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AN EMPIRICAL HIERARCHICAL BAYES APPROACH TO CLOSED MODEL
CAPTURE-RECAPTURE ABUNDANCE ESTIMATION

ABSTRACT

A hierarchical Bayesian procedure was developed to make inferences on abundance of a
closed population from the robust-design capture-mark-recapture data. 1 made the
assumption that capture probabilities were random samples from a common hyper
distribution. Data for one primary period were used for making the inference on
abundance of the population whereas the data for other primary periods were used for
making the inference on the hyperparameters. 1 used beta-binomial and beta-multinomial
models for the likelihood function. Simulation analyses were used to test the
performance of the proposed method and to consider the effects of temporal sampling
design. Maximum likelihood estimates for the same simulated data sets were obtained
using software MARK for comparison. A frequent short-term sampling provided more
precise posterior distribution of abundance than infrequent long-term sampling. The
performance of the proposed method was comparable to the maximum likelihood
method. When sample sizes were small, however, the proposed method performed better

than the maximum likelihood method.



Introduction

Estimating the abundance of a population is important in understanding biological
processes and successful management of the population. Numerous methods have been
developed for estimating the abundance of a population (Seber 1982, Schwarz and Seber
1999, Williams et al. 2001). Depending on the sampling process and underlying model,
these methods can be grouped into one of three broad categories: counts, distance-based,
and capture-mark-recapture (Williams et al. 2001). In this chapter, I develop a Bayesian
method for estimating the abundance of a closed population using capture-mark-recapture
(CMR) data. Discussion on other methods can be found elsewhere (e.g., Buckland et al.
1993, Williams et al. 2001).

In CMR methods, animals are caught in a series of samples. Animals in the first
sample are marked individually and released into the population. In subsequent samples,
new animals are marked individually and released, whereas recaptured animals are
recorded and released. Consequently, capture histories of individual animals are
available at the completion of a study. Marks on animals may be either artificial or
natural. When feasible, natural marks are preferable to artificial marks and tags because
the marking procedure does not affect the behavior of animals, the mortality due to direct
handling of animals is absent, and loss of marks is usually less of an issue.

Existing methods for estimating the abundance of a population via CMR
experiments require large numbers of recaptures to obtain precise results. In the user
manual for their population analysis software, Amason et al. (1998) stressed the
importance of a carefully designed study and the use of prior knowledge of the

population:



“Failure to use every scrap of prior information
about the population of interest, or to carry out a proper
sampling program that fully exploits this information, can
have disastrous consequences. More often than not, a poor
experiment, even if it has deployed prodigious amounts of
equipment and man-howrs, can lead to data that are
difficult or impossible to analyse, and estimates that are
vague, misleading, or even absurdly biased (Arnason et al.
1998; Chapter 6.2).”

In many statistical models for capture-mark-recapture analyses, abundance is not
incorporated in these models explicitly. The abundance during a period, however, is
estimated by using the following relationship:

7,
E[N]=2, ©
!
where #, is the number of animals caught during the * primary period and p, isthe
estimated capture probability for the 1 primary period from a model. In these models,
other population parameters, such as survival, immigration, emigration, and birth rates,
also are incorporated. Using the maximum likelihood approach, estimation procedures
involve maximizing a multidimensional surface with multiple parameters, which may not
exhibit prominent peaks. Consequently, capture probabilities sometimes are estimated
imprecisely, resulting in imprecise estimates of abundance.

In this chapter, a statistical method is proposed for making an inference on the
abundance of a closed population using data from a CMR study with the robust design
(Pollock 1982). In this method, the entire expetiment is divided into a series of short
time periods (primary periods). The population is assumed closed to additions and

deletions within a primary period. Within each primary period, individuals are caught

during multiple secondary occasions (Figure 1).
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Figure 1. A schematic diagram of Pollock’s robust design. Within each primary period,
multiple samples are collected during secondary occasions with occasion-specific capture

probability (&)

In many ecological studies and management situations, the inference on
abundance for one primary period is desired. In the proposed method, a data set is
divided into two groups: one primary period for which the abundance is inferred and all
other primary periods from which supporting information on the capture probabilities is
obtained. The assumption under this approach is that capture probabilities may vary
between secondary occasions, but they are similar for the duration of the study.
Consequently, the use of data from all other primary periods provides information on
capture probabilities for the primary period of interest. Capture probabilities at a
sampling location are considered random samples from a beta distribution, defined by
two hyperparameters. The joint distribution of these hyperparameters is found by using

all primary periods except for the primary period of interest. The inference on abundance
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for the primary period is made by using the distribution of the hyperparameters, observed
data for the primary period, and a probabilistic model. I consider beta-binomial and
multinomial models. Although methods for estimating mortality, immigratidn and
emigration rates, and movement rates have been proposed for analyzing data from the
robust design (Kendall et al. 1995, Schwarz and Stobo 1997, Lindberg et al. 2001,
Kendall and Bjorkland 2001), I only consider the inference for the abundance.

Iuse the hierarchical approach for the following two reasons: (1) capture
probabilities are affected by factors independent of target animals, e. g., weather,
personnel, and geographic features, and (2) capture histories and the number of
individuals caught during a sampling occasion are affected by capture probabilities and
the total number of available individuals. By using the hierarchical approach, I can
mdirectly incorporate the factors independent of target animals into the analysis.
Inference for the abundance is made by using the relationship among the numbers of
individuals caught, capture probabilities, and the total number of individuals available for
capture.

In this study, I first derive the model and computational procedure. To test the
performance of the proposed method, I use simulated data. I also compare the results to
maximum likelihood estimates from freely available software (MARK; White and
Burnham 1999).

Methods

The proposed inference procedure contains two steps. In the first step, I use the
capture-recapture data for all but one primary period to make inference on the

hyperparameters of capture probabilities. The posterior distribution of these
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hyperparameters is used to determine whether or not the data provide enough information
about capture probabilities. If the posterior distribution is informative, i.e., if it is not
diffuse over the parameter space, the posterior distribution is used in the second step, in
which the posterior distribution of abundance in the primary period of interest is
computed. If the posterior distribution from the first step is diffuse, a uniform
distribution on the hyperparameters of capture probabilities is used in the second step,
because no useful information on capture probabilities can be obtained from other
primary periods. For making the inference on the abundance, I consider two likelihood
functions, beta-binomial and multinomial. The former is appropriate when few animals
are recaptured, whereas the latter is applicable when a large number of animals are
recaptured. Performances of these two models are compared.

The posterior distribution of abundance is computed for a primary period,
whereas the data for other primary periods are used for computing the posterior
distribution of hyperparameters for capture probabilities. Although the primary period of
interest, i.e., the primary period for which the posterior distribution of abundance is
computed, can be any primary period, often the abundance estimate is required for the
most recent primary period. Consequently, in the following analyses | make inferences
on the abundance for the last primary period, whereas the data for all other primary

periods are used for the inference on the hyperparameters of capture probabilities.

Assumptions

I made the following assumptions for building capture-recapture models for

making the inference for the abundance of a population.
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7

The population is assumed closed to immigration, emigration, births, and
deaths during each primary period, which is a short time period, e.g., 15
days, 30 days, etc. Consequently, the population size (¥,) remains
constant during the /" primary period (=1, 2, ..., 7). Individuals in the
population are caught and recaptured on secondary occasions G=1,...k)
within a primary period (Figure 1). Captured individuals are marked, and
recaptured individuals are identified and released into the population. No
animals are killed in the process. All previously marked individuals are
identified without errors.

All individuals in the population have equal capture probability (6,7
during the /" sampling occasion of the /™ primary period regardless of
their capture history.

Captures are mutually independent events. Let ¢, .1 = event that an
individual / is caught during the ;" secondary occasion of the #* primary
period. Iassume that {c, ;) are mutually independent for all £, j, and /.
At least two sampling occasions exist for each primary period (min(k,) >
1).

Capture probabilities (,;) are exchangeable among all sampling occasions
for the entire experiment (Figure 2). In other words, the joint density of
capture probabilities is not dependent of the order of captures.

Capture probabilities during the /™ secondary occasion of the 7" primary

period (&) are mutually independent for all ¢ and J.
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Figure 2. The structure of the hierarchical model for the capture-recapture model.

Models

Notation

N; = population size during the /™ primary period (1 = 1,...,7),

& = capture probability during the /™ secondary occasion of the primary period
G=1, .k t=12,...D,

Uy, = set of all individuals in the /* primary period (¢ = 1,2,...,7) that are caught

for the first time on the /& secondary occasion (j = 1, ....k),

u,; = the number of individuals in U7,
ng) = the number of individuals with a particular capture history @ during the /%

primary period, where @ is a non-empty subset of 0’s and [’s of length &,

that indicates recapture histories for the /™ primary period. w e Q®*) ,
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where Q" isa non-empty set of 0°s and 1’s that indicates all possible
recapture histories of length k..

n,; = the total number of individuals caught during the j* secondary occasion of
the ™ primary period,

For all equations I use a bold face font for vectors and regular font for scalars.

