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Introduction

Studies are often concerned with detecting trends in rare event count data over
time. The statistics group at Pacific Northwest National Laboratory1 (PNNL) is
conducting one such study aimed at detecting trends over time in the frequency of events
that endanger airplane flights. This study, run by the National Aviation Operation
Monitoring Services (NAOMS), is part of the NASA Aviation Safety Program.
Researchers survey one hundred to three hundred airline pilots each month, and ask each
pilot how many times a certain event, such as running out of gas or engine failure, has
happened during the past sixty days. The average rate of the event (number of
occurrences per pilot) for each month is calculated. For each type of event, a trend
analysis is done on the data. The researchers use Kendall’s Tau, a correlation coefficient,
to measure trends over time (in months) in the average rate of the event.

Many of the events measured in the NAOMS study have a small probability of
occurrence, say .00001 or .001 per flight hour, and thus the majority of pilots have zero
occurrences. However, there are a few pilots that report one, two, or more occurrences.
Occasionally, a pilot may report a large number of occurrences (more than five standard
deviations from the expected number of occurrences). This pilot would be considered an
outlier. Depending on which month this pilot was surveyed, this outlier may cause the
Kendall’s Tau test for trend to show a significant trend in the rate over time when there is
none (Type I error), or show no trend when there is one (Type II error). Thus, it is
essential to determine how outliers affect Kendall’s Tau estimates and p-values when the
probability of occurrence is small.

A previous study determined that Kendall’s Tau was sufficiently robust against a
substantial number of outliers (Abdullah, 1990). However, the simulated data in the
study were generated from a normal distribution with mean 5 and variance 1. In order to
determine the robustness of Kendall’s Tau to outliers in sparse non-zero count data, the
analysis described in this paper was conducted on simulated count data rather than
normal variates. The simulated data are not representative of the actual data used in the

NAOMS study, and should not be interpreted as so. The explanatory variable is months,

! Pacific Northwest National Laboratory is located in Richland, WA, and is run by Battelle for the U.S.
Department of Energy.



and the response variable is the mean rate of occurrence per month. The factors of
interest that could influence Kendall’s Tau estimates are the number of total months in
the study, the number of pilots surveyed each month, the month in which the outlier
occurred, and the probability (or rate) of the rare event occurring per hour. One thousand
data sets with no trend over time were generated for each factor combination. The same

was done with a positive linear trend in the response over time imposed on the data.

Background

Kendall’s Tau (7) is a commonly used nonparametric correlation coefficient
which is a measure of the association between two quantitative variables. Like other
correlation coefficients, it can take on values between —1 and 1; 0 indicating no
association between variables, and —1 or 1 indicating perfect negative or positive
association between variables, respectively. It is a useful alternative to Pearson’s
correlation coefficient because it does not require the two variables to have a bivariate
normal distribution. It only requires that the data consist of a random sample and are
measured on at least an ordinal scale.

First introduced by M. G. Kendall, Kendall’s Tau is based on the ranks of the
observations. It measures association by examining the number of concordant and
discordant pairs of observations. A pair of observations, (x;, y;) and (x;, y), is said to be
concordant if the either x; is greater than x;, and y; is greater than y,, or x; is less than x;
and y; is less than y,. They are discordant if the difference between x; and x; is not in the
same direction as the difference between y; and y,. An estimate of 7 is calculated from
the data by the following formula:

. S
T=———
n(n—1)/2

where 7 is the number of observation pairs and S is the difference between the number of
concordant pairs of X and Y values, and the number of discordant pairs of X and Y values.

For the case when there are tied observations (in either or both variables), see Daniel
(1997).



The estimate of Kendall’s Tau can be used to conduct the hypothesis test Ho: X
and Y are independent (t = 0) verses H,: T # 0, or the one-sided alternatives, H: © <0 or
H,: ©> 0. If one of the variables is time, this test can be thought of as a test for trend over
time. Critical values of the Kendall’s Tau distribution, T*, can be found in Table A.22,
Daniel (1997). For large sample sizes, the statistic

, 36D
\V2(@2n+5)
is approximately normally distributed with mean 0 and variance 1 under the null
hypothesis.
Methods

Two simulations were run: one imposing a linear trend on the data, and one with
no trend in the data. In each simulation, four factors were examined to determine their
effect on the Kendall’s Tau estimates. The factors and their levels are described in Table
1.

