.890625
0.140625 0.146875 -0.415625 -0.821875 0.596875 ~0.859375 -0.334375
-0.178125 0.403125 0.078125 ~0.215625 -0.315625 0.015625 0.265625

Proc Rank Data = Example2 Normal = Blom Out = Fxset;
Var Effects; Ranks Rankefot:

Proc Plot Data = Fxset vpercent = 70;
Label Rankefet = ‘z Percentile’ Effects = ’'Factorial Effect’;
Plot Rankefct*Effects / vref = 0;

Titlel’'The 2°6 Factorial Experiment Analyzed Assuming Three~factor’;
Title2’And Higher-order True Interaction Effects Are Zero.’;
Title3'Noxrmal Probability Plot of the Factorial Effects.’;

The 276 Factorial Experiment Analyzed Assuming Three-factor
And Higher-order True Interaction Effects Are Zero.
Normal Probability Plot of the Factorial Effects.

Plot of Rankefct*Effects. Legend: A = 1 obs, B = 2 chs, atc.
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Standard
Parameter Estimate Error t value Pr > |tj
Plyslf i 1.74687500 0.478284438 3.65 0.0007
Reflux 0.70312500 0.47828448 1.47 0.1490
Plyslif_m 0.10312500 (0.47828448 0.22 0.8303
Time 2.98437500 0.47828448 6.24 <,0001
Solvent -0.41562500 0.47828448 ~0.87 0.3898
Temp 2.69062500 0.478284438 5.863 <.0001
Plyslf i*Reflux 0.89062500 0.47828448 1.86 0.0696
Plyslf_i*Plyslf_m 0.14062500 0.47828448 0.29 0.7702
Plyslf_i*Time 0.14687500 (.47828448 0.31 0.7603
Plyslf_i*Solvent ~0.41562500 0.47828448 -0.87 0.3898
Plyslf i*Temp -0.82187500 0.47828448 -1.72 0.0931
Reflux*Plyslf_m 0.59687500 (0.47828448 1.25 0.219¢
Reflux*Time -0.85937500 0.47828448 -1.80 0.0796
Reflux*Solvent =0.33437500 0.47828448 -0.70 0.4883
Reflux*Temp ~0.17812500 0.47828448 -0.37 0.7114
Plyslf_m*Time 0.40312500 0.47828448 0.84 0.4041
Plyslf_m*Solvent 0.07812500 0.47828448 0.16 0.8710
Plyslf m*Temp -0.21562500 0.47828448 -0.45 0.6544
Time*Solvent ~0.31562500 0.47828448 -0.66 0.5129
Time*Temp 0.01562500 0.47828448 0.03 0.5741
Solvent*Temp 0.26562500 0.47828448 0.56 0.58148
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-1 -1 1 10 11.¢0
1 -1 1 3% 12.5
-1 -1 1 25 8.9
1 -1 1 40 13.1
-1 -1 i 30 7.6
1 -1 1 31 8.6
-1 -1 1 28 11.8
1 -1 1 49 12.4
~1 1 1 52 13.4
1 1 1 15 14.s6
-1 1 1 34 14.9
1 1 1 53 11.8
-1 1 1 2 15.6
1 1 1 12 12.8
-1 1 1 45 13.5
1 1 1 54 15.8

Proc Glm Data = Example;
Model Strength = Plyslf i Time Temp / ss3;
Output Out = Diag R = Resid P = Pred Rstudent = RSTUDENT;

Titlel’'The Data Projected into a Replicated 2+3 Factorial Design’;
Title2'Involving the Factors Polysulfide Index, Time, and Temperature. ' ;
Title3’All True Interaction Effects Are Agsumed to Be Zero.’;

Proc Print Data = Diag; P

Titlel’The Data Projected into a Replicated 2+3 Factorial Design’;
Title2’Involving the Factors Polysulfide Index, Time, and Temperature. ’;
Title3’All True Interaction Effects Are Assumed to Be Zero, ;

Proc Plot Data = Diag wvpercent = 85;
Label RSTUDENT = ‘RSTUDENT’ Pred = 'Fitted Value’;
Plot RSTUDENT*Pred / vref = 0;

Titlel’The Data Projected into a Replicated 243 Factorial Design’;
Title2 Involving the Factors Palysulfide Index, Time, and Temperature. ’;
Title3’All True Interaction Effects Are Assumed to Be -Zero.’;
Titled’Plot of RSTUDENT against the Fitted Values. *;

Proc Plot Data = Diag vpercent = 85;
Label Resid = ‘Residual’ Pred = ‘Fitted Value’;
Plot Resid*Pred / vref = 0;

Titlel’'The Data Projected into a Replicated 273 Factorial Design’;
Title2’Involving the Factors Polysulfide Index, Time, and Temperature. ’;
Title3’All True Interaction Effects Are Assumed to Be Zero.’;
Titled’Plot of the Residuals against the Fitted values.’;

Proc Plot Data = Diag vpercent = 85;
Label Resid = ’‘Residual’ Plyslf i = 'Polysulfide Index’;
Plot Resid*Plysif_i / vref = 0;

Titlel’The Data Projected into a Replicated 2”3 Factorial Design’; e
Title2/Involving the Factors Polysulfide Index, Time, and Temperature. ' ; /
Title3’All True Interaction Effects Are Assumed to Be Zaro.’;

Titled4'’'Plot of the Residuals against the Levels of Polysulfide Index.’;
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*The following code projects the data from the 276 factorial*;
*experiment into a replicated 2°3 factorial design involving the*;
*factors Polysulfide Index, Time, and Temperature and makes residual*;
*plots to check modal assumptions. All true interaction effects are*;
*assumed to be zero and the design is replicated eight times.*;

Data Example;
Input Plyslf i Time Temp Order Strength;:
Datalines;

-1 -1 -1 26 3.4
1 -1 -1 3 9.7

-1 -1 -1 11 7.4
1 -1 - 5 10.s

-1 -1 -1 a2z 6.5
1 -1 -1 18 7.9
0.3

8.5

4.3

0.5

-1 -1 -1 41 1

1 -1 -1 14

-1 T -1 17 1
1 i -1 27 1
-1 1 -1 13 7.8
1 1 -1 58 17.2
=1 1 -1 23 9.4
1 1 -1 B 12.1
-1 1 -1 32 9.5
1 1 -1 7 15.8
-1 -1 -1 48 8.3
i -1 -1 13 8.0
-1 -1 -1 538 7.9
i -1 -1 38 10.7
-1 -1 -1 a3 7.2
1 -1 -1 55 7.2
-1 -1 -1 6 7.9
1 -1 -1 84 10.2
-1 1 -1 22 10.3
1 1 -1 4 9.9
-1 1 -1 18 7.4
1 1 -1 47 10.5
-1 1 -1 63 9.6
1 1 -1 51 15.1
-1 i -1 20 8.7
1 1 -1 29 12.1
-1 -1 1 62 12.6
1 -1 1 1 10.5
-1 -1 1 37 11.3
1 -1 1 81 10.6
-1 -1 1 44 8.1
1 -1 1 24 12.5
-1 -1 1 59 11.1
I -1 1 &0 12.9
-1 1 1 35 14.6
1 1 1 50 12,7
-1 1 1 48 10.8
1 1 1 36 17.1
-1 1 1 21 13.s6
1 1 1 %2 1l4.6
-1 1 1 33 13.3
1 1 1 57 4.4
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Lee R. Sutton, Jr. Writing Project: Fold-over Designs Data Appendix
The Data Projected into a Replicated 2~3 Factorial Dezsign

Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Assumed to Be Zero,

Obs Plyslf i Time Temp Order Strength Resid Pred  RSTUDENT
1 -1 =] -1 26 3.4 -4.,01250 7.4125 -2.24913
2 1 -1 -1 3 9.7 0.54063 9.1594 0.29103
3 -1 -1 -1 11 7.4 -0.01250 7.4125 -0.00672
4 1 -1 -1 5 10.6 1.44063 9.1594 0.77895
5 -1 -1 -1 42 6.5 -0.91250 7.4125 -0.49188
6 1 -1 -1 18 7.9 ~1.25937 9.1594 -0.68012
7 -1 =1 -1 41 10.3 2.88750 7.4125 1.58608
8 1 -1 -1 14 9.5 0.34063 9.1594 0.18329
9 -1 1 -1 17 14.3 3.90313 10.3969 2.,18279

10 1 1 -1 27 10.5 -1.64375 12.1438 -0.89016
11 -1 1 -1 19 7.8 -2.59688 10.3969 -1.42066
12 1 1 -1 56 17.2 5.05625 12.1438 2.90843
13 -1 1 -1 23 9.4 -0.99687 10.3%69 -0.53757
14 1 1 -1 8 12.1 -0.04375 12.1438 -0.02354
15 -1 1 -1 32 9.5 -0.89687 10.3969 -0.48342
16 1 1 -1 7 15.8 3.65625 12,1438 2,03469
17 -1 -1 -1 46 8.3 0.88750 7.4125 0.47835
18 1 -1 -1 13 8.0 -1.15837 9.15%4 -0.62574
19 -1 -1 -1 58 7.9 0.48750  7.4125 0.26240
20 1 -1 -1 38 10.7 1.54063 9.1594 0.83364
21 -1 -1 -1 43 7.2 ~0.21250 7.4125 -0.11433
22 1 -1 -1 55 7.2 -1.95937 9,1594 -1.06410
23 -1 -1 -1 6 7.9 0.48750 7.4125 0.26240
24 1 -1 -1 64 10.2 1.04063 9.1592 0.56129
25 -1 1 -1 22 10.3 ~0.09687 10.3969 -0.05211
26 1 1 -1 4 9.9 =2.24375 12.1438 -1.22219
27 -1 1 -1 16 7.4 -2.99687 10.3969 -1.64887
28 1 1 -1 47 10.5 -1.64375 12,1438 -0.89016
29 -1 1 -1 63 8.6 -0.79688 10.3969 -0.42934
30 1 1 =1 51 15.1 2,95625 12.1438 1.62551
31 -1 1 -1 20 8.7 -1.69688 10.3969 -0.91234
32 1 1 -1 29 12.1 -0.04375 12.1438 -0.02354
33 -1 ~1 1 62 12.6 2.4%9688 10.1031 1.36420
34 1 -1 1 1 10.5 =1.35000 11.8500 -0.72949
as -1 -1 1 37 11.3 1.19688 10.1031 0.64612
38 1 =1 1 61 10.6 -1.25000 11.8500 -0.67502
37 -1 -1 1 44 8.1 -2,00312 10.1031 -1.08833
38 1 -1 1 24 12.5 0.65000 11.8500 0.35003
39 -1 -1 1 59 11.1 0.29688 10.1031 0.53757
a0 1 -1 Kl 60 12,9 1.05000 11.8500 0.56637
41 -1 1 1 35 14.¢6 1.51250 13.0875 0.81824
42 1 1 1 50 12,7 =2,13437 14.8344 -1.16122
43 -1 1 1 48 10.8 -2.28750 13.0875 -1.24665
44 1 1 1 36 17.1 2.26563 14,8344 1.23442
45 =1 1 1 21 13.6 0.51250 13.0875 0.27587
46 1 1 1 9 14.6 -0.23437 14.8344 -0.12610
47 -1 1 i 33 13.3 0.21250 13.0875 0.11433
42 1 1 1 57 14.4 -0.43437 14.8344 -0.23378
49 -1 -1 1 10 11.0 0.89688 10.1021 0.48342
50 1 -1 1 39 12.5 0.65000 11.8500 0.35003
51 -1 -1 1 25 8.9 =1,20312 10.1031 -0.64952
52 1 -1 1 40 13.1 1.25000 11.8500 0.67502
53 -1 -1 1 30 7.6 -2,50312 10.1031 -1.36772
hd 1 -1 1 31 8.6 -3.25000 11.8500 ~1.79544
55 -1 -1 1 28 11.8 1.69688 10.1031 0.91934
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Proc Plot Data = Diag vpercent = 85;
Label Resid = ‘Residual’ Time = 'Time’;
Plot Resid*Time / vref = 0;

Titlel’The Data Projected intc a Replicated 243 Factorial Design’;
Title2’'Involving the Factors Polysulfide Index, Time, and Temperature.’;
Title3’'All True Interaction Effects Are Assumed to Be Zero,’;
Titled'Plot of the Residuails against the Levels of Time, ' :

Proc Plot Data = Diag wvpercent = 85;
Label Resid = ‘Residual’ Temp = ‘Pemperature’;
Plot Resid*Temp / vref = 0;

Titlel’The Data Projected into a Replicated 2~3 Factorial Design’;
Title2’Involving the Factors Polysulfide Index, Time, and Temperature. ;
Title3’All True Interaction Effects Are Assumed to Be Zero.’;

Titled ‘Plot of the Residuals against the Levelg of Temperature. ' ;

Proc Plot Data = Diag vpercent = 85;
Label Resid = ‘Residual’ Order = ‘Time Order of Observation’;
Plot Resid*Order / vref = 0;

Titlel’The Data Projected into a Replicated 2+3 Factorial Design’;
Title2’'Involving the Factors Polysulfide Index, Time, and Temperature. ’;
Title3'All True Interaction Effects Are Assumed to Be Zero.’;
Titled’'Plot of the Residuals against the Time Order of the Cbheservations.’;