Likelihood function for capture
probabilities

Recapture processes can be modeled by describing recaptures as a function of
capture probabilities conditional on the first capture. First, I present an example with
three secondary occasions (k = 3). Because I assume that capture probabilities for
secondary occasions are independent of each other (assumption 7) and abundances are
independent among primary periods (assumption 1), I describe a model for a primary
period and omit the subscript for primary periods. The general likelihood function for & >
2 is presented in the subsequent section.

With three secondary occasions, there are six possible recapture histories: Q© =
{111, 110, 101, 100, 011, 010}, where {001, 000} are omitted because individuals that
belong to these capture histories have not been recaptured. The individuals that belong to
the first four capture histories in Q¢ ), Le., {111, 110, 101, 100}, are elements of Uy,
whereas those that belong to the last two, i.c., {011, 010}, are elements of I/>. The
likelihood function for the numbers of individuals that belong to the first four capture
histories (m, =[7,1, 9, 71,40 |), conditional on the individuals caught for the first
time in the first occasion (;) and recapture probabilities for occasions 2 and 3 (& and

93), is:
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u, !

X
!
111 1y gy g ! (2)
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l(nl.. |u1,92,93)=

The likelihood function for the numbers of individuals that belong to the last two
capture histories (ny, =[r,,7y,,]), conditional on the individuals caught for the first
time in the second occasion (u,) and the recapture probability for the third occasion (&),
is:

! Fon Toto
Ko 4,6, =—L — (6, (1-6,)" )
16°

011 * 010

Because captures are independent events (assumption 4), the likelihood function

for these three secondary occasions is a product of the two likelihood functions:

/ (nwenl-‘) ]u,,u2,92,93) =I(n,_| 1,0,,60, )x (g, |u,.6,)

N, !
___whwl @

(H w0 n"“‘ ')

Mt _ Moy Hhao n”]+n|m+n“”( _ oo g
o, (1-8,) o, 1-6, )

Equation (4) is proportional to a product of two binomial probability mass

functions and can be rewritten as:

U lu, !

(Hmeﬂ[‘) n“" )

[T ©

- 6 (1-0)5" ",
TLamy e(

ll (na)eﬂm I U, u2’92, 93 ) — 911” (I ) )ul—ﬂ” Bn (1 o )Hl+r£2—n 1
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where @;; represents the capture history with ones in digits j and / (f < i) and @ i € Q)
For example, w;,» represents {111 and 110} whereas w ; represents {111, 101, 01 1},
n,, . represents the observed number of individuals that belong to the capture history ;.
The general likelihood for £> 2 can be constructed in a similar fashion.
Recapture data are summarized into a vector of recapture histories (n,,) and a vector of
u;’s (). The likelihood function for 4 secondary occasions is a product of (k1)
multinomial probability mass functions with capture probabilities 0, the numbers of
individuals sighted for the first time (u), and the number of individuals that belong to

capture histories e, similar to equation (5):
k-l
l ( (aeﬂm |!l B) HMuzt(nm_Eg(*) IU,O), (6)
=l G

where 1, = the number of individuals that belong to @ ;. This likelihood, however, is
proportional to a product of binomial probability mass functions as is shown in the

example with £ = 3:

H”f %
L(n, o 0.0)= H Heﬂu (10 )Zrr (7

a) ' i=2
el

With an assumption that all primary periods are independent of each other, the likelihood
function for the entire experiment with 7 primary periods is a product of /; (7) for all

primary periods:

A
T f T T ].‘_‘[ui(l} ! k0 u(')—n(')
l({nweﬂ("’] }1=l | { ( )}r 1 {0(‘) }::I ) = H ﬁ n(f) l;l:z[a'm; (1 )Z ? (8)

=l
wetifr)
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where superscript and subscript (#) index primary periods. To increase the legibility of
equations, I omit braces and (’s in the subsequent equations. It is assumed that all &’s
for each primary occasion are appropriate subsets of the corresponding Q%) ’s and
vectors contain all primary periods and secondary occasions.

I construct a hierarchical model for the capture probabilities. Tn this approach, I
create a population of capture probabilities from which each capture probability is drawn
randomly (Figure 2). Capture probabilities are independently and identically distributed
(i.i.d.) according to a distribution. For computational convenience, I use a beta

distribution:
Lid
6,; ~ Beta(a, B, Q)

where the subscript # indexes primary periods and the subscript i indexes secondary
occasions. The two parameters for the beta distribution (o and f3) are hyperparameters of
the model that describe the distribution of 4.

The joint posterior distribution of parameters and hyperparameters conditional on

the observed data, p(8,, B|n,,u), is:

r(8,a,8.n,|u)
p(n,|u)
_p(ap8)r(8)a,8)p(n, |u, 9)
p(n,|u)

p(0.a,B|n,,u)=
(10)

where p(«, f) is the unconditional joint probability density function of (a, ﬂ) ,
r(0]a, p’) is the probability density function of ® conditional on « and S, whichisa
product of independent beta distributions:

r(0|a,B)= HHF((C;;([;)) 31(1 6, ) an
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p{(n, |u,0) is the probability mass function of n, conditional on u and 8 (8), and

p{n,|u)= [..[p(8.2,8.n,|u)dbdadp. (12)

Using the product of beta distributions (11) and the likelihood function (8), the

joint conditional posterior distribution of (8, a, 8} is:

p(esasﬁlnmau)z

5 o+ Hu(f)! | A a0
plen T 25 Gy 0-0” | il -0

=1 | i=2 o =2

p(n,|u)
(13)
Rearranging &s:

&
)y

Hu, iy T{a+ '
. ﬂ af+n£)’r—l n ”(f)_nu)
p(a ﬁ)H H (l) ! g[r(g)r(;) 9{,,' o (l_gr,i)ﬁ jzl: ; }

p(ﬂ,a,ﬁlnw,u):

p(n, |u)
(14
Equation (14) can be simplified by multiplying the kernel of the numerator by
F(a+ﬂ+zi,"[um) (o:+n"’) (ﬁ+2' ) “’)
=1. (15)

(a+n“’) (ﬁ+Z:ll u—n "’) (a+ﬁ+Z" ‘”)

The numerator becomes:
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p(0=asﬁanw I“)=p(a ﬁ)x

H“(‘)-A—, I'(ar+ ) (cx+n“)) (ﬂ+Z:ll 5‘) “’)

Dl Far) Totp+2 ) x
ﬁﬁ[Beta(a+n(” ﬁ+zrj 11 f” (?)}
(16)

Consequently, the joint posterior distribution of (9,05, ﬁ) conditional on n, and u is

p(8.a,8|n,,u)=cp(a, B)x

r (a+pf) (a+n‘”) (ﬁ+z:ll u ~n
R

o )
o r L 73 BN ()
Beta(a + s p+ ijluj n )

(7)
where
@ r il Ta+tp) (a+n")) (ﬁ+2_i o n(”)
6[6[ (a,ﬁ)gg I'(a)r(5) (“+/B+Z = m) adp. (18)

To compute the joint posterior distribution of («, 8), §s are integrated over the

entire support:

pla,fBn,,u) =_H. --j.p(B,af,ﬁ]nm,u)dﬁl,,dﬁl,z---dQT,k! (19)

Because &’s in equation (17) appear only in the beta distributions and all @’s are assumed

independent, the product of the integrals is 1:
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a+ ) Tla+a” |0 g+ ’Jll f” n”
B

(20)

=1 i=2

To compute the conditional probability distributions of parameters and
hyperparameters, however, the prior distribution on hyperparameters (i.e., p(&, £)) needs
to be defined. One could construct a probability distribution for the hyperparameters
from available information, outside the dataset (n, and w). In this report, however, I
assume that there is no such available information on the capture probabilities. A diffuse
nen-informative prior distribution, therefore, is defined for the hyperparameters. I follow
the method of Gelman et al. (1995).

The hyperparameters (z, f) are re-parameterized in terms of
logit(a/(a+f)) =In(a/B), which is the logit of the mean, and In(a+f), which is the
natural logarithm of the ‘sample size’ in the beta distribution for 8 (Gelman et al. 1995; p.
130). Iuse a bivariate uniform prior distribution on (a/ {a+p), 1/ \Ja+p ) , which yields
a proper posterior distribution (Gelman et al. 1995; p. 131). By multiplying by the

appropriate Jacobian (Appendix A), this hyperprior distribution on the original scale is:
3
pla, B)ec(a+p)?, (21)

and on the natural logarithm scale (Appendix B):
o 22
plln 5 Jn(a+p) |<cap(a+p)z, (22)
or
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where 4=In(a/p) and B=In(a+ f).