Table 1 — Factors

Factor Name | Factor Description Levels
Pilots Number of pilots surveyed per month | 100
300
Monthtot Number of total months in the survey | 30
60
O _month Month number containing outlier Early month (10™ gercentile)
Middle month (50™ percentile)
Late month (90th percentile)
Rate Rate of occurrence per hour .00001
.001

The factor o_month has two codings for the three levels. While simulating data,
we used the actual number of the month for the coding. Thus, for datasets with 30
months, the levels of o_month were 3, 15, and 27. For datasets with 60 months, the
levels of o_month were 6, 30, and 54. For the analysis on the data, however, we used a
coding that did not depend on the month total. Early month outliers were designated as 1,
middle month as 2, and late month as 3. This coding was named o.month2.

The simulated data were created using SAS. For each of the 25 factor

combinations, 1000 datasets were generated. For example, for the combination




pilots=300, monthtot=30, 0.month2=1, and rate=.01, 1000 datasets were generated and an
outlier was included in month 3 in each dataset. A Poisson distribution was assumed for
the event counts and a Uniform(10, 100) distribution was assumed for the number of
hours each pilot flew. In the no trend case, the mean of the Poisson distribution for each
pilot was p = rate*hours, where rate is specified by the factor level (.01 or .0001), and
hours is a randomly generated value from a Uniform(10, 100) distribution. The value of
the outlier was calculated by taking the next largest integer from p+5*sqrt(p). Thus,
outliers represented observations that were around 5 standard deviations above average.
In the linear trend case, the mean for the Poisson distribution changed with time
(months). The relationship between the Poisson rate and time used was Poisson rate =
rate + rate*month, where rate is specified by the factor level and month is time variable
(1 to 30 or 1 to 60). Thus, the mean of the Poisson distribution for each pilot was p =
Poisson rate * hours, and this mean increased with time. Outliers were calculated the
same as in the no trend case.

Once the data were generated, the average rate of events per month (total events /
total pilots) was calculated for each month. Two estimates of Kendall’s Tau were
calculated for each dataset using the average rates against time: one including the outlier
and one with the outlier removed. The goal of the analysis was to examine the difference
between the two Kendall’s Tau estimates.

The difference between the two Kendall’s Tau estimates was calculated for each
dataset. Also, the 2-sided p-value for the null hypothesis that Kendall’s Tau is equal to
zero was calculated for each estimate. Because the sample size is large for each dataset
(30 or 60 observations), the normal approximation to the Kendall’s Tau distribution was
used. Because the true Kendall’s Tau value is zero for the no trend case, we expected
that we would reject this hypothesis in 5% of the 24000 datasets with the outlier omitted
if we used a significance level of 5%. When the outlier was included in the datasets, we
were interested if the proportion of significant tests would differ significantly from 5%.
For the linear trend case, we expected to reject this hypothesis in the datasets with the
outlier removed. We were interested if the proportion of rejections for the no outlier

datasets differed from the proportion of rejections for the outlier datasets.



Results

The results of the analysis are summarized in Tables 2 and 3. Table 2 gives the
results with the linear trend in the data, and Table 3 gives the results with no trend in the
data. The first four columns are the values of the factors that were considered. The
remaining columns include the two average Kendall’s Tau estimates for each factor
combination, the difference between the two, and the two proportions of significant p-
values for the Kendall’s Tau test for trend.

For several of the factor combinations in the no trend case, some of the datasets
generated had zero counts for all pilots due to small rates of occurrence. The correlation
procedure in SAS did not calculate Kendall’s Tau estimates for these datasets. Thus, for
the datasets with all zero counts, we assumed the Kendall’s Tau estimates were zero and
the p-values were non-significant when calculating the proportion of significant p-values
for the Kendall’s Tau test for trend. The number of datasets where at least one pilot had a
nonzero count is denoted by n in the tables.