Proc Rank Data = Diag Normal = Blom Out = Normset:;
Var RSTUDENT; Ranks Rankres;

Proc Plot Data = Normset vpercent = 85;
Label Rankres = ‘'z Percentile’ RSTUDENT = 'RSTUDENT’;
Plot Rankres*RSTUDENT / vref = 0;

Titlel’The Data Projected into a Replicated 2~3 Factorial Design‘;
Title2'Involving the Factors Polysulfide Index, Time, and Temperature.’;
Title3’All True Interaction Effects Are Assumed to Be Zero.';
Titled4’'Normal Probability Plot of RSTUDENT.';

Proc Rank Data = Diag Normal = Blom Out = Normset:;
Var Resid; Ranks Rankres;

Proc Plot Data = Normsget vpercent = 85;
Label Rankres = ‘z Percentile’ Resgid = ‘Residual’;
Plot Rankres*Resid / vref = 0;

Titlel’The Data Projected into & Replicated 23 Factorial Design’;
Title2’Involving the Factors Polysulfide Index, Time, and Temperature, ’;
Title3’'All True Interaction Effects Are Assumed to Be Zero.’;

Titled 'Normal Probability Plot of the Residuals, /;
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Lee R. Sutton, Jr. Writing Project: Fold-over Designs Data Appendix
TN
The Data Projected intc a Replicated 2~3 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Assumed to Be Zero.
Plot of RSTUDENT against the Fitted Values.
Plot of RSTUDENT*Pred. Legend: A = 1 obs, B = 2 obs, etc.
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Fold-over Designs

Data Appendix

*3 Factorial Design
Time, and Temperature.
umed to Be Zero.

0
0
0
1
3.
2
2
0
0

Resid

-55000
.31250
.23437
.81250
03437
.51250
.03437
412590
.86563

11.

13

14,
13,
14.
13.
14.
13.

14

Pred

8500
.0875
8344
0875
8344
0875
8344
0875
.8344

RSTUDENT

0.29609
0.16815
-0.12610
0.58297
~1.67048
1.37300
1.10566
0.22199
0.52064



data.app Wed Aug 295 15:36:53 2001 12
Lee R. Sutton, Jr. Writing Project: Fold-over Designs Data Appendix

The Data Projected into a Replicated 2-3 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Assumed to Be Zero.

Plot of the Residuals against the Levels of Polysulfide Index.

Plot of Resid*Plyslf_i. Legend: A = 1 obs, B = 2 obs, cte.
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The Data Projected into a Replicated 2”3 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Assumed to Be Zero.

Plot of the Residuals against the Fitted Values.

Plot of Resid*Pred. Legend: A = 1 obs, B = 2 obs, etc.
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The Data Projected into a Replicated 23 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Asgumed te Be Zero.

Plot of the Regiduals against the Levels of Temperature.

Plot of Resid*Temp. Legend: A = 1 obs, B = 2 obs, etc.
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Lee R. Sutton, Jr. Writing Project: Fold-over Designs Data Appendix
/_,___\-.
The Data Projected into a Replicated 2*3 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Asgumed to Be Zero.
Plot of the Residuals against the Levels of Time.
Plot of Resid*Time. Legend: A = 1 obs, B = 2 obs, etc.
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The Data Projected into a Replicated 23 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Assumed to Be Zero.
Normal Probability Plot of RSTUDENT.

Plot of Rankres*RSTUDENT. Legend: A = 1 obs, B = 2 obs, etc.
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The Data Projected into a Replicated 2°3 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperature.
All True Interaction Effects Are Assumed to Be Zero,

Plot of the Residuals against the Time Order of the Observations.

Plot of Resid*Qrder. Legend: A = 1 obs, B = 2 obs, etc.
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Writing Project:

The GLM Procedure

Dependent variable: Strength

Source
Model
Error

Corrected Total

R-Square

0.585475

Source

Plyslf_i
Time
Temp

Parameter

Intercept
Plyslf_ i
Time
Temp

i8
Fold-over Designs

Data Appendix

"3 Factorial Design
Time, and Temperature.
umed to Be Zero.

Sum of
DF Squares Mean Square F Value Pr > F
3 307.1604687 102,3868229 28.25 <.0001
60 217.4743750 3.6245729
63 524.6348438
Coeff vVar Root MSE Strength Mean
17.11549 1.903831 11.12344
DF Type III S8 Mean Square F value Pr > F
1 48,8251563 48,8251563 13.47 0.0005
1 142.5039063 142.5039063 39.32 <«.0001
1 115.8314062 115.8314062 31.96 <.0001
Standard
Estimate Error t value Pr > |t
11.12343750 0.23797889 46.74 <.0001
0.87343750 0.23797889 3.67 0.0005
1.49218750 0.23797839 6.27 <.0001
1.34531250 0.2379788% 5.65 <.0001

AT
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The Data Projected into a Replicated 23 Factorial Design
Involving the Factors Polysulfide Index, Time, and Temperatura,
All True Interaction Effects Are Assumed to Be Zero.
Normal Probability Plot of the Residuals.

Plot of Rankres*Resid. Legend: A =1 obs, B = 2 obsg, ete,
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*The following code generates all 1/8 fractions of a 2~6 factorial*;
*design using +-ABD, +-ACE, and +-BCF as design generators, *;

Data Example;

Do F = -1 to 1 by 2;

Do E = -1 to 1 by 2;

Do D = -1 to 1l by 2;

Do C = -1 to 1 by 2;

Do B =-1to 1l by 2;

Do A=-1+tol by 2;

DR1 = A*B*D; DR2 = A*C*E; DR3 = B*C*F;

If DRl = 1 and DRZ2 = 1 2nd DR3 = 1 Then FRACTION = 1;
If DR1 = -1 2and DR2 = 1 And DR3 = 1 Then FRACTION = 2;
If DRI = 1 And DR2 = -1 And DR3 = 1 Then FRACTION = 3;
If DRl = 1 And DR2 = 1 And DR3 = -1 Then FRACTION = 4;
If DRl = -1 And DR2 = -1 And DR3 = 1 Then FRACTION = 5;
If DR1 = -1 2and DR2 = 1 &and DR} = -1 Then FRACTION = 6;
If DRl = 1 And DR2 = -1 And DR3 = -1 Then FRACTION = 7;
If DR1 = -1 And DR2 = -1 And DR3 = -1 Then FRACTION = 8; Output;

End; End; End; End; End; End;

Proc Sort Data = Example; By FRACTION;
Proc Print Data = Example; By FRACTION;
IDABCDEF; Var DR1 DR2? DR3;

Title’All 1/8 Fractions of a 276 Factorial Degign’;
Title2’'Using +-ABD, +-ACE, and +-BCF as Pesign Generators. *;
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*The following code analyzes the first half of Fold-over Design 1.+;
*The design generators for this half are ABD, ACE, and BCF.*;