The joint posterior distribution of (4, B) = (ln(a/ B).In{e+ ,6)) is obtained
numerically via the Metropolis algorithm (Metropolis et al. 1953, Hastings 1970). The
Metropolis algorithm is a Markov chain simulation, which creates samples from a
specified target distribution (Gelman et al. 1995). For each data set, I use a minimum of
four independent chains with 15,000 steps within each chain. The starting point for each
chain is a random point in the range -3 <4 <-1 and 1 < B <4. The jumping distribution
for the first chain is Unif(-0.1, 0.1}. To eliminate the initial sojourn steps, I discard the
first 7,500 steps from each chain. The ratio between the two parameters of the jumping
distribution for the next sequence is proportional to the covariance structure of the
remaining 7,500 samples for 4 and B.

The scale reduction factor (\/E ) of Gelman et al. (1995) is used to determine the
convergence of a posterior distribution from a total of 30,000 pairs of 4 and B (7,500
times four chains). The scale reduction factor is the square root of the ratio between the

marginal posterior variance and within-sequence variance:

var (wly)

Vi==—2 (24)
where

—~+ n—1 1
var (le)_TW+;B’ (25)
713 LS g ) 6)

J A Lr-145 ! S

B=—"3(7,-7.) @)




L, =_ZWi,j , and (28)
_ o1&
V=52V 29)

The numerator in the square root of (24) is the estimated marginal posterior
variance, which overestimates the marginal posterior variance under the assumption that
the starting distribution is appropriately overdispersed but unbiased as n — o. For any
finite n, however, the within-sequence variance W should be an underestimate of
var(y | y) because the individual sequences have not had time to range over all of the
target distribution. Consequently, \/}tT declines to 1 as n — oo (Gelman et al. 1995; p.
331).

If the maximum scale reduction factor is less than or equal to 1.2, the posterior
samples are retained (Gelman et al. 1995). If the convergence statistic is greater than 1.2,
another sequence of four chains is computed. A maximum of four independent
sequences (i.e., 16 independent chains) are computed. To avoid the serial correlation
among posterior samples, a total of 7,500 random samples with replacement are drawn
from these retained posterior samples and used in the inference for the abundance. These
7,500 posterior samples are transformed back into the original scale (¢, £). If the
posterior distribution does not converge after four independent sequences, the uniform
prior distribution is used for the hyperdistribution, i.e., (&, £) = (1,1).

To obtain the joint probability distribution of hyperparameters for the capture
probabilities during the /™ primary period, all data except for the /" primary period are
used. The prior distribution of hyperparameters for the " primary period is denoted by

e, f9, emphasizing the deletion of data for the " primary period. These
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hyperparameters, then, are used in the following analysis for modeling the abundance for
the ™ primary period.

To make an inference on the abundance, the relationship among the abundance
within the /™ primary period, capture probabilities, and the number of animals caught
during each secondary occasion needs to be modeled. I consider two models: beta-
multinomial and beta-binomial. Although both models are based on the same set of
assumptions, the beta-binomial model does not use the information from recaptures. The
beta-multinomial model does use the information from the number of individuals that are

recaptured.

Beta-multinomial model

The observed numbers of individuals that belong to unique capture histories

(1}

wel)

during the ™ primary period (n_},) are modeled with a multinomial likelihood function:
n{, ~mult(N®,0), where N is the total number of catchable individuals in the
population during the /" primary period and 0 is a vector of capture probabilities with
length k,, where £, is the number of secondary occasions within the £ primary period.

The full likelihood function is:

p(n(t) N© 9(1)) - N HQHM (30)
well E] H n{(;) ,, e @
wel)

where 6, is the appropriate product of capture probabilities for the capture history .
For example, for £, =3, Q = {111, 110, 101, 100, 011, 010, 001, 000} and nge = N-
(mutrnetaortree oo etagm) = N — nm, indicating the total number of individuals

caught during the primary period. The likelihood function for &, = 3 is:
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N(!) !

P 110 0y 160 Vg1 10 gy (N — O
(00,0,)"" (06,(1-6,))" (6,(1-6,)8,)™ =
(6,(1-6,)(1-6,))" ((1-6))6,6,)" (31)
((1_‘91)‘92 (1_93))"0”' ((1_9|)(1_.92)93)"‘“" X
(1-6)(-6,)(-6))" ™

weld

( " | N©® 0“’)

Rearranging 0’s results in the following form:

()
( mn|Nm B‘”) N ) %
me (1 10)]
1y g0 Ty Wiy gy Vg0 g, (V' =)
I n, 1,
(6)(8:) (6) x (32)

(I_ _9] )N(“)—;rm % (l _92 )N(')-"(z) (1 _93 )N(J)_nﬂ]

where rj) is the sum of the number of individuals that belong to capture histories with 1
in the j! d1g1t For example, ngy = nyi1+anet#etagg. In general, the likelihood
function for a primary period with k secondary occasions can be expressed as
) 0y g N1 : %% “niy
el N0.0%) e () (0) 6y

where ¢ =1/m,, 1n Vg 100 Uiy 1y, Mg, !, Which does not depend on N and 0

Under the assumption of independent capture probabilities among capture
occasions, the joint distribution of capture probabilities during the " primary period is

the product of beta distributions:

3 F(a“)+ﬂ“))
)

p(e(:) Ia(:),ﬂ(r)) (9(,))61; 1(1 9(,)))3{ -1 (34)
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The joint posterior probability distribution of the abundance, capture probabilities, and
the hyperparameters conditional on the recapture data during the /* primary period is

proportional to the following:
p(N“),B“),u“),B“) |n(”) oc p(N“’)p(a‘”,[i“’)p(e‘” lu‘”,B"’)p(n(” | N(”,O‘”) (35)

Assuming that there is no prior information on the abundance, 1 consider the
uniform distribution for the prior distribution of the abundance. If there is information on
abundance, however, it should be used to construct a probability distribution for the
abundance. The joint prior distribution of the hyperparameters is computed numerically
during the first stage, where recapture data for all primary periods except for the /®
primary period are used for computing the joint distribution, which I denote
Pen gon (o:, B ni"),u(_')) . 1 use this joint distribution for the hyperparameters for all

capture probabilities within the primary period:

P(Of_,n _,-) =Poco g (aj,ﬂj | nf;’),u("’) (36)

forall j=1, ..., k. The joint prior distribution for the hyperparameters of capture

probabilities is the product of (36):

p(u"’,ﬂ(”)=p(al‘”,ﬁ1‘”)p(a,_§”, 2('))--'p(a,£’), f))

kol

' (37)

— () (2) ~t —
=1 1Py peo (aj DlBj Illl(,u ):“( ))

J

Consequently, using the equation (34):

p(e®,p”)p(0]a®,p) =Hp,3 (@, n5?,u )ﬁp(eﬁ" &, B") (39

Jj=

Substituting(33), (34), and (38) into (35):
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p(N“’ 9 g B“)ln“))ocp(N(”)Hp[ 2 o )( ) ﬁmln !) (f))

o D) -
HF(((:))( )(9”) (1—9}))/} Jx

(39}
Rearranging terms results in the following:

NO)T(ND +1) &
cpr((N(:)) ((:) +;f) )an o oo (@5 B m ")
-

% r( (’)+,8"’)
oy

p(N“),B“),a“’,ﬂ(’) | ng)) o

n 4ot N _plid o gd )
(9(:)) (IR (1_9(_:)) NTF;

(40)

. The posterior distribution of the abundance (M is computed by integrating over g, j,

and 8. Using the following relationship,

m+al+ —n;+ G4 I'in, +a(") T N(') —H. +ﬂ(_’)
£9} o '(1 g, )N i+ B 'd@),- = ( I—-(N(f)) +(a’(-l)+ﬁ(;:)) S )
g 2

(41)

capture probabilities () are integrated out from (40). To improve the legibility of the

equation, I omit the superscripts on « and p:
cp(N)r(N© +1) &

F(N(;)_n(;)_l_l) lj:l[pa(-,,’ﬁ( )( (1 ﬁ(r) lnwf),u( ,))

wT(n, +a, )F(N(”‘”fJ’ﬁf)r(“ﬁﬁf)
EI[ (N(r)+aj+ﬂj)l"(aj)l"(ﬁj)

p(N‘”,a,ﬂlnw) o
(42)
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Integrating out & and P resulis in the posterior distribution of the abundance:

p(Nn,)ec [ [ p(N9, 0 a;,p,In, )de - da, df,---dp, (43)

Beta-binomial model

The number of captured animals during the j® secondary occasion is modeled
with an independent beta-binomial likelihood function: n! b Beta—Bin(N“, o, B
forj=1,2,..., k. In other words, the number of animals caught during the ;™ occasion is
a binomial random variable with parameters M” and &\ n ~ Bz'n( N o¢ )) , whereas
the capture probability during the j™ occasion is a beta random variable with parameters

af’ and B 7 Beta(a'(” ﬂ‘”) The combination of these distributions result in the

beta-binomial distribution; n{ ~ Beta— Bin{N", al’, ).

