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Introduction 
 
 Variations in climate affect the behaviors of species in their environments.  The 

Upper Madison River elk herd in Yellowstone National Park undergoes many responses 

of behavior as environmental conditions change.  This non-migratory herd of elk stays in 

the same general area year round, including the often harsh winter season.  

This study is a small part of a bigger project that is aimed at investigating the 

impacts of changing environmental impacts on elk behavior.  The Upper Madison River 

area receives a substantial amount of snowfall each year that generally begins during 

October.  The arrival of snow each year influences the behaviors of elk in the valley.        

The objective of this study is to examine the relationships between snow dynamics and 

elk behavior.  The impact on elk behavior due to the reintroduction of wolves, which 

occurred during the time period of this study, was also of interest.     

The method used to analyze this dataset will be matched case-control logistic 

regression.  This method will allow the comparison of observed use of the area to what 

would have been used under random selection.   

First the specifics of logistic regression will be discussed which will lead to a 

discussion of matched case-control logistic regression.  Following this, a one to one 



matched case example will be presented to show matched case-control logistic regression 

in use.  Then the analysis of the Upper Madison River elk herd will be used to show an 

example of 1-M matched case-control with logistic regression.  

 

Background           

 A binary response variable, Y, takes on a value of 1 for a “success” and a value of 

0 for a “failure”.  An explanatory variable, X, leads to π(x) defined as the probability of 

success given x.  

Thus the probability of success, π(x) = P(Y=1|x), is a function of one or more 

covariates that may be a mixture of categorical and numerical variables.  For notational 

convenience throughout the rest of the paper all models will assume a single predictor, 

however all these models also hold for multiple predictors.  

 A linear probability model for a binary response variable Y assumes  

xx βαπ +=)(   (1.1) 

The linear model is not ideal.  The assumption of a linear relationship between a 

covariate x and probability is a strong one and unlikely to be true in general.  For 

example, the linear model may yield estimated probabilities outside the range of zero to 

one, especially for extreme values of x. The linear model is rarely used in practice 

because of these and other problems. 

A number of alternatives to the linear model (1.1) exist.  A more appropriate 

model is the logistic regression model.   
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The logistic regression model has a general S shape pattern (Figure 1) that is seen 

more commonly with binary responses. 

As β moves further from zero, the rate of change increases.  Logistic regression 

models also follow the rules of probability and may never be outside of the range from 

zero to one. 

Figure 1 – Shapes of logistic regression line dependent on β 
(y-axis is the probability of a success) 

 
       β > 0        β < 0 
 
 Understanding the interpretation of the parameters of the logistic regression 

model requires the odds.  The odds of an event occurring are defined as 
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If π(x) = .8 then the odds of success equal .8/.2 = 4.  This is interpreted to mean a success 

is four times as likely to occur as compared to a failure. 

An odds ratio is defined as  
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The odds ratio compares the odds of success when 1xx = to the odds when 

2xx = .  The odds ratios are generally interpreted with x2=x1+1 but can be found for 

other values.  When the odds ratio is one then the odds are equal.  When it is greater than 

one, then the odds of success when 1xx =   is more likely than the odds when 2xx = .  

When the odds ratio is less than one, the odds of success when 1xx =   is less likely than 

the odds when 2xx = . 

The logit function can be used to arrange the logistic regression model into a form 

that is more easily interpretable.  The logit is a log of the odds and yields a linear function 

of the explanatory variables similar to equation (1.1).   
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 From (1.5) it can be seen that 
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Thus the odds of success at x + 1 are eβ times the odds of success at x.  The 

intercept term, α, is the odds of success when x = 0.   

For k predictor variables the logistic regression model in linear form (1.5) is 
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 Each xi is a different explanatory variable of interest.  This does not 

change the interpretation of the parameters, except there are now several odds ratios to 

estimate at once. 

One advantage of logistic regression is it may be used in case-control studies. 

Case-control studies are examples of retrospective studies in that samples are taken after 

the events of interest (success or failure) have occurred.  In a case-control study, separate 

samples of cases (Y=1) and controls (Y=0) are taken and the values of the predictor 

variables ( pixi ,,1, = ) are observed on the selected units.    There is evidence of an 

association if the distribution of predictors is different in cases and controls.   

The proportion of cases in a case control sample will generally not be equal to the 

proportion in the population and it is not possible to estimate the probability of a case in 

the population.  However it is possible to use logistic regression to draw inferences about 

odds ratios with case-control data.   

In case-control studies it is sometimes desirable to match each case with one or 

more controls.  The typical reason for matching in a case control study is to control for 

variability due to predictors that are not of much interest.  The matching variable is 

typically one whose effects are likely to be confounded with other predictors.  Care must 

be taken in the selection of matching variables.  If matching is done on a variable of 

interest then all of the cases are matched with controls on that variable and in general it 

will not be possible to come to any conclusions regarding that variable.   

It is possible to add interaction terms involving the matching variable and other 

predictors to investigate the effects of predictors across the different values of the 

matching variable.  This is one of the few times in statistical models it is appropriate to 



add an interaction term when both variables are not already included in the model as a 

main effect. 