Data Example;
Do Plyslf m = -1 to 1 by 2; Do Reflux = -1 to 1 by 2;

Do Plysif i = -1 to 1 by 2;

Time Plyslf_i*Reflux; Solvent = Plyslf i*Plyslf_m;

Temp Reflux*Plyslf _m;
Input Strength @@; Output;
End; End; End;
Datalines;
13.4 10.5 7.9 17.2 9.4 7.2 11.1 1i5.8
Proc Glm Data = Example;
Class Plyslf i Reflux Plyslf m Time Solvent‘Temp;
Model Strength = Plyslf_i Reflux Plyslf m Time Solvent Temp
Plyslf_i*Temp / =s3;
BEstimate 'Plyslf_i’ Ply=lf i -1 1;
Estimate 'Reflux’ Reflux -1 1;
Estimate ’'Plyslf m’ Plyslf_m -1 1;
Estimate ‘Time’ Time ~1 1;
Estimate ’'Solvent’ Solvent -1 1;

Estimate 'Temp’ Temp -1 1;

Estimate 'Plyslf_i*Temp’ Plyslf i*Temp 1 -1 -1 1 / divigsor = 2

-~

Title'The First Half of Fold-over Design 1.7;
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*The following code constructs a normal probability plot of the*;

*aliased factorial effects from the first half of Fold-over*; o
*Design 1.*;

Data Exampled; Input Effects @@; Datalines;
2.225 2.87% -1.375 4.775 -0.975 2,275 -1.325

Pxset;

Proc Rank Data = Example3d Normal = Blom Out
Var Effects; Ranks Rankefct:

Proc Plot Data = Fxset vpercent = 70;
Label Rankefct = ‘'z Percentile’ Effects
Plot Rankefct*Effects / vref = 0;

]

‘Aliased Factorial Effect’;

Titlel’'The First Half of Fold-over Design 1.';
Title2 ‘'Normal Probability Plot of the Aliased Factorial Effects.’;

The First Half of Fold-over Design 1.
Normal Probability Plot of the Aliased Factorial Effects.

Plot of Rankefot*Effects. Legend: A = 1 obs, B = 2 obs, etc.

B

PHEFEOSDODORD M

1
o
un
+

-1.0 +

Aliased Factorial Effect



data.app Wed Aug 29 15:36:53 2001 23

Lee R. Sutkon, Jr. Writing Project: Fold-over Designs Data Appendix

The First Half of Fold-over Design 1.

The GLM Procedure

Dependent Variable: Strength

Sum of
Source DF Squares Mean Square F Value Pr » F
Model 7 91.57875000 13.08267857 .
Error 0 0.00000000 .
Corrected Total 7 91.57875000
R-S¢uare Coeff var Root MSE Strength Mean
1.000000 . 11.56250
Source oF Type III 8S Mean Square F Value Pr > F
Plyslf_i 1 9.90125000 9.90125000 .
Reflux 1 16.53125000 16.53125000
Plyslf_m 1 3.78125000 3.78125000
Time 1 45.60125000 45.60125000 .
Solvent 1 1.90125000 1.90125000 .
Teamp 1 10.35125000 10.35125000 .
Plyslf_ i*Temp 1 3.51125000 3.51125000 .
Standard
Parameter Estimate Error t Value Pr > |t]
Plyslf i 2.,22500000
Reflux 2.87500000 . . .
Plyslf m ~-1.37500000 .
Time 4.77500000 . . .
Solvent -0.97500000
Temp 2.27500000 . .
Plyslf_ i*Temp ~1.32500000 .
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The Second Half of Fold-over Design 1,

The GLM Procedure

Dependent Variable: Strength

Source
Model
Error

Corrected Total

R-Square

1.000000

Source

Plyslf i
Reflux
Plyslf m
Time

Solvent

Temp
Plyslf_i*Temp

Parameter

Plyslf_i
Reflux
Plyslf_m
Time

Solvent

Temp
Plysif_i*Temp

Coeff vVar

O N O =

Sum of
DF Squares

7 81.96000000
0 0.00000000

7 81.96000000

DF Type III S8

Root MSE

Mean Square F Value

11.70857143

Strength Mean

9.700000

Mean Square F Value

1 34.44500000 34,44500000 .
1 5.44500000 5.44500000 .
1 1.28000000 1.28000000 .
1 13,52000000 - 13.52000000
1 0.12500000 G.12500000
1 26.64500000 26.64500000 .
1 0.50000000 0.50000000 .
Standard

Estimate Error t vValue
15000000 . .
.65000000 .
. 80000000 .
.60000000 .
-25000000 .

3.65000000

0.50000000

Data Appendix

Pr > F

Pr > F

Pr
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*The following code analyzes the second half of Fold-over Design 1.*;
*The design generators for this half are -ABD, -ACE, and -BCF. *;

Data Example2;

Do Plyslf m

I

1 to -1 by -2; Do Reflux = 1 to -1 by -2;

I

Do Plyslf i 1 to -1 by -2;
Time = -Plyslf_i*Reflux; Solvent = -Plyslf_i*Plyslf m;

~Reflux*Plyslf_m;

1}

Temp
Input Strength €@; Output;
End; End; End;
Datalines;
9.5 8.7 14.6 7.6 13.1 10.8 9.9 3.4
Proc GIm Data = Example?;
Class Plyslf i Reflux Plyslf m Time Solvent Temp;
Model Strength = Plyslf_i Reflux Plyslf_m Time Solvent Temp
Plyslf i*Temp / ss3;
Estimate ‘Plyslf i Plyslf_ 3 -1 1;
Estimate ‘Reflux’ Reflux -1 1;
Estimate ‘Plyslf_m’ Plyslf m -1 1;
Estimate 'Time’ Time -1 1;
Estimate ‘Solvent’ Solvent -1 1;
Estimate ‘Temp’ Temp -1 1;
Estimate ‘Plyslf_i*Temp’ Plyslf i*Temp 1 -1 -1 1 / divisor = .2;

Title ‘The Second Half of Fold-over Design 1.7;
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*The following code analyzes the combined halves of Fold-over™;
*Design 1 where each half is treated as a separate block.*;

Data Example; Set Example; Block = -1;
Data Exaﬁplez; Set Example2; Block = 1; Data Combined;
Set Example Example2;
Proc Glm Data = Combined;
Class Block Plyslf_i Reflux Plyslf_m Time Solvent Temp;

Model Strength = Block Plyslf i Reflux Plyslf m Time Solvent Temp
Reflux*Time Plyslf i*Time Plyslf_i*Solvent Plyslf_i*Reflux
Plyslf_i*Plyslf_m Reflux*Plyslf_m Plyslf i*Temp / ss3;