The likelihood function for the # primary period with k; secondary occasions,
therefore, is a product of £, independent beta-binomial probability mass functions:

0 0, g0y T L V(e + AP DN+ B0 i) (20 + )
Pl 1002, 0) = gr(n"’ﬂ) (Nj.”—n_g.”+1)r(aj.’)+ﬂ}'>+Nf”)r(aj.'>)r(ﬁ}”)’

(44)

where n” =( o, n,‘{”) , 0 = (a‘” a(”) and g =( NI m) The inference on
the abundance during the /* primary period, N, is made by using the beta-binomial
model (44), prior distributions for (a(’ LY ’) and M, and the observed data

(n" = (n,“) ,- “’)) via a Bayesian procedure,

)

The joint posterior probability distribution of %, & and B can be expressed

by:

p(N(t) u(r) B(:)[n(r))ocp(N(r))ﬁp( Q) ﬂ(r)) ( 5’0 IN(!),aJ(_r), }U)_ (45)

Jj=l
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The posterior distribution of the abundance is computed by integrating out a’s and £’s

over the entire parameter space:

N"’ln‘” f fp "’,a"’ ﬁ(”]n“’)da“’ dcx,f”dﬂ,‘” dﬂ‘” (46)

Computation of the posterior distribution

To compute the posterior marginal distribution of the abundance from either
model ((43) or (46)), I use a uniform prior distribution for N under the assumption that
no information is available, i.e., p(N“’) ~ UNIF(N™ , N nax) » Where N and N are

min *

positive integers, where N\ < N, and denote possible minimum and maximum

population sizes. For the prior distribution of the hyperparameters, the posterior
distribution from the previous analysis, i.e., p(a("’ ﬂ("')) isused. The posterior
probability distribution of M conditional on data can be computed by numerically
integrating the hyperparameters (a(”,ﬁ"’) from the joint posterior distribution.
Because no algebraic solution is available for (43) or (46), I compute the posterior
distribution directly using the following steps:
(1) Compute ) forj=1,2,..., k, i.e., the number of individuals caught per
secondary occasion within the /" primary period.
(2)  For the primary period ¢, find the joint prior distribution for ( ) ﬁ‘”) by
using equation (20) from the previous section, i.c., p(a(") , B [nm,u) .
(3)  For cach possible N between N and N
a. For each pair of (g, §) from the posterior distribution
P ( a(_'), Ji) =1 in, ,u) compute the natural logarithm of unnormalized
posterior density by using the natural logarithm of the likelihood
function (44) for each secondary occasion and sum over all secondary

occasions (f = 1,2,...,k).
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b. Transform the unnormalized log-posterior to anti-log scale.

c. Numerically integrate over all (a, #) pairs for computing cp(N, |n,),
where ¢ is a constant.

d. Repeat the previous steps (a) through (c) for alf possible M” values,

(4)  Normalize the posterior by setting the total probability p( N n‘”) under

the curve to be one.

If information on abundance is available and a probability distribution can be
assigned to the abundance, it can be used in step (3). Tuse a common prior distribution
for capture probabilities for all secondary occasions within the primary period of interest
because there is no information, outside the data for this period, to distinguish them.

To summarize the inference on the abundance for the o primary period, the
mode, median, and mean of the posterior distribution are reported along with the
quantiles of interest. To conduct the analyses, computer programs were written in

Matlab® (MathWorks).

Simulations

To evaluate the validity of the proposed method and effects of changes in the
temporal sampling design and the underlying parameters on posterior distributions, I
conducted a series of Monte Carlo simulations. A total of seven combinations of
parameters were tested (Table 1). The true hyperparameters that created simulated data
are denoted (ay, ), whereas the hyperparameters in the models are denoted with either

no subscripts or subscripts other than 0.
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Table 1. Combinations of temporal sampling design and true hyperparameters for Monte
Carlo simulations. 7' = the number of primary periods, & = the number of secondary
occasions within each primary period, (a0, fo) = set of the true hyperparameters for
capture probabilities.

Case T k {ag, Bp)
A 3 4 (20, 2)
B 3 4 (2,20)
C 3 4 (3, 3)
D 6 4 (2,20)
E 12 4 (2, 20)
F 3 6 (2, 20)
G 3 8 (2,20)

Simulation case A was used for validating the inference procedures. With
consistently high capture probabilities, posterior distributions should center on the true
abundance and their widths should be narrow.

To determine the effectiveness of using the two-step approach, I analyzed datasets
for simulation cases A, B, and C with the two-step approach and when the
hyperparameters in the analyses were set at constants ((a, /)= (1, 1)). The latter
approach is equal to assigning a non-informative prior distribution on capture
probabilities. If the two-step approach is not useful, posterior distributions from both
approaches should be the same.

To determine the effects of truc capture probabilities on posterior distributions of
abundance, datasets for simulation cases A, B, and C were analyzed using the two models
with the two-step approach. Sampling distributions of true capture probabilities in these
simulation cases corresponded to consistently high (case A), consistently low (case B),
and variable (case C) capture probabilities. Corresponding beta distributions are shown

in Figure 3. The numbers of primary periods and secondary occasions were held constant

for these simulation cases.
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xku, B)
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Figure 3. Probability density functions for three beta distributions; (mode from left to
right) Beta(2, 20), Beta(3, 3), and Beta(20, 2).

To determine effects of temporal sampling designs on posterior distributions of
abundance, the numbers of primary periods and secondary occasions were changed
systematically, while keeping the true hyperparameters constant. Effects of the number
of primary periods on posterior distributions were determined by comparing posterior
distributions from three simulation cases. For these simulations, the number of primary
periods was increased from three (case B) to six (case D) and twelve (case E), while the
number of secondary sampling occasions per primary period and the true
hyperparameters were held constant (Table 1).

Effects of the number of secondary sampling occasions on posterior distributions

were determined by comparing posterior distributions from three simulation cases. For



27

these simulations, the number of secondary occasions for each primary period was
increased from four (case B) to six (case F) and eight (case G), while the number of
primary periods and the true hyperparameters were held constant (Table 1).

To create a simulated dataset, the number of individuals in a population for a
primary period was drawn from a uniform distribution with the minimum 50 and
maximum 500; MY ~UNIF(50, 500). The capture probability for a sampling occasion
was drawn from a beta distribution with the appropriate hyperparameters for the
simulation case (9]‘." ~ Beta(a,, f3,) ; Table 1). For each sampling occasion, each
individual in the population was caught with the true capture probability (6’}”) for the
sampling occasion (i.e., a capture of an individual during a sampling occasion is a
Bernoulli event with probability ). This process resulted in sequences of zeros and
ones for all individuals in the population. These sequences, then, were summarized into
the sufficient statistics for the models; the number of individuals caught for each
sampling occasion, the number of recaptured individuals for each sampling occasion, and
the number of new individuals captured for each sampling occasion. For each simulation
case, 500 independent datasets were simulated.

These simulated datasets were analyzed using the proposed method. I used
UNIF(10, 1500) for the prior distribution of the abundance. By defining the prior
distribution, an implicit assumption of the maximum possible population size was made
for each analysis. The implication of the violation of the assumption is discussed in the
discussion section.

Posterior distributions were summarized in the following statistics: widths of 95%
posterior intervals, the proportion of 95% posterior intervals that included the true

,mean N

abundance, point estimators (mode N

made

nean » A median N, of the posterior

distribution), differences between point estimates and true abundances ( A=N-N ) , and
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the ratio between the width of the 95% posterior intervals (97.5 percentile — 2.5
percentile) and the mode. The ratio is analogous to the coefficient of variation, in which
variability is expressed in the same scale regardless of the size of a point estimate. |
hereafter call this ratio the relative precision,

These summary statistics provided several criteria for finding a better model
(beta-binomial vs. beta-multinomial) and approach (i.e., two-step vs. fixed
hyperparameters). A model or approach is considered better than the other when widths
of posterior intervals are narrow, point estimates are close to the true abundances, the
relative precision is consistently small and unaffected by the true abundance, and the
posterior intervals include the true abundance with claimed probability.