Columns 6 through 14 are the mean value of the Kendall’s Tau estimates with the
outlier deleted for each factor combination (dmean), the mean value of the Kendall’s Tau
estimates with the outlier included for each factor combination (omean), and the
difference between the two mean estimates (diff). Also included are the standard
deviation of the 1000 Kendall’s Tau estimates with the outlier deleted (dstd), the standard
deviation of the 1000 Kendall’s Tau estimates with the outlier included (ostd), and the
standard deviation of the 1000 differences between the two estimates (diffstd). The
proportion of p-values that were below .05 was calculated for the datasets with the outlier
deleted (prop.dlin for linear trend and prop.dno for no trend), and with the outlier
included (prop.olin for linear trend and prop.ono for no trend). The difference between
the two proportions is denoted prop.diff.

In the linear trend data, the largest difference between Kendall’s Tau estimates
and proportions of p-values below .05 occurs when there are 100 pilots, 30 total months,
a rate of .00001, and outlier month 1 or 3. When the outlier month is 1, the outlier tends

to decrease the estimate of Kendall’s Tau and fails to reject the hypothesis of trend more



often than when the outlier is deleted. When the outlier month is 3, the outlier tends to

increase the estimate of Kendall’s Tau and rejects the hypothesis of trend more often than

when the outlier is deleted. For the other factor combinations, the outlier seems to have

little effect on the Kendall’s Tau estimates and the proportion of p-values below .05.

Outliers have more of an effect on the Kendall’s Tau estimates when there is no

trend in the data. The largest differences in the estimates occur when there are 30 total

months, a rate of .00001, and outlier month 1 or 3. The number 6f pilots does not seem

to have a large effect on the estimates. The largest differences in proportions of

rejections occur for 100 pilots and a rate of .00001. These differences are comparable

except for the factor combination of 100 pilots, 30 month, outlier month 1, and rate

.0001. For this combination, the difference in proportions is .262, much larger than any

other difference.

Table 2 - Linear Trend Analysis

pilotsimonthtotjo.month2 rate] nldmeanjomean| difff dstd| ostd|diffstd|prop.dlinjprop.olinjprop.diff
100 30 1/0.00001[1000] 0.459| 0.414| 0.045|0.135/0.140{0.011] 0.925] 0.882] 0.043
100 30 1] 0.00111000| 0.977| 0.977| 0.000|0.007/0.007{0.000{ 1.000] 1.000[ 0.000
100 30 210.00001{1000| 0.450| 0.443| 0.007|0.132|0.132/0.012] 0.928] 0.922] 0.006
100 30 2| 0.001/10001 0.977| 0.977| 0.000/0.007|0.007{0.001] 1.000] 1.000] 0.000
100 30 310.00001/1000; 0.456; 0.482|-0.027|0.1290.122/0.019] 0.939| 0.968| -0.029
100 30 3 0.001/1000] 0.977| 0.977| 0.000/0.007]0.007/0.001] 1.000{ 1.000| 0.000
100 60 1/0.00001{1000, 0.593| 0.581| 0.011|0.074/0.075{0.003] 1.000{ 1.000[ 0.000
100 60 1 0.001{1000| 0.986{ 0.986| 0.000{0.003(0.003{0.000{ 1.000] 1.000| 0.000
100 60, 20.00001[1000] 0.593] 0.592] 0.002|0.070|0.071{0.005{ 1.000; 1.000| 0.000
100 60 2| 0.001/1000 0.986{ 0.986| 0.000/0.003|0.003/0.000; 1.000{ 1.000( 0.000
100 60 30.00001(1000] 0.590| 0.598 -0.008’0.074 0.072/0.010] 1.000; 1.000| 0.000
100 60 3 0.001/1000; 0.986| 0.986| 0.000[0.003/0.003/0.000{ 1.000{ 1.000] 0.000
300 30 1]0.00001|1000| 0.670| 0.654] 0.015/0.091{0.094/0.005{ 1.000] 1.000[ 0.000
300 30 1 0.001]1000[ 0.992| 0.992] 0.000|0.002/0.002{0.000 1.000] 1.000] 0.000
300 30 2/0.00001{1000| 0.663| 0.660 0.003!0.092 0.093{0.008] 0.999] 0.999| 0.000
300 30 2 0.001{1000 0.992{ 0.992 0.000[0.002 0.002/0.000] 1.000/ 1.000] 0.000
300 30 30.00001[1000| 0.667| 0.676 -0.009'0.092 0.089/0.010; 0.999{ 0.999| 0.000
300 30 3 0.00111000 0.992 0.992] 0.000]0.002{0.002(0.000] 1.000{ 1.000| 0.000
300 60 1/0.0000111000; 0.785{ 0.782| 0.003|0.041(0.041/0.001| 1.000 1.000] 0.000
300 60 1]  0.001{1000] 0.995| 0.995} 0.000{0.001|0.001{0.000] 1.000{ 1.000| 0.000
300 60 20.0000111000| 0.781] 0.781 0.000|0.043 0.043{0.002 1.000; 1.000[ 0.000
300 60 2| 0.0011000y 0.995| 0.995( 0.000/0.001{0.001(0.000] 1.000{ 1.000{ 0.000
300 60 30.00001(1000 0.785; 0.787(-0.002/0.042/0.042/0.004| 1.000; 1.000{ 0.000
300 60 3 0.0011000] 0.995; 0.995| 0.0000.001(0.001]0.000{ 1.000{ 1.000[ 0.000