Estimate ‘Block’ Block -1 1;
Estimate ‘Plyslf i’ Plyslf i -1 1;
Estimate 'Reflux’ Reflux -1 1;:
Estimate ‘Plyslf _m’ Plyslf_m -1 1;
Estimate ‘Time’ Time -1 1;
Estimate ‘Solvent’ Solvent -1 1;
Estimate 'Temp’ Temp -1 1;

Estimate ‘Reflux*Time’ Reflux*Time 1 -1 -1 1 / divisor = 2;
Estimate ‘Plyslf i*Time’ Plyslf_i*Time 1 -1 -1 1 / divisor = 2;
Estimate ‘Plyslf i*Solvent’ Plyslf i*Solvent 1 -1 -1 1 / divisor =
Estimate ‘Plyslf_i*Reflux’ Plyslf_ i*Reflux 1 -1 -1 1 / divisor = 2;
Egtimate ’Plyslf i*Plyslf m’ Plyslf i*Plyslf m 1 -1 -1 1 / divisor = 2;
Estimate ‘Reflux*Plyslf m’ Reflux*Plyslf m 1 -1 -1 1 / divigor = 2;
Estimate 'Plyslf i*Temp’ Plyslf i*Temp 1 -1 -1 1 / divisor = 2;

2;

Title 'Both Halves of Fold-over Design 1 Combined:’;

-
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*The following code constructs a normal probability plot of the*;

*aliased factorial effects from the second half of Fold-over*;

*Design 1.*:

Data Example3; Input Effects @@; Datalines;

4.15 1.65 0.80 2.60 0.25 3.65 0.50

Proc Rank Data = Example3 Normal = Blom Out = Fxset;
Var Effects; Ranks Rankefct;

Proc Plot Data = Fxset vpercent = 70;
Label Rankefet = ‘'z Percentile’ Effects = 'Aliased Factorial Effect’;
Plot Rankefct*Effects / vref = 0;
Titlel’The Second Half of Fold-over Design 1.';
Title2 'Normal Probability Plot of the Aliased Factorial Effects.’;
The Second Half of Fold-over Design 1,
Normal Probability Plot of the Aliased Factorial Effects.

Plot of Rankefct*Effects. Legend: A = 1 chs, B = 2 cba, etec.
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*The following code constructs a normal probability plot of the*;

*average factor effects, the aliased two-factor interaction effects, *; R
*and the Block effect from the combined halves of Fold-over*;

*Design 1.+*;

Data Example3; Input Effects €@; Datalines;

-1.8625 3.1875 2.2625 -0.2875 3.6875 -0.3625 2.9625
-0.9625 0.6125 -1,0875 1.0875 -0.6125 -0.6875 -0.4125

Proc Rank Data = Example3 Normal = Blom Out = Fxset;
Var Effects; Ranks Rankefct;

Proc Plot Data = Fxset vpercent = 70;
Label Rankefct = 'z Percentile! Effects= '‘Effect’;
Plot Rankefct*Effects / vref = 0;

Titlel'Both Halves of Fold-over Design 1 Combined.’;
Title2’'Normal Probability Plot of the Average Factor Effects,’;
Title3’'The Aliased Two-factor Interaction Effects, and the Block Effect.;

Both Halves of Fold-over Design 1 Combined.
Normal Probability Plot of the Average Factor Effects,
The Aliased Two-factor Interaction Effects, and the Block Effect.

Plot of Rankefct*Effects. Legend: A = 1 obs, B = 2 obs, etc.
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Both Halves of Fold-over Design 1 Combined.
The GLM Procedure

Dependent Variable: Strength

Sum of

Source DF Squares Mean Square F Value BPr » F

Model 14 184.0837500 13.1488393 3.95 0.3774

Error 1 3.3306250 3.33056250

Corrected Total 15 187.4143750

R-Square Coeff Var Root MSE Strength Mean
0.982229 17.16637 1.825000 10.63125

Source DF Type IITI SS Mean Square F value Pr > F

Block 1 13.87562500 13.87562500 4.17 0.2900

Plysif 1 1 40.64062500 40.64062500 12.20 ¢0.1775
Reflux 1 20.47562500 20.47562500 6.15 0,2441

Plyslf m 1 0.33062500 0.33062500 0.10 0.8057

Time 1 54.35062500 54,39062500 16,33 0.1544

Solvent 1 0.52562500 0.52562500 0.16 0.7593

Temp 1 35.10562500 . 35,10562500 10.54 0.1902
Reflux*Time 1 3.70562500 3.70562500 1.11 0.4830

Plyslf_i*Time 1 1.50062500 1.50062500 0.45 0.§237

Plyslf_ i*Solvent 1 4.73062500 4.73062500 1.42 0.4444

Plyslf i*Reflux 1 4.73062500 4.73062500 1.42 0.4444

Plyslf i*plyslf m 1 1.50062500 1.50062500 0.45 0.6237
Reflux*Plyslf m 1 1.89062500 1.89062500 0.57 0.5889

Plyslf_i*Temp 1 0.68062500 0.68062500 0.20 0.7297

Standard .

Parameter Estimate Exrror t Value Pr > |t
Block ~1.86250000 0.91250000 -2.04 0.2900
Plyslf 1 3.18750000 0.91250000 3.49 0.1775
Reflux 2.26250000 0.91250000 2.48 0.2441
Plyslf m -0.28750000 0.91250000 -0.32 0.8057
Time 3.68750000 0.91250000 4,04 0.1544
Solvent ~0.36250000 4.91250000 ~0.40 0.7593
Temp 2.96250000 0.91250000 3.25 0.1902
Reflux*Time -0.96250000 0.91250000 ~-1.08 0.4830
Plyslf i*Time 0.61250000 0.91250000 0.67 0.6237
Plyslf_i*Solvent -1.08750000 0.91250000 -1.19 0.4444
Plyslf j*Reflux 1.08750000 0.91250000 1.19 0.4444
Plyslf i*Plyslf_m -0.61250000 0.91250000 -0.67 0.6237
Reflux*Plyslf m -0.68750000 0.91250000 -0.75 0.5889
Plyslf_i*Temp -0.41250000 0.91250000 ~0.45 0.7297
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The Data from the Combined Halves of Fold-over Design 1 Projected
Into an Unreplicated, Blocked 2*4 Factorial Design Involving the
Factors Polysulfide Index, Reflux Rate, Time, and Temperature,
Only the Polysulfide Index X Reflux Rate and Reflux Rate X Time

True Interaction Effects Are Not Assumed to Be Zero.