To quantify the variability of point estimators, I report the siope, intercept, and
coefficient of determination (R?) of a simple lincar regression between the true
abundance and a point estimator. Ifthe point estimator provides accurate estimates for a
case of simulated datasets, the regression line should have a slope of one, an intercept of
zero, and a coefficient of determination (R®)=1.0. The slope and intercept of a
regression line indicate the discrepancy between point estimates and the true abundance,
An imprecise point estimator would result in a smaller value of the coefficient of
determination.

To compare the performance of the proposed method to the maximum likelihood,
I analyzed the same simulated datasets using software MARK (White and Burnham
1999). In MARK, “Closed Captures’ (CC) and ‘Huggins Closed Captures’ (HCC)
models were used for the analysis. T used these models to compute the abundance
estimate for the last (") primary period of each dataset. The difference between these
models is whether the abundance (N} is treated as an explicit parameter (CC) or as a

derived parameter (HCC), Consequently, the number of parameters was greater for the
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CC model than for the HCC model. For example, for a period with four capture
occasions, the CC model contains five parameters (four capture/recapture probabilities
and abundance), whereas the HCC model contains four parameters (four
capture/recapture probabilities), where I set capture probabilities and recapture
probabilities equal. Outputs of MARK were summarized in the point estimates (MLE) of
the abundance and the 95% confidence intervals. To compute a comparable statistic to
the relative precision defined previously, I computed the ratio between the width of 95%
confidence interval and maximum likelihood estimate for each dataset. It is called the

relative precision of MLE in this chapter.

Results

Effectiveness of the two-step approach

To determine the effectiveness of the two-step approach, three simulation sets (A,
B, and C) were analyzed using two approaches: the two-step and when hyperparameters
were held constant (o= 1, #=1). For this analysis, I only consider the beta-multinomial
model because the beta-binomial likelihood function is independent of data when ¢ = |
and = 1. For simulation case A, point estimates from the two approaches indicated no
apparent differences (Figure 4).

When the hyperparameters were fixed, point estimators did not overestimate the
true abundance (-2 < Ao <0, -2 < Amedian 0, -2 < Apean < 0). For all estimators, point
estimates were less than the true abundance for 36% (180/500) of the simulations. For
the remainder, point estimates equaled the true abundance. Widths of 95% posterior

intervals were one or two. Only 65% (325/500) of the posterior intervals included true
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abundance. For all estimators, the estimated intercepts of the regression lines were 0.48,

slopes were 1.00, and coefficients of determinations were 1.0 (Table 2).

Maode Median Mean
600 600 600
500 500 500
[1]
& 400 400 400
T 300 300 300
5 200 200 200
o
100 100 100
0 -~ 9 0

0 200 400 600 0 200 400 800 0 260 400 600

600 600 600
500 500 500
‘§ 400 400 400
% 300 300 300
£ 200 200 200
* 100 100 100
% 200 400 sd0 % 200 a0 ew % 200 200 600
True N

Figure 4. Relationships between point estimates from the beta-multinomial mode] and the
true abundance for simulation case A. The upper three figures are results for the constant
hyperparameters (1, 1), whereas for the lower three figures are for the two-step approach.

For the two-step approach, point estimators did not overestimate the true
abundance (-3 < Ajpee. <0, -3 < Amedian 0, =3 < Apean < 0). Point estimates were less
than the true abundance for approximately 50% (253/500) of the simulations. For the
remainder, point estimates equaled the true abundance. Widths of 95% posterior
intervals ranged from one to three. Only 54% (270/500) of the posterior intervals
included true abundance. For all ¢stimators, the estimated intercept of the regression

lines were (.92, slopes were 0.99, and coefficients of determinations were 1.0 {Table 2).
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Table 2. Estimated parameters for the linear regression analysis between the true
abundance and point estimates for simulation case A for the beta-multinomial model.

2

Approach Point estimates Intercept Slope r
Fixed parameters Mode 0.48 1.00 1.000
Median 0.48 1.00 1.000
Mean 0.48 1.00 1.000
Two-step Mode 0.92 0.99 1.000
Median 0.92 0.99 1.000
Mean 0.92 0.99 1.000

Relative precisions were similar for the two approaches. The narrow posterior
intervals caused the relative precision to be an inverse function of the true abundance
(YN, 2/N,or 3/N ; Figure 5). When the hyperparameters were fixed, the relative
precision ranged from 0.002 to 0.03 with the median of 0.004, whereas for the two-step
approach, it ranged from 0.002 to 0.024 with a median of 0.004 (Figure 5).

For simulation case B, point estimators were less accurate than for simulation
case A (Figure 6). When the hyperparameters were fixed, point estimators were variable
around the true abundance (-280 < Apoge < 258, 253 < Amedian < 387, 235 < Apean < 414).
The majority of modes (453/500), medians (380/500), and means (342/500) were less
than the true abundances. Consequently, the intercepts of least squares regression lines

were negative (Table 3). Coefficient of determinations were approximately 0.80.
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Figure 5. The relationships between the true abundance and relative precision for
simulation case A when the beta-multinomial model was used. The upper figure is the
result for the constant hyperparameters (1, 1), whereas for the lower figure is for the two-
step approach.

When the same datasets were analyzed using the two-step approach, the
variability in point estimators was similar to when the hyperparameters were fixed (-264
= Amode < 346, -236 < Amedian < 479, =211 < Apean < 500; Figure 6). Approximately 62%,
(310/500) of modes, 48% (244/500) of medians, and 40% (202/500) of means were less
than the true abundances. The intercept of the regression line for the mode was negative,
whereas they were positive for median and mean. Coefficient of determinations ranged

between 0.70 and 0.78 (Table 3).
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Figure 6. Relationships between point estimates and true abundance for simulation case
B. The multinomial model was used for computing the posterior distributions. The top
three panels are results for the fixed hyperparameters, whereas the bottom three panels
are for the two-step approach. Solid lines indicate 45-degree lines. An arrow indicates
one extreme value.

Table 3. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case B when the beta-multinomial
model was used.

Approach Point estimates Intercept Slope r
Fixed Mode -35.1 0.93 0.803
parameters Median -28.42 0.98 0.791
Mean -22.42 1.01 0.779

‘Two-step Mode -9.03 0.98 0.781
Median 4.36 1.02 0.741

Mean 17.05 1.03 0.707
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Posterior intervals for simulation case B were wider than for simulation case A.
When the hyperparameters were fixed, widths of 95% posterior intervals ranged from 11
to 1045, with the median of 215. True abundances were included in approximately 88%
(438/500) of the posterior intervals. For the two-step approach, they ranged from 37 to
1208, with a median of 248, and approximately 94% (472/500) of the posterior intervals
included the true abundances.

The relative precision for simulation case B was uncorrelated with the true
abundance (Figure 7). When the hyperparameters were fixed, the relative precision
ranged from 0.29 to 23.7, with the median of 1 2. Several extreme values were found for
small population sizes. The relative precisions for the two-step approach ranged from
0.30 to 14.44 with the median of 1.1.

For simulation case B, the additiona) information from the past periods increased
the proportion of posterior intervals that included the true abundance and the range of
relative precision. Widths of posterior distributions, however, were comparable for both
approaches.

For simulation case C, both approaches performed approximately the same
(Figure 8). For the two-step approach, however, hyperparameters did not converge for 14
datasets. When the hyperparameters were fixed, the variability of point estimators was
small (-33 < Apoq. <18, -31 < Amedian < 19, =30 < Ajean < 20; Figure 8). The two-step
approach did not improve the variability of point estimators (-35 < Amode <17,-33 <
Arnedian = 18, -32 < Ajpean < 18). Estimated regression parameters were comparable
between the two approaches, where intercepts were approximately —1, slopes were 1, and

coefficient of determinations were approximately 1.0 (Table 3).
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Figure 8. Relationships between point estimates and true abundance for simulation case
C. The multinomial model was used for computing the posterior distributions. The top
three panels are results for the fixed hyperparameters, whereas the bottom three panels
are for the two-step approach.

Posterior intervals for simulation case C for both approaches were comparable.
When the hyperparameters were fixed, widths of 95% posterior intervals ranged from 2
to 85, with the median of 16. Approximately 97% (483/500) of the posterior intervals
included true abundances. For the two-step approach, they ranged from 3 to 76, with the
median of 16. Approximately 96% (467/486) of the posterior intervals included true

abundances.
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Table 4. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case C, using the beta-multinomial
model. For intercept, slope, and 2, values in parentheses are for the analysis when the
hyperparameters were fixed.

Z

Model Point estimates Intercept Slope r
Beta- Mode (-1.46)-1.69 (1.00) 1.00  (0.998) 0.998
multinomial Median (-0.63) -1.10  (1.00) 1.00  (0.998) 0.998

Mean (-0.22) -0.65 (1.00) 1.00  (0.998) 0.998

The relative precisions for both approaches also were comparable (Figure 9.
When the hyperparameters were fixed, relative precisions ranged from 0,008 to 0,389
with a median of 0.064. For the two-step approach, they ranged from 0.01 to 0.353 with
the median of 0.068.