Table 3 - No Trend Analysis

pilots|monthtotio.month2 ratel nldmeanjomean| diff] dstd| ostd|diffstdiprop.dno|prop.onolprop.diff
100 30 1/0.00001| 809 0.007|-0.177| 0.162[0.186/0.141/0.054] 0.156] 0.418] -0.262
100 30 1} 0.001/1000] -0.003( -0.036| 0.033(0.191{0.190/0.011] 0.185{ 0.182] 0.003
100 30 2/0.00001! 803} -0.004|-0.010{ 0.006/0.182|0.131{0.039| 0.148| 0.053] 0.095
100 30 2 0.001[1000 0.004]| 0.003{ 0.002/0.188{0.187/0.005| 0.190] 0.186| 0.004
100 30 30.00001] 819|-0.006| 0.163]-0.1500.173/0.132/0.050] 0.128] 0.181] -0.053
100 30 3] 0.001[1000{ 0.002| 0.032}-0.030/0.181{0.179{0.011] 0.162, 0.168] -0.006
100 60! 1/0.00001] 960] 0.002|-0.094| 0.093|0.134/0.116/0.030] 0.221] 0.290/ -0.069
100 60 1/ 0.001/1000]-0.006{ -0.023| 0.0160.134/0.134{0.005{ 0.215 0.212 0.003
100 60 2/0.00001] 950 0.008| 0.005{ 0.003|0.12710.107|0.020[ 0.178] 0.109, 0.069
100 60 2| 0.001{1000; -0.006; -0.006( 0.000}0.129/0.128{0.002| 0.179] 0.172] 0.007
100 60 30.00001| 961] 0.000{ 0.093(-0.089{0.131(0.112/0.030; 0.205| 0.275 -0.070
100 60 3 0.001/1000 0.000{ 0.016/-0.016|0.126{0.126(0.005] 0.169] 0.176| -0.007
300 30 1(0.00001{ 994 0.001/-0.116] 0.116/0.185/0.167|0.039] 0.184] 0.235] -0.051
300 30 1| 0.001/1000(-0.010; -0.029| 0.019/0.186/0.186/0.007{ 0.185] 0.193| -0.008
300 30 20.00001{ 996/ 0.005| 0.000{ 0.005/0.18710.169{0.022] 0.199] 0.150] 0.049
300 30 2| 0.001{1000; -0.009| -0.009| 0.001(0.186/0.185/{0.003| 0.171] 0.170[ 0.001
300 30! 310.00001{ 990 0.003{ 0.110(-0.1060.187|0.167{0.038] 0.190] 0.200| -0.010
300 30 31 0.0011000] 0.005{ 0.023|-0.018/0.181(0.180{0.006] 0.171] 0.169 0.002
300 60 1j0.00001]1000] -0.003 -0.060| 0.057(0.136{0.129|0.014] 0.210] 0.237] -0.027|
300 60 1} 0.001{1000] -0.002| -0.012| 0.009|0.132|0.132/0.003| 0.184/ 0.182] 0.002
300 60 2/0.00001{1000| 0.004| 0.003{ 0.001/0.1260.119{0.008{ 0.158] 0.139; 0.019
300 60 2| 0.001{1000]-0.003] -0.003( 0.0000.139/0.139{0.001} 0.226] 0.224| 0.002
300 60 3/0.000011000| 0.002| 0.056/-0.054/0.127]0.121{0.014] 0.186] 0.200| -0.014
300 60 3] 0.00111000] 0.002| 0.011/-0.009|0.125/0.125(0.003] 0.159] 0.165| -0.006