The GLM Procedure

Dependent Variable: Strength

13.64 0.0007

Pr > F

0.0244
.0015
.0099
. 0006
.0023
-1447
.1505

CoOoooOO

Pr > |t

.0244
. Q015
.0099
.0006
.0023
.1447

Sum of

Socurce DF Squares Mean Square F Value Pr > F
Model 7 172.9243750 24.7034821

Error 8 14.4900000 1.8112500
Corrected Total 15 187.4143750

R-Sgquare Coeff Var Root MSE Strength Mean
0.922685 12.65916 1.345827 10.63125
Source DF Type III S5 Mean Square F Value
Block 1 13.87562500  13.87562500 7.66
Plyslf i 1 4(0.64062500 40.64062500 22.44
Reflux 1 20.47562500 20.47562500 11.30
Time 1 54.39062500 54.39062500 30.03
Temp 1 35,10562500 35.10562500 19.38
Plyslf i*Reflux 1 4.73062500 4,73062500 2.61
Reflux*Time 1 3.70562500 3.70562500 2.05
Standard

Parameter Estimate Error t Value
Block -1.86250000 0.67291344 ~2.77
Plyslf i 3.18750000 0.67291344 4.74
Reflux 2.26250000 0.67291344 3.36
Time 3.68750000 0.67291344 5.48
Temp 2.96250000 0.67291344 4.40
Plyslf_i*Reflux 1.08750000 0.67291344 1.62
Reflux*Time -0.96250000 0.67291344 -1.43

OO0 OoOOoOO0O

L1905
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*The following code projects the data from the combined halves of*;
*Fold-over Design 1 into an unreplicated, blocked 2-4 factorial*;
*design involving the factors Polysulfide Index, Reflux Rate, Time, *;
*and Temperature. The Polysulfide Index X Reflux Rate and#;
*Reflux Rate X Time true interaction effects are the only truex;
*interaction effects that are not assumed to be zero. Each half of*;
*Fold-over Design 1 is treated as a4 separate block.*;
Data Example;

Do Temp = -1 to 1 by 2; Do Time = -1 to 1 by 2;

Do Reflux = -1 to 1 by 2; Do Plyslf i = -1 to 1 by 2;

Input Strength Block; Output;

End; End; End; End;

Datalines;
3.4 1
7.2 -1
7.9 -1
9.5 1
9.4 -1
9.8 1
8.7 1
17.2 -1
7.6 i
10.5 -1
1.1 -1
13.1 1
13.4 -1
14.6 1
10.8 1
i5.8 -1

Proc Glm Data = Example;

Class Block Plyslf_i Reflux Time Temp;

Model Strength = Block Plyslf i Reflux Time Temp Plyslf_i*Reflux
Reflux*Time / sas3;

Estimate ‘Block’ Block -1 i;
Estimate ‘Plyslf i’ Plyslf i -1 1;
Estimate ‘Reflux’' Reflux -1 1;
Estimate ‘Time’ Time -1 1;
Estimate ‘Temp’ Temp -1 1;

Estimate ‘Plyslf_i*Reflux’ Plyslf i*Reflux.-1 -1 -1 1 / divisor = 2;
Estimate ‘Reflux*Time’ Reflux*Time 1 -1 -1 1 / divisor = 3;

Titlel’The Data from the Combined Halves of Fold-over Design 1 Projected’;
Title2’'Into an Unreplicated, Blocked 2°4 Factorial Design Involving the’;
Title3'Factors Polysulfide Index, Reflux Rate, Time, and Temperature. ’;
Title4'Only the Polysulfide Index X Reflux Rate and Reflux Rate X Time’;
Title5'True Interaction Effects Are Not Assumed to Be Zero,’;
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*The following code generates all 1/8 fractions of a 27§ factorial*;
*design using +-BCD, +-ABE, and +-ACF as design generators.*;

Data Example;

Do F = -1to 1l by 2;
Do E = -1 to 1 by 2;
DoD=-1tol by 2;
Do C = -1 to 1 by 2;
Do B=-1to 1l by 2;
Do A= -1t%to 1l by 2;

DRL = B*C*D; DR2 = A*B*E; DR3 = A*C*F;

IF DR1 = 1 And DR2 = 1 and DR3 = 1 Then FRACTION = 1;
IF DR? = -1 And DR2 = 1 2And DR3 = 1 Then FRACTION = 2;
IF DRl = 1 And DR2 = -1 2And DR3 = 1 Then FRACTION = 3;
IF DRl = 1 And DR2 = 1 And DR3 = -1 Then FRACTION = 4;
IF DRl = -1 And DR2 = -1 And DR3 = 1 Then FRACTION = 5;
IF DRl = -1 And DRZ = 1 And DR3 = -1 Then FRACTION = 6;
IF DRl = 1 And DR2 = -1 2and DR3 = -1 Then FRACTION = 7;
IF DRl = -1 And DR2 = ~1 And DR3 = -1 Then FRACTION = §; Output;

End; End; End; End; End; End;

Proc Sort Data = Example; By FRACTION;
Proc Print Data = Example; By FRACTION;
IDABCDE F; Var DR1 DR2 DR3;

Titlel’All 1/8 Fractions of a 27§ Factorial Design’;
Title2’'Using +-BCD, +-ABE, and +-ACF as Design Generators. *;
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*The following code analyzes the first half of Fold-over Design 2.*;
*The design generators for this half are BCD, ABE, and ACF.*;

Data Example;

Do Plyslf m -1 to 1 by 2; Do Reflux = -1 to 1 by 2;

Do Plyslf_i -1l to 1 by 2;

Time = Reflux*Plyslf_m; Solvent = Plyslf_i*Reflux;

Temp Plyslf_i*Plyslf_m;
Input Strength @@; Qutput;
End; End; End;
Datalines;
13.4 10.5 11.3 10.7 7.2 12.5 9.5 15.8
Proc¢ Glm Data = Example;
Class Plyslf_ i Reflux Plyslf_m Time Solvent Temp;
Model Strength = Plyslf_i Reflux Plyslf m Time Solvent Temp
Plyslf_ i*Time / ss3;
Estimate 'Plyslf i’ Plyslf i -1 1;
Estimate ‘Reflux’ Reflux -1 1;
Estimate ‘Plyslf m’ Plyslf m -1 1;
Estimate 'Time’ Time -1 1;
Estimate 'Solvent’ Solvent -1 1;
Estimate ‘Temp’ Temp -1 1;

Estimate 'Plyslf i*Time’ Plyslf_i*Time 1 -1 -1 1 / divisor = 2;

Title’The First Half of Fold-over Design 2.7;
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*The following code constructs a normal probability plot of thet;

*aliased factorial effects from the first half of Fold-over*; R
*Degign 2.%*;

Data Example3; Input Effects 8@; Datalines;

2.025 0.925 -0.225 1.875 0.825 3.775 -0.325

Proc Rank Data = Example3 Normal = Blom Out
Var Effects; Ranks Rankefct;

Fxset;

Proc Plot Data = Fxset vpercent = 70;
Label Rankefct = ‘z Percentile’ Effects = ‘Aliased Factorial Effect’;
Plot Rankefet*Effects / vref = 0;

Titlel’The First Half of Fold-over Design 2.';
Title2 'Normal Probability Plot of the Aliased Factorial Effects.’;
The First Half of Fold-over Design 2.
Normal Probability Plot of the Aliaged Factorial Effects.