For simulation case C, results were similar when numerical convergence was
reached in the two-step approach. When the convergence was not reached, the fixed-
parameter approach performed better than the two-step approach.

The proposed two-step approach provided additional information for making the
inference on abundance (Table 5). For simulation case B, approximately 95% posterior
distributions included the true abundance for the two-step approach, whereas 88%
included the true abundance for the fixed-parameter approach. For simulation cases A
and C, no apparent differences were found between the two approaches. When the
hyperparameters did not converge in simulation case C, however, the fixed-parameter

approach performed better than the two-step approach.
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Figure 9. The relationships between the truc abundance and relative precision for
simulation case C when the beta-multinomial model was used. The upper figure is the
result for the constant hyperparameters (1, 1), whereas for the lower figure is for the two-
step approach.

Table 5. A summary of the comparison between the two-step and fixed-hyperparameter
approaches. Values are minimum and maximum, whereas medians are in parentheses.

Simulation case Fixed-hyperparameters Two-step
A
Widths of 95% PI 1-2 1-3
% true N captured 65% 54%
Relative precision 0.002 - 0.03 (0.004) 0.002 — 0.024 (0.004)
B
Widths of 95% PI 1T -1045 (215) 37 - 1208 (248)
% true N captured 88% 94%
Relative precision 0.29--23.7(1.2) 0.30 - 14.44 (1.10)
C
Widths of 95% PI 2-85(16) 3-76(16)
% true N captured 97% 96%

Relative precision 0.008 — 0.389 (0.064) 0.01 — 0.353 (0.068)
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Effects of capture probabilities on the
posterior distribution of abundance

To assess the effects of true capture probabilities on posterior distributions of
abundance, results from the two-step approach were compared among simulation cases
A, B, and C. Posterior distributions of abundance from the proposed method also were
compared to results from MARK.

With consistently high capture probabilities (case A), estimators from both
models were precise (Figure 10). For the beta-binomial model, the variability of point
estimators was small (-50 < Amode < 33, 40 < Apegion <35, -37 < Amean < 38).
Approximately 20% (102/500) of modes, 46% (228/500) of medians, and 59% (294/500)
of means were greater than the true abundance.

Slopes of the regression lines between point estimators and true abundance were
approximately one and intercepts were near zero (Table 6). Widths of posterior intervals
ranged from 4 to 130, with a median of 37. Approximately 98% (491/500) of posterior

intervals included the true abundance.

Table 6. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case A, using the two-step approach.

Model Point estimates Intercept Slope r’
Beta-binomial Mode 0.22 (.98 0.993
Median 0.42 1.00 0.995

Mean 0.75 1.00 0.995

Multinomial Mode 0.92 0.99 0.999
Median 0.92 0.99 0.999

Mean 0.92 0.99 0.999

Closed capture MLE -0.53 1.00 1.000

Huggins closed MLE -0.53 1.00 1.000
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Figure 10. Relationships between three point estimates and the true population size for
simulation case A. Solid lines indicate the 45-degree lines. The upper three panels arc
for the beta-binomial model whereas the lower three panels are for the multinomial
model.

The relative precision was uncorrelated with the true abundance and ranged from
0.06 to 0.3 with the median of 0.14 (Figure 11). Results for the beta-multinomial model

were discussed in the previous section.
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Figure 11. The relationship between the relative precision and the true population size for
simulation case A. The upper panel is for the beta-binomial model whereas the lower

panel is for the multinomial model.

When datasets for simulation case A were analyzed using MARK, MLE’s

underestimated the true abundance. For both models, all estimates were less than true

abundances (Figure 12). Consequently, the intercepts of regression lines were negative

(Table 6). For the closed capture model, widths of 95% confidence intervals ranged from

0 to 0.004, with the median of 0.00. Nome of the confidence intervals, however, included

true abundances. Widths of confidence intervals were positively correlated with the true

abundance. The relative precision of MLE was 0.00 for all results because of the

extremely narrow confidence intervals, For the Huggins closed model, widths of 95%
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confidence intervals ranged from 0 to 3.1, with a median of 0.002 (Figure 12). Only 12%
(60/500) of confidence intervals included true abundances. The relative precision of

MLE ranged from 0.00 to 0.027 with the median of 0.002.
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Figure 12. Relationships between the true abundance and maximum likelihood estimates
(upper figures) and widths of 95% confidence intervals (lower figures) from MARK for
simulation case A. The solid line indicates the 45-degree line. Left panels are for the
closed capture model, whereas right panels are for the Huggins closed model.

When datasets for simulation case B were analyzed using the proposed method,
point estimators were less precise than for simulation case A (Figure 13). For the beta-

binomial model, point estimators were imprecise and inaccurate (-422 < Apoae < 1029, -



43

315 < Awedin <751, <209 < Apean < 707). Approximately 28% (138/500) of modes, 60%

(295/500) of medians, and 74% (370/500) of means were greater than the true

abundances. Consequently, the estimated intercepts of regression lines between true

abundance and medians and means were positive.
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Figure 13. Relationships between three point estimates and the true population size for
simulation case B. Solid lines indicate the 45-degree lines. Upper three panels represent
the results for the beta-binomial model, whereas lower three panels represent the results
for the multinomial model
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Table 7. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case B,

Model Point estimates Intercept Slope r
Beta-binomial Mode 3.12 0.82 0.335
Median 26.27 1.07 0.454

Mean 90.73 1.06 0.457

Multinomial Mode -0.03 0.98 0.781
Median 4.36 [.02 0.741

Mean 17.05 1.03 0.707

Closed Captures MLE -14.63 1.17 0.404
Huggins Closed MLE 3.37 1.10 0.518

The estimated slopes of the regression lines were approximately 1. Coefficient of
determinations were approximately 0.4 (Table 7). Widths of the posterior intervals
ranged from 54 to 1374, with the median of 1010. Approximately 99% (493/500) of the
posterior intervals included the true abundance. The relative precision ranged from 0.6 to
90.1 with a median of 4.3 (Figure 14). The combination of low capture probabilities and
few capture occasions resulted in the small number of recaptures within each primary
period. Consequently, posterior distributions were imprecise. Results for the beta-
multinomial model were discussed in the previous section.

When datasets for simulation case B were analyzed using MARK, unreasonable
estimates were obtained for 11 datasets in the closed capture model and 12 datasets in the
Huggins closed capture model. Maximum likelihood estimates for these datasets were
greater than 10,000. These estimates, therefore, were deleted from the following
analyses. For both models, maximum likelihood estimates were similar to those from the

two-step multinomial model (Figure 15).
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Figure 14. The relationship between relative precision and true population size for
simulation case B. Upper panel is for the beta-binomial model, whereas the lower panel
is for the multinomial model.

For the closed capture model, large estimates were found in several datascts (-
191.1 < A < 2831.1; Figure 15). Approximately 48% (235/489) of estimates were
greater than true abundances. The estimated intercept of the regression line was —14.6,
the slope was approximately I, and the coefficient of determination was approximately
0.4 (Table 7). Widths of 95% confidence intervals ranged from approximately 41 to
16146, with a median of 290 (Figure 15). True abundances were included in
approximately 94% (463/489) of the confidence intervals. The relative precision of MLE
ranged from 0.29 to 4.88 with the median of 1.16.
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Figure 15. Relationships between true abundance and maximum likelihood estimates and
widths of 95% confidence intervals from MARK for simulation case B. The solid line
indicates the 45-degree line. Left panels are for closed capture model, whereas right
panels are for Huggins closed capture model.

For the Huggins closed model, large estimates were found in several datasets (-
186.4 < Ay < 1315.3; Figure 15). Approximately 53% (258/488) of MLE’s were greater
than the true abundance. The estimated intercept of the regression line was 3.4, the slope
was 1.1, and the coefficient of determination was approximately 0.52 (Table 7). Widths
of 95% confidence intervals ranged from approximately 43 to 8781, with a median of 296

(Figure 15). True abundances were included in approximately 95% (465/488) of



47

confidence intervals. The relative precision of the MLE’s ranged from 0.29 to 4.85 with
a median of 1.16.

For simulation case C, posterior distributions of the hyperpatrameters did not
converge in 14 datasets. For these 14 datasets, no posterior distributions of abundances
were computed. For the beta-binomial model, the point estimators were variable (-452 <
Avode < 254, -197 < Apedian < 323, -462 < Apean < 371; Figure 16). The variability was
positively correlated with the true abundance (Figure 16). Approximately 32% (156/436)
of modes, 57% (278/486) of medians, and 71% (345/486) of means were greater than the
true abundances.