Matched pairs in a case control study is most commonly done as a 1 – 1 design 

where one case is matched to one control.  This method may also be used in a 1 – M 

design, in which one case is matched to M controls. 

In the case of matching on a variable, the earlier mentioned models are going to 

change slightly for logistic regression.  The new model in linear form is 

kijkijijjijj xxxx βββαπ ++++= ...)]([itlog 2211  (1.9) 

where xhij is the value of the hth explanatory variable for the ith individual in the jth 

matched set. The αj will vary for each of the j matched sets.  However, even with a 

different αj  for each matched set this does not have an effect on the odds ratios because 

the α terms cancel out of the odds ratio calculations(see equation 1.11). 

 The parameters of the logistic regression models (1.8) are estimated using the 

method of maximum likelihood.  For the matched case-control scenario, the method of 

maximum likelihood must be modified (see Hosmer and Lemeshow, 2000, pages 225-

226).  For the 1-1 matched case-control scenario, logistic regression software can be used 

with the appropriate modifications.  For 1-M matched case-control, special software is 

needed.  In SAS 1-M matched data can be fit using PROC PHREG.   

 Additional details on logistic regression in general, and matched case-control 

logistic regression in particular can be found in other literature (Agresti, 2002) (Collett, 

2003) (Hosmer and Lemeshow, 2000). 

 

   



1 – 1 Matched Pairs Logistic Regression Example 

  As an example, a dataset consisting of human mothers that had low birth weight 

children and matching them with mothers who did not have a low birth weight baby will 

be analyzed.  This dataset consisted of 56 case-control pairs matched so that each case-

control pair has the same age.  The variables available are race (RACE), smoking status 

(SMOKE), presence of hypertension (HT), presence of uterine irritability(UI), presence 

of previous pre-term delivery (PTD) and the weight of the mother at the last menstrual 

period (LWT).  A binary variable (1 or 0) is assigned for smoking status (yes/no), 

presence/absence of hypertension, presence/absence of uterine irritability, and 

presence/absence of pre-term delivery with a one indicating the presence of the condition.  

The data set was obtained from Hosmer and Lemeshow(2000). 

 As an example, the results of fitting a model with only one numerical predictor 

variable, the weight of the mother at the last menstrual period, are presented in Table 1. 

Table 1 - Parameter Estimate for Low weight 1-1 Matched Pairs Model 

                         Parameter  Standard  
 Variable       Estimate  Error   __  Pr > ChiSq 

              LWT            -0.00937  0.00617       0.1284 
 

The estimate for β is 0094.0ˆ −=β  (SAS computer code in appendix A, part 1) with e-.0094 

= 0.991. The results can be interpreted any number of different ways.  One 

interpretation for this parameter is for every one pound increase in the weight, at the last 

menstrual period, mothers are .991 times more likely to have a low weight baby.  A 

second interpretation is the ratio of the odds of a low weight baby at a weight of 1+x  

pounds to the odds at a weight of x  pounds is 0.991 for any value of x . It can also be 

stated that we estimate each one pound increase in weight leads to an approximate 1% 



decrease in the odds of a low weight baby. All these interpretations suggest the chances 

of having a low weight baby decrease as the mother’s weight increases.   

A value of eβ near one means there is no relationship between the odds are the 

predictor variable.  The estimate of 0.991 in this example is very close to one for a couple 

of reasons.  First of all it indicates the change in the odds based on a one pound increase 

in weight. 

However trying to interpret the odds based on a one pound increase in a mother’s 

weight may not make sense.  For example, it may make more sense to interpret the results 

in terms of ten pound changes in body weight.  It is estimated the odds of a low weight 

baby at a weight of 10+x pounds is 091.0)0094.0(10 =−e times the odds of a low weight 

baby at a weight of x pounds.  To find the new standard error for a ten pound increase, 

the standard error for a one pound increase is multiplied by ten also. 

It is also appropriate to find large sample confidence intervals for β and eβ.  To 

find an approximate (large sample) confidence interval for iβ the following equation is 

used: 

][*21 ii SEz ββ α−±   (1.10) 

The 95% confidence interval for the estimate of β in this data is  

-0.00937 ± 1.96 * 0.00617 = (-0.0215, 0.00272).  To find the 95% confidence interval for 

eβ, exponentiate the endpoints, which yields (e-0.0215, e0.00272) = (.978, 1.003).  As 

mentioned above it may not be relevant to interpret results in terms of a one unit increase 

in the value of a predictor variable. It is easy to modify the confidence interval formulas 

to account for other changes. For example, the confidence interval for impact for a ten 

pound increase in weight can be found by (-0.0215*10 , 0.00272*10) = (-0.215, .0272).  



Finding the 95% confidence interval for e10β yields (e-0.215, e0.0272) = (.807, 1.03).  This 

confidence interval suggests there could be as much as a 19 percent decrease in the risk 

of a low weight baby to a three percent increase in a low weight baby with a ten pound 

increase in the mother’s weight.    

 The interpretation for a categorical predictor variable is somewhat different than 

that of a numerical predictor variable.  The results of a logistic regression model with 

smoking status (SMOKE) as the predictor are shown in Table 2.   