A significance level of .05 was used for each Kendall’s Tau test for trend. Thus,
if there were no trend in the data, we should reject the null hypothesis 5% of the time.
However, in the no trend analysis, the proportions of tests that rejected the null
hypothesis where much larger than .05. This is most likely due to the normal
approximation that was used to calculate the p-values. The normal approximation used in
this study does not adjust the variance formula of Kendall’s Tau for ties. Further study
should be conducted to explore the limitations of the normal approximation in this type of
data.

Linear models were fit to the linear trend data and the no trend data using diff as
the response and the four factors as explanatory variables. All interactions between
factors were included in the models. The analysis of variance tables for these linear

models are given in the following output.



Linear Trend Data:

Df Sum Sq Mean Sq F value Pr (>F)
pilots 1 0.01695 0.01695 420.72 < 2.2e-16
monthtot 1 0.03428 0.03428 850.73 < 2.2e-16
o.month2 2 0.91073 0.45537 11301.35 < 2.2e-16
rate 1 0.06585 0.06585 1634.18 < 2.2e-16
pilots:monthtot 1 0.00769 0.00769 190.82 < 2.2e-16
pilots:o.month2 2 0.24369 0.12184 3023.92 < 2.2e-16
pilots:rate 1 0.01562 0.01562 387.75 < 2.2e-16
monthtot :o.month2 2 0.31329 0.15664 3887.61 < 2.2e-16
monthtot:rate 1 0.03277 0.03277 813.18 < 2.2e-16
o.month2:rate 2 0.90464 0.45232 11225.73 < 2.2e-16
pilots:monthtot:o.month2 2 0.06799 0.03400 843.73 < 2.2e-16
pilots:monthtot:rate 1 0.00713 0.00713 177.03 < 2.2e-16
pilots:o.month2:rate 2 0.24086 0.12043 2988.85 < 2.2e-16
monthtot:o.month2:rate 2 0.31085 0.15543 3857.37 < 2.2e-16
pilots:monthtot:o.month2:rate 2 0.06695 0.03348 830.82 < 2.2e-16
Residuals 23976 0.96607 0.00004
No Trend Data:

Df Sum Sq Mean Sq F value Pr(>F)
pilots 1 4.792e-04 4.792e-04 0.9291 0.3351
monthtot 1 0.026 0.026 51.2434 8.402e-13
o.month2 2 53.360 26.680 51729.5526 < 2.2e-16
rate 1 0.044 0.044 84.8288 < 2.2e-16
pilots:monthtot 1 1.978e-05 1.978e-05 0.0384 0.8447
pilots:o.month2 2 1.728 0.864 1675.6662 < 2.2e-16
pilots:rate 1 9.940e-07 9.940e-07 0.0019 0.9650
monthtot :0.month2 2 4.296 2.148 4164.9456 < 2.2e-16
monthtot:rate 1 0.011 0.011 21.8251 3.003e-06
o.month2:rate 2 26.943 13.472 26120.0094 < 2.2e-16
pilots:monthtot:o.month2 2 0.036 0.018 34.4655 1.132e-15
pilots:monthtot:rate 1 1.675e-04 1.675e-04 0.3248 0.5688
pilots:o.month2:rate 2 0.807 0.403 782.2922 < 2.2e-16
monthtot:o.month2:rate 2 2.168 1.084 2101.5358 < 2.2e-16
pilots:monthtot:o.month2:rate 2 0.003 0.002 3.149%4 0.0429
Residuals 23258 11.995 0.001