Although the differences between the point estimates and true abundances were
large, the slopes of regression lines were approximately 1.0 (Table 8). The coefficient of
determinations ranged between 0.65 and 0.78 (Table 8). Widths of 95% posterior
intervals ranged from 38 to 1066, with a median of 339. Approximately 97% (470/486)
of the posterior intervals included the true abundance. Relative precision for the beta-
binomial model was uncorrelated with the true abundance and ranged from 0.46 to 6.22
with the median of 1.42 (Figure 17). Results for the beta-multinomial model were

discussed in the previous section.

Table 8. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case C, using the hierarchical approach.

Model Point estimates Intercept Slope r*
Beta-binomial Mode -4.36 0.91 0.654
Median -2.42 1.07 0.779

Mean 0.68 1.12 0.693

Multinomial Mode 2.75 0.98 0.964
Median 3.36 0.98 0.964

Mean 3.81 0.98 0.964

Closed captures MLE -1.33 1.00 0.998

Huggins closed MLE -0.62 1.00 0.998
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Figure 16. Relationships between true population size and three point estimates for
simulation case C. The upper three panels are for the beta-binomial model, whereas the
lower three panels are for the multinomial model. The solid lines indicate the 45-degree
lines.

The numerical convergence of hyperparameters was critical for obtaining precise
estimates for simulation case C. Because of the assumed broad distribution of the true
hyperdistribution of capture probabilities, combined with infrequent sampling, not
enough information was available for computing joint posterior distributions for the
hyperparameters in some data sets. The diffuse prior distribution of the hyperparameters

dominated the posterior distribution of the hyperparameters.
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Figure 17. Relative precision as a function of true population size for simulation case C.
Upper panel is for the beta-binomial model, whereas the lower panel is for the
multinomial model.

When the same datasets for simulation case C were analyzed using MARK,
maximum likelihood estimators were accurate for both models (Figure 18). For the
closed capture model, variability of the estimator was similar to that of the multinomial
model (-31.2 < Apye < 18.68). Approximately 33% (165/500) of estimates were greater
than true population sizes. The estimated intercept of the regression was —1.0, the slope
was one, and the coefficient of determination was greater than 0.99 (Table 8). Widths of

95% confidence ranged from 0.0 to 86.7, with a median of 15.5, and 476 (95%) included
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the true abundance. The relative precision of MLE ranged from 0.00 to 0.39 with the

median of 0.07.
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Figure 18. Relationships between true abundance and MLE and the widths of 95%
confidence intervals for simulation set C. Left panels are for the closed capture model,
whereas the right panels are for the Huggins closed model. The solid line indicates the
45-degree line.

For the Huggins closed model, the variability in the estimator was similar to that
of the closed model and the multinomial model (-30.2 <A < 19.6). Approximately
39% (193/500) of estimates were greater than true abundances. The estimated intercept
was —0.62, the slope was one, and the coefficient of determination was greater than 0.99
(Table 8). Widths of 95% confidence intervals ranged from 3.3 to 87.4 with the median

of 15.7. Approximately 96% (478/500) of confidence intervals included the true
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abundance. The relative precision of MLE ranged from 0.01 to 0.39 with a median of
0.07.

Results for the three simulation cases (A, B, and C) indicated that greater capture
probabilities resulted in more precise estimates of abundance. The comparison among
these simulation cases indicated that the average capture probability affected the
precision of posterior distributions more than the variance of capture probabilities for
both models. When capture probabilities were variable, however, the joint posterior
distributions of hyperparameters did not converge in some datasets.

In all simulation cases, results from the proposed method were comparable to
those from MARK, except for simulation case A (Table 9). For simulation case A,
posterior intervals of the Bayes hierarchical beta-multinomial model and confidence
intervals of the two maximum likelihood methods were narrow (0 to 3). Consequently,
true abundances were included only in a fraction of the confidence intervals (12% of
HCC and 0 for CC) and the half (54%) of the posterior intervals from the Bayes
hierarchical beta-multinomial model. For the Bayes hierarchical beta-binomial model,
however, posterior intervals were wider (4 — 130) and true abundances were included in
98% of the posterior intervals. For simulation case B, the hierarchical beta-multinomial
model resulted in the narrowest intervals around point estimates and the smallest relative
precision. For simulation case C, widths of posterior and confidence intervals and the
proportion of true abundances that were included in the intervals were similar for the
maximum likelihood methods and the Bayes hierarchical beta-multinomial model. The

Bayes approach, however, provided the most precise estimates (Table 9).
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Table 9. A summary of the comparison among the hierarchical beta-binomial, the
hierarchical beta-multinomial, closed captures, and Huggins closed captures models.
Minimum, maximum, and median (in parentheses) are reported.

Simulation case Beta-Binomial Beta- Closed capture  Huggins closed
Multinomial capture
A
Widths 4-130 1-3 0.0 - 0.004 0.0-3.1
37N (1) (0.0) (0.51)
% true N 98% 54%, 0% 12%
Precision 0.06-0.3 0.002 — 0.024 0.00 -0.00 0.00 - 0.27
(0.14) (0.004) {0.00) (0.002)
B
Widths 54 -1,374 37-1,208 41 - 16,146 43 — 8,781
(1,010) (248) (290) (296)
% true N 99% 94% 94% 95%
Precision 0.6 -90.1 0.30-14.44 0.29-4.88 0.29-4.85
(4.3) (1.10) (1.16) (1.16)
C
Widths 38 — 1,066 3-76 0.0 —86.7 33-874
(339) (16) (15.5) (15.7)
% true N 97% 96% 05% 96%
Precision 0.46 -6.22 0.01 — 0.353 0.29 —4.88 0.29 - 4.85
(1.42) (0.068) (1.16) (1.16)

Effects of the number of primary periods on
the posterior distribution of abundance

To determine the effects of the number of primary periods on the precision of

posterior distributions for abundance, posterior distributions for three simulation cases

were compared. The number of primary periods was increased from three (case B), to six

(case D) and twelve (case E), while keeping the number of secondary occasions and the

true hyperparameters constant {Table 1). No analyses were conducted using MARK in

this analysis because the number of primary periods did not affect the estimates for the
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last primary period when the closed capture or the Huggins closed capture model was
used.

For simulation case D, point estimators were similar to those for simulation case
B (Figure 13 vs. Figure 19). For the beta-binomial model, the variability of point
estimators was large (-349 < Anode 673, -327 < Apedian < 648, -298 < Ajean < 632) and
increased with the true abundance (Figure 19). The variability, however, was less than
that for siﬁulation case B (Figure 13). Approximately 35% (348/500) of modes, 60%
(301/500) of medians, and 74% (372/500) of means were greater than the true population
sizes.

Estimated intercepts of the regression lines were positive, the slopes were
approximately one, and coefficient of determinations were approximately 0.5 (Table 10).
Widths of the 95% posterior intervals ranged from 43 to 1309, with a median of 836.
True abundance was included in 96% (480/500) of posterior intervals. The relative

precision ranged from (.84 to 48.6 (median = 3.1; Figure 20).

Table 10. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case D, using the hierarchical approach.

2

Model Point estimates Intercept Slope r
Beta-binomial Mode 6.57 0.91 0.486
Median 26.57 1.08 0.508

Mean 65.49 1.12 0.510

Multinomial Mode -5.89 0.95 0.784
Median 4.40 0.99 0.773

Mean 12.777 1.00 0.758
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Figure 19. Relationships between true abundances and point estimates for simulation
case D. The upper three panels are for the beta-binomial model whereas the lower three
panels are for the multinomial model.

For the multinomial model, the variability in the point estimators was less than
that for the beta-binomial model (-331 < Apode <286, =322 < Anedian < 342, -316 < Anean <
371; Figure 19). The variability was less than that of simulation case B (Figure 13).
Approximately 35% (173/500) of modes, 48% (240/500) of medians, and 55% (277/500)

of means were greater than the true population sizes.
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Figure 20. The relationship between relative precision and true abundance for simulation
case D. The upper panel is for the beta-binomial model whereas the lower panel is for
the multinomial model.

The estimated intercepts of the regression analyses were positive for medians and
means, whereas it was negative for the mode. The slopes of regression lines were
approximately one and the coefficients of determinations were between 0.76 and 0.78
(Table 10). Widths of 95% posterior intervals ranged from 32 to 959, with a median of
223. Approximately 92% (460/500) of the posterior intervals included the true

abundance. The relative precision ranged from 0.39 to 19.3 (median = 1.0; Figure 20).