Plot of Rankefct*Effects. Legend: A = 1 chs, B = 2 obs, etc.
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The First Half of Fold-over Design 2.

The GIM Procedure

Dependent Variable: Strength

Source
Model
Error

Corrected Total

R-Square

1.000000

Source

Plyslf_i1
Reflux
Plyslf m
Time

Solvent

Temp

Plyslf_ i*Time

Parameter

Plyslf i
Reflux
Plyslf m
Time

Solvent

Temp
Plyslf_i*Time

Sum of

DF Squares

7 47,11875000

6.73125000

0 0.00000000

7 47.11875000

Coeff var

DF Type III S8

Root MSE

Data Appendix

Mean Square F Value Pr » F

Strength Mean

. 11.36250

Mean Square F Value Dr > F

1 8.20125000 8.20125000
1 1.71125000 1.71125000
1 0.10125000 0.10125000 .
1 7.03125000 7.03125000
1 1.36125000 1.36125000 .
1 28.50125000 28.50125000 .
1 0.21125000 0.21125000
Standard
Estimate Errox t Value Pr > |t}
2.02500000
0.92500000 .
-0.22500000 .
1.87500000
0.82500000 .
3.77500000
~-0.32500000
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The Second Half of Fold-over Design 2.
The GLM Procedure

Dependent Variable: Strength

Sum of

Source DF Squares Mean Square F Value DPr > F
Model 7 135,9200000 19.4171429 . .
Error 0 0.0000000

Corrected Total 7 135.9200000

R-Square Coeff var Root MSE Strength Mean
1.000000 11.30000

Source DF Type III SS Mean Square F Value Pr > F
Plyslf i 1 40.50000000 40..50000000

Reflux 1 0.18000000 0.18000000

Plysif m 1 11.52000000 11.52000000

Time 1 32.,00000000 32.00000000

Solvent 1 1.28000000 1.28000000

Temp 1 48.02000000 48.02000000

Plyslf_i*Time 1 2.42000000 2.42000000

Standard

Parameter Estimate Error t Value Pr > |tf
Plyslf i ©4.50000000 .
Reflux 0.30000000 . .
Plyslf m 2.40000000 .
Time 4.00000000 . . .
Solvent 0.80000000
Temp 4.90000000
Plyslf_i*Time 1.10000000 . .
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*The following code analyzes the second half of Fold-over Design 2.*:
*The design generators for this half are -BCD, -ABE, and ~ACF,*;

Data Example2;

Do Ply=slf m

1 to -1 by -2; Do Reflux = 1 to -1 by -2:

Do Plyslf_ i 1 to -1 by -2;
Time = -Reflux*Plyslf m; Solvent = -Plyslf_i*Reflux;

Temp

~Plyslf_i*Plyglf m;
Input Strength @€; Output;

End; End; End;

Datalines;

9.5 11.8 15.1 13.6 17.1 7.4 12.5 3.4

Proc Glm Data = Example2;

Class Plyslf_i Reflux Plyslf_m Time Solvent Temp;

Model Strength = Plyslf i Reflux Plyslf_m Time Solvent Temp
Plyslf_ i*Time / gs3;

Estimate ‘Plyslf_i’ Plyslf_1 -1 1;

Estimate ‘Reflux’ Reflux -1 1;

Egstimate 'Plyslf_m’ Plyslf m -1 1;

Estimate 'Time’ Time -1 1;

Estimate ‘Seolvent’ Solvent -1 1;

Estimate ‘Temp-’ Temp -1 1;

Estimate 'Plyslf i*Time’ Plyslf_i*Time 1 -1 ~1 1 / divisor = 2;

Title 'The Second Half of Fold-over Design 2.¢;
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*The following code analyzes the combined halves of Fold—oﬁer*;
*Desgign 2 where each half is treated as a sepaxrate block.*;

Data Example; Set Example; Block = -1;
Data Example2; Set Example2; Block = 1; Data Combined;
Set Example ExampleZ;
Proc Glm Data = Combined;
Class Block Plyslf_i Reflux Plyslf m Time Solvent Tenp; -

Model Strength = Block Plyslf i Reflux Plyslf_m Time Solvent Temp
Reflux*Solvent Plyslf_i*Solvent Plyslf i*Temp Reflux*Plyslf m
Plyslf_i*Reflux Plyslf i*Plyslf_m Plyslf_i*Time / s8s83;

Estimate ‘Block’ Block -1 1;
Estimate ‘Plyslf_i’ Plyslf i -1 1;
Estimate 'Reflux’ Reflux -1 1;
Egtimate ‘'Plyslf m’ Plyslf m -1 i;
Estimate 'Time’ Time -1 1;

Estimate ’'Solvent’ Solvent -1 1;
Estimate ‘Temp’ Temp -1 1;

Estimate ’'Reflux*Solvent’ Reflux*Solvent 1 -1 -1 1/ divisor = 2;
Estimate ’'Plyslf_i*Solvent’ Plyslf_i*Solvent 1 -1 -1 1 / divisor = 2;
Estimate ‘Plyslf_i*Temp’ Plyslf i*Temp 1 -1 -1 1 / divisor = 2;
Estimate ‘Reflux*Plyslf m’ Reflux*Plyslf m 1 -1 -1 1 / divisor 2;
Estimate ‘Plyslf i*Reflux’ Plyslf_i*Reflux 1 -1 -1 1 / divisor = 2;
Egtimate 'Plyslf_i*Plyslf m’ Plyslf i*Plyslf m 1 -1 -1 1 / divisor = 2;
Estimate ‘Plyslf i*Time’ Plysif i*Time 1 -1 -1 1l / divisor = 2;

Title ‘Both Halves of Fold-over Design 2 Combined. *;
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*The following code constructs a normal probability plot of the*;

*aliased factorial effects from the second half of Fold-over*;

*Design 2.%;

Data Exampleld; Input Effects @@; Datalines:;

4.5 0.3 2.4 4.0 0.8 4.9 1.1

Proc Rank Data = Example3 Normal = Blom Out = Fxset;
Var Effects; Ranks Rankefet;

Proc Plot Data = Fxset vpercent = 70;
Label Rankefct = ‘z Percentile’ Effects
Plot Rankefct*Effects / vref = 0;

'Aliased Factorial Effect’;

Titlel’'The Second Half of Fold-over Design 2.’;
Title2'Normal Probability Plot of the Aliaged Factorial Effects.’;

The Second Half of Fold-over Design 2.
Normal Probability Plot of the Aliased Factorial Effects.