The extremely small p-values are most likely due to the lérge sample size. However, we
can still gain some information by looking at the analysis of variance tables. For
example, by examining the mean square values, it is obvious that the outlier month and
interactions involving the outlier month have the most influence on the differences
between Kendall’s Tau estimates. Rate also has a large influence on the differences.
Tables 4 and 5 give the marginal means for each factor. In the linear analysis,

there is a large difference between the Kendall’s Tau estimates for rate .00001 and rate



.001. For the smaller rate, the Kendall’s Tau estimates are much smaller than for the

larger rate. Also, Kendall’s Tau estimates for outlier month 1 decrease when the outlier

is included. Kendall’s Tau estimates for outlier month 3 increase when the outlier is

included. In the no trend analysis, the most striking differences occur for outlier months

1 and 3. For outlier month 1, the Kendall’s Tau estimate including the outlier is lower

than the estimate without the outlier. For outlier month 3, the Kendall’s Tau estimate

including the outlier is higher than the estimate without the outlier.

Table 4 - Sample Means by Factor for Linear Analysis

Factor Name Variable Name

and Level dmean omean prop.dlin prop.olin
pilots = 100 0.75259 0.75005 0.98267 0.98100
pilots = 300 0.85938 (0.85852 0.99983 0.99983
monthtot = 30 0.77267 0.76977 0.98250 0.98083
monthtot = 60 0.83930 0.83880 1.00000 1.00000
o.month2 = 1 0.80718 0.79785 0.99063 0.98525
o.month2 =2 0.80479 0.80326 0.99088 0.99013
o.month2 =3 0.80599 0.81175 0.99225 0.99588
rate = .00001 0.62423 0.62088 0.98250 0.98083
rate = .001 0.98774 0.98770 1.00000 1.00000

Table 5 - Sample Means by Factor for No Trend Analysis
Factor Name Variable Name

and Level dmean omean prop.dno prop.ono
pilots = 100 -0.00009 -0.00284 0.17800 0.20183
pilots = 300 -0.00043 -0.00043 0.18525 0.18867
monthtot = 30 -0.00040 -0.00390 0.17242 0.19208
monthtot = 60 -0.00012 -0.00111 0.19083 0.19842
o.month2 = 1 -0.00188 -0.06831 0.19250 0.24363
o.month2 = 2 -0.00002 -0.00226 0.18113 0.15038
o.month2 = 3 0.00112 0.06305 0.17125 0.19175
rate =.00001 0.00159 -0.00224 0.18025 0.20725
rate = .001 -0.00211 -0.00278 0.18300 0.18325
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Conclusions

The estimate of Kendall’s Tau is sufficiently robust to outliers in sparse non-zero
count data when the data follow a linear trend. However, when there is no trend in the
data, outliers can effect the estimate of Kendall’s Tau and the p-value of the Kendall’s
Tau test for trend quite significantly, especially for low rates of occurrence and outliers
that have high leverage.

The Kendall’s Tau test for trend is more sensitive to outliers than the estimate of
Kendall’s Tau. For low rates and outliers with high leverage, outliers can affect the p-
value significantly. In addition, although the sample size was large enough to safely use
the normal approximation, the normal approximation did not perform well with or
without outliers in the data. Further study should be done to determine how well the
normal approximation approximates the Kendall’s Tau distribution with sparse non-zero
data.
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