56

As the number of primary periods was increased to 12 (simulation case E), the
variability in point estimators decreased from simulation cases B and D. For the beta-
binomial model, the variability in point estimators increased with the true abundance (-
275 € Amode <502, -238 < Apegian < 564, -233 < Apean < 573; Figure 21). The variability,
however, was less than for simulation case D (Figure 19). Approximately 42% (212/500)
of modes, 67% (334/500) of medians, and 78% (390/500) of means were greater than the

true population sizes.
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Figure 21. Relationships between the true population size and three point estimates for
simulation case E. The upper three panels are for the beta-binomial model, whereas the
lower three panels are for the multinomial model.



57

Estimated intercepts of the regression analyses were positive for medians and
means, whereas it was negative for the mode. Estimated slopes of the regression lines
were approximately one and coefficients of determinations were approximately 0.57
(Table 10). Widths of 95% posterior intervals ranged from 83 to 1236, with a median of
671. Approximately 95% (477/500) of the posterior intervals included the true
abundance. The relative precision ranged from 1.05 to 27.9 (median = 2.5; Figure 22).
The outlier in the relative precision (27.9) was the result of recapturing only one
individual in the primary period when the true population was small (N = 65). The
outlier was caused by the wide posterior interval for the dataset, when the mode was 27.
For the remainder of datasets, the relative precision was less than 10.

For the multinomial model, the variability in point estimators for simulation case
E was less than that for case D (-260 < Apode < 347, 242 < Anedian < 447, -234 < Apean <
484; Figure 21). Approximately 41% (205/500) of modes, 54% (272/500) of medians,
and 59% (297/500) of means were greater than the true population size. Estimated
intercepts of the regression analyses were positive for medians and means, whereas it was

negative for the mode.

Table 11. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case E, using the hierarchical approach.

Model Point estimates Intercept Slope r
Beta-binomial Mode -1.76 1.01 0.566
Median 12.57 1.16 0.569

Mean 36.51 1.22 0.576

Multinomial Mode -7.47 0.99 0.795
Median 2.37 1.02 0.782

Mean 9.32 1.03 0.771
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Figure 22. Relationships between the relative precision and the true abundance for

simulation case E. The upper figure is for the beta-binomial model, whereas the lower
figure is for the multinomial model.

Estimated slopes of the regression lines were approximately one and the
coefficients of determinations were approximately 0.8 (Table 11). Widths of 95%
posterior intervals ranged from 55 to 1035, with a median of 233. Approximately 93%
(466/500) of the posterior intervals included the true abundance. The relative precision
ranged from 0.33 to 6.88 (median = 1.01). Although the relative precision improved as

the number of primary periods increased from three (Figure 14) to six and twelve (Figure
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20 and Figure 22), no prominént improvement in the precision of posterior distributions

of abundance was found when the number of primary periods increased.

Table 12. A summary of the comparison among the hierarchical beta-binomial, the
hierarchical beta-multinomial, closed captures, and Huggins closed captures models.
Values are minimum and maximum, whereas medians are in parentheses.

Simulation case

Beta-Binomial

Beta-Multinomial

B
Widths 54—-1374 37 - 1208
(1010) (248)
% true N 99% 94%
Precision 0.6 -90.1 0.30 — 14.44 (1.10)
(4.3)
D
Widths 43 — 1,309 32 - 959
(836) (223)
% true N 96% 92%
Precision 0.84 —48.6 0.39-19.3
(3.1) (1.0)
E
Widths 83-1,236 551,035
(671) (233)
% true N 95% 93%
Precision 1305 - 27.9 0.33—-6.88
(2.5) (1.01)

Effects of the number of secondary
occasions on the posterior distribution of

abundance

To determine the effects of the number of secondary occasions on the precision of

posterior distributions of abundance, posterior distributions from three simulation cases

were compared. In these cases, the number of secondary occasions was increased from

four (case B) to six (case F) and eight (case G), while keeping the number of primary
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periods and the true hyperparameters constant (Table 1). These datasets also were

analyzed using MARK.

For simulation case F, results from the beta-binomial model indicated the
variability in the point estimators was large and increased with the true abundance (-306
< Apode < 787, =291 < Apedian < 778, <281 < Apean < 766; Figure 23). The variability,
however, was less than for simulation case B (Figure 13). Approximately 35% (174/500)
of modes, 56% (280/500) of medians, 70% (351/500) of means were greater than the true

abundance.

Table 13. Estimated parameters for the linear regression analysis between the true
abundance and the point estimates for simulation case F, using the hierarchical approach.

Zz

Model Point estimates Intercept Slope r
Beta-binomial ~Mode -3.17 0.96 0.542
Median 6.71 1.11 0.558
Mean 27.29 1.17 0.567
Multinomial Mode -1.32 0.97 0.904
Median 5.65 0.98 0.900

Mean 10.02 0.98 0.895
Closed capture MLE 9.37 0.98 0.865
Huggins closed MLE 12.53 0.98 0.861

The estimated intercepts of the regression lines were positive for medians and
means, whereas it was negative for the mode (Table 13). Estimated slopes of the
regression lines were approximately one and the coefficients of determinations were
approximately 0.55. Widths of 95% posterior intervals ranged from 58 to 1272, with the
median of 628. Approximately 97% (486/500) of the posterior intervals included the true

abundance. The relative precision ranged from 0.76 to 17.16 with a median of 2.57.
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Figure 23. Relationships between the true abundance and three point estimates in
simulation case F. The solid lines indicate 45-degree lines. Upper three panels were for
the beta-binomial model, whereas the lower three panels were for the multinomial model.

For the beta-multinomial model, the variability in the point estimators was less
than for the beta-binomial model (-195 < Anode < 127, -189 < Appedian < 168, -186 < Ainean
< 196; Figure 23). The variability, also, was less than for simulation case B (Figure 13).
Approximately 41% (204/500) of modes, 50% (250/500) of medians, and 55% (276/500)

of means were greater than true abundances.
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Figure 24, The relationship between the relative precision and the true abundance for
simulation case F. The upper figure is for the beta-binomial model, whereas the lower
figure is for the multinomial model.

The estimated intercepts of the regression lines were positive for the median and
mean, whereas it was negative for the mode (Table 13). Estimated slopes of the
regression lines were approximately one and the coefficients of determinations were 0.9
(Table 13). Widths of 95% posterior intervals ranged from 35 to 571, with a median of
146. Approximately 94% (470/500) of the posterior intervals included the true
abundance. The relative precision ranged from 0.23 to 4.39 with the median of 0.62. For
both models, large values of the relative precision were found for small population sizes

(Figure 24).
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When the same datasets for simulation case F were analyzed using MARK, the
variability of maximum likelihood estimators were small for both models (Figure 25).
Results from one dataset were discarded because these estimates (MLE’s > 10,000) were
unreasonable. For the closed capture model, the variability in the estimator was less than
for simulation case B (-135.0 < Apye < 311.2; Figure 25). Approximately 52% (258/499)

of estimates were greater than the true population sizes.
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Figure 25. Relationships between true abundance and MLE and the widths of 95%
confidence intervals for simulation set F. Left panels are for the closed capture model,
whereas right panels are for the Huggins closed model. Solid lines indicate 45-degree
lines.
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The estimated intercept of the regression line was approximately 9, the slope was
approximately one, and the coefficient of determination was 0.87 (Table 12). Widths of
95% confidence intervals ranged from 23.9 fo 2118.4, with a median of 162.4.
Approximately 93% (466/499) of confidence intervals included the true abundance. The
relative precision of MLE ranged from 0.22 to 4.83 with the median of 0.65.

For the Huggins closed model, results were almost identical to those from the
closed capture model. The variability of the estimator was less than for simulation case B
(-132.8 < A < 328.5; Figure 25). Approximately 55% (275/499) of estimates were
greater than true abundances.

The estimated intercept of the regression line was 13, the slope was
approximately one, and the coefficient of determination was 0.86 (Table 12). Widths of
95% confidence intervals ranged from 24.5 to 2202 4, with a median of 164.5.
Approximately 93% (466/499) confidence intervals included the true abundance. The
relative precision of MLE ranged from 0.22 to 4.83 with a median of 0.65. When the
number of secondary occasions within each primary period was increased to 8
(stmulation case G), the variability of point estimators for the beta-multinomial model
decreased. For the beta-binomial model, however, the variability of the estimators was
less than for simulation case F (<273 < Apege < 526, 243 < Apedian < 591, =220 < Ajpean <
598; Figure 26). Approximately 42% (209/500) of modes, 57% (285/500) of medians,
and 67% (335/500) of means were greater than the true abundance. The estimated
intercept of the regression lines were positive, the slopes were approximately one, and the
coefficients of determinations were approximately 0.6 (Table 14). Widths of 95%
posterior intervals ranged from 32 to 1152, with a median of 448. The true abundances
were included in 475 (95%) posterior intervals. The relative precision ranged from 0.84

to 7.20 (median = 1.9).
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