Plot of Rankefct*Effects. Legend: A = 1 obs, B = 2 obs, etc.

[

DHAEDOKR DY

Aliased Factorial Effect
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*The following code constructs a normal probability pleot of thet;

*average factor effects, the aliased two-factor interaction effects,*;

*and the Block effect from the combined halves of Fold-over*;
*Design 2.*%*;

Data Example3; Input Effects @@; Datalines;

-0.0625 3.2625 0.8125 1.0875 2.93758 0.8125 4.3375
-1.2375 0.3125 -1.3125 -1.0625 0.0125 -0.5625 0.3875

Proc Rank Data = Example3 Normal = Blom Out
Var Effects; Ranks Rankefct;

Fxset;

Proc Plot Data = Fxset vpercent = 70;
Label Rankefct = ‘z Percentile’ Effects = 'Effect’;
Plot Rankefct*Effects / vref = 0;

Titlel’Both Halves of Fold-over Design 2 Combined.;

Title2’Normal Probability Plot of the Average FaCtor Effects, *;
Title3'The Aliased Two-factor Interaction Effects, and the Block Effect.’;

Both Halves of Fold-over Design 2 Combined.
Normal Probability Plot of the Average Factor Effects,
The Aliased Two-factor Interaction Effects, and the Block Effect.

Plot of Rankefct*Effects. Legend: A = 1 obs, B = 2 obs, etc.
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Both Halves of ﬁold-over Design 2 Combined.

Dependent Variable: Strength

The GLM Procedure

Sum of
Source DF Squares Mean Square F Value
Model 14 181.,0237500 12.9302679 - 6.37
Error 1 2,0306250 2.0306250
Corrected Total 15 183.0543750
R-Square Coeff var Root MSE Strength Mean
0.988907 12.57584 1.425000 11.331.25
Source DF Type III S§ Mean Square F Value
Block 1 0.01562500 0.01562500 G.01
Plyslf_i 1 42.,57562500 42,57562500 20.97
Reflux i 1.50062500 1.50062500 0.74
Plyslf m 1 4.73062500 4.73062500 2.33
Time 1 34.51562500 34.51562500 17.00
Solvent i 2.64062500 2.64062500 1.30
Temp 1 75.25562500 75.25562500 37.06
Reflux*Solvent 1 6.12562500 6.12562500 3.02
Plyslf_i*Solvent i 0.39062500 0.39062500 0.19
Plyslf_ i*Temp 1 6.89062500 6.89062500 3.39
Reflux*Plyslf m 1 4.51562500 4-,51562500 2,22
Plyslf_i*Reflux 1 0.00062500 0.00062500 0.00
Plyslf i*plyslf m 1 1.26562500 1.265862500 0.62
Plyslf i*Time 1 0.60062500 0.60062500 0.30
Standard
Parameter Estimate Exrror Value
Blecck -0.06250000 0.71250000 ~0.09
Plyslf i 3.26250000 0.71250000 4,58
Reflux 0.61250000 0.71250000 0.856
Plyslf m 1.08750000 0.71250000 1.53
Time 2.893750000 0.71250000 4.12
Solvent 0.81250000 0.71250000 1.14
Temp 4.33750000 0.71250000 6.09
Reflux*Solvent -1.23750000 0.71250000 -1.74
Plyslf_i*Solvent 0.31250000 0.71250000 0.44
Plyslf_i*Temp -1.31250000 0.71250000 -1.84
Reflux*Plyslf m ~-1.06250000 0.71250000 -1.49
Plyslf j*Reflux 0.01250000 0.71250000 0.02
Plyslf i*Plyslf_m -0.56250000 0.71250000 -0.79
Plyslf i*Time G.38750000 0.71250000 0.54

Pr > F

0.3021

Pr>F

0.9443
0.1369
0.5480
0.3692
0.1515
0.4583
0.1036
0.3328
0.7369
0.3166
0.3761
0.9888
0.5746
0.6829

Pr > |t

0.9443
0.1369
0.5480
0.3692
0.1515
(.4583
0.1036
0.3328
0.7369
0.3166
0.3761
0.9888
0.5746
0.6829
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All True Interaction Effects Are Assumed to Be Zero.
The GLM Procedure
Dependent Variable: Strength
Sum of
Source DF Squares Mean Square F Value
Model 4 152,3625000 38.0906250 13.55
Error 11 30.6918750 2.7901705
Corrected Total 15 183.0543750
R-Square Coeff var Root MSE Strength Mean
0.832335 14.74136 1.670380 11.33125
Source DF Type III 8S Mean Square F Value
Block 1 0.01562500 0.01562500 0.01
Plyslf i 1 42,57562500 42.57562500 15.26
Time 1 34.51562500 34.51562500 12.37
Temp 1 75.25562500 75.25562500 26.97
Standard
Parameter Estimate Error £ Value
Block -0.06250000 0.83519017 -0.07
Plyslf_i 3.26250000 0.83519017 3.91
Time 2.93750000 0.83519017 3.52
Temp 4,33750000 0.83519017 5.19

over Design 2 Projected
*3 Factorial Design Involving
» Time, and Temperature.

Pr » F

0.0003

Pr > F

0.9417
0.0024
0.0048
0.0003

Pr > |t}

0.9417
0.0024
0.0048
0.0003
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*The following code projects the data from the combined halves of*;
*Fold-over Design 2 into a twice-replicated, blocked 2°3 factorial+;
*design involving the factors Polysulfide Index, Time, and Temperature. *;
*All true interaction effects are assumed to be zerc and each half*;

*of Fold-over Design 2 is treated as a separate block. *;

Data Example;

1]

Do Block -1 to 1 by 2; Do Temp = -1 to 1 by 2;
Do Time = -1 to 1 by 2; Do Plyslf i = -1 to 1 by 2;
Input Strength 8@; Output;
End; End; End; End;

Datalines;

7.
3

2 10.7 9.5 10.5 11.3 12.5 13.4 15.8
.4 9.5

7.4 15.1 11.8 12.5 13.6 "17.1
Proc Glm Data = Example;

Class Block Plyslf_i Time Teﬁp;

Model Strength = Block Plyslf_i Time Temp / 8s83;
Estimate ‘Block’ Block -1 1;

Egtimate ‘Plyslf_i- Plyslf 1 -1 1;

Estimate 'Time’ Time -1 1;
Estimate ‘Temp’ Temp -1 1;

Titlel’The Data from the Combined Halves of Fold-over Design 2 Projected’;
Title2'Into a Twice-replicated, Blocked 2~3 Factorial Design Involving’;
Title3’The Factors Polysulfide Index, Time, and Temperature, ’;

Title4’All True Interaction Effects Are Assumed to Be Zero,’;

Run;
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