Table 2 - Parameter Estimate for Smoke 1-1 Matched Pairs Model 

                         Parameter  Standard  
 Variable       Estimate  Error   __  Pr > ChiSq 

              SMOKE          1.0116   0.41286       0.0143 
 

This binary predictor variable is coded as a 1 if the mother is a smoker and 0 if 

she is not.  The estimate for β is 1.0116 (SAS computer code in appendix A, part 1).  The 

estimate for eβ is e1.011  = 2.75.  The interpretation for this estimate is a mother that has a 

history of smoking during the pregnancy is estimated to be 2.75 times more likely to have 

a low weight baby than a mother who does not have a history of smoking during the 

pregnancy.   

 The data set for low weight babies has multiple predictors in it.  Before the 

multiple logistic regression model is run the data set must be prepared.  The RACE 

variable is a nominal categorical variable with three levels of 1(White), 2(Black), and 

3(Other).   

Due to the nominal categorical variable, separate binary indicator variables may 

be needed to be made for the levels of black and other, RACE2 and RACE3 respectively, 

depending on the software being used.  A separate variable is not needed for the level of 



white, since the person will be assumed to be white unless otherwise noted by the new 

indicator variables.  The logistic regression model for multiple predictors is run with 

LWT, SMOKE, RACE2, RACE3, PTD, HT, and UI which gives the results for the 

estimates of β shown in Table 3. 

Table 3 - Parameter Estimates for 1-1 Matched Pairs Model 

                      Parameter  Standard  
 Variable       Estimate  Error   __  Pr > ChiSq 

             LWT            -0.01838   0.01008       0.0683 
             SMOKE       1.40066         0.62784 0.0257 
             RACE2       0.57136         0.68964 0.4074 
             RACE3       -0.02531         0.69920 0.9711 
             PTD     1.80801         0.78865 0.0219 
             HT   2.36115         1.08613 0.0297 
             UI  0.40193           0.69616 0.0440 
 

A negative parameter estimate means the odds will decrease as that variable 

increases and a positive estimate means the odds will increase as that variable increases. 

Notice the parameter estimates for LWT and SMOKE have changed slightly with the 

addition of the other variables.  The interpretations follow the same format as before.  For 

example, for PTD, the estimate for 5βe  is e1.808  = 6.10.  This can be interpreted as a 

mother having a pre-term delivery is estimated to be 6.10 times more likely to have a low 

weight baby as a mother that does not have a pre-term delivery.  This interpretation 

assumes all other variables in the model are the same for these two mothers.   

Estimates for combinations of predictor variables can be found.  For example, 

using the estimates, the odds ratio of a low weight baby from a black woman with the 

presence of hypertension as compared to that of a white woman without the presence of 

hypertension is estimated by  
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 Using the estimates found earlier then the estimated odds ratio for 63 ββ +e  is 

e0.57136+2.36115=18.77.  The interpretation is a black mother with hypertension is estimated 

to be 18.77 times more likely to have a low weight baby than a white mother without a 

presence of hypertension.  Whichever odds ratios are of interest may be found using 

different combinations of the parameter estimates.   

 

1 – M Matched Pairs Logistic Regression Example – Yellowstone Elk Herd 

Matched pairs logistic regression may also be done by matching M controls to 

one case.  An example of this is the Upper Madison River elk herd data mentioned 

before.   

Each winter the valley receives different amounts of snowfall.  The amount of 

snow is recorded using snow water equivalent (SWE).  This is a better measure than 

snow depth alone because SWE also takes into consideration the density of the snow on 

the ground.   

Elk location was determined by randomly selecting female elk (25-40 individuals) 

to be fitted with a radio collar.  The location of these elk was randomly checked during 

the winter.  Locations of elk use were recorded and habitat variables of interest were 

measured at each location.  Each location was matched with twenty randomly selected 

locations and the same set of habitat variables were measured at each random location.  

The data were collected over a period of time prior to and after wolf reintroduction 

(Messer, 2003).  It is then natural to compare the impact of wolves on habitat selection by 

elk.  



Logistic regression is used with the binary response variable (1 for observed elk 

use, 0 for a randomly chosen location) along with the explanatory variables, including 

SWE to explore elk habitat use and habitat predictor variables of interest.   

The data set was split into three different sets of data split up by time:  prewolf 

(1991-1998), transition period (1998-2002), and an established period (2002-2006).  The 

transition period is needed because the elk were still adjusting to wolves being in the area 

and not all elk in the study area had been introduced to wolves.   

With all of the variables available for this data set the first step is to determine 

which variables should be used in the model.  Each of the variables used in the models 

were standardized by subtracting the difference of the highest and lowest values and 

dividing all of this by half the range.  This scales all values to be between -1 and 1.  This 

scaling procedure allows for the direct comparison of the coefficient values in the model.   

Twenty four different models were fit with matched pairs logistic regression (SAS 

PROC PHREG computer code provided in Appendix A, part 3) and were compared to 

each other using Akaike’s Information Criteria (AIC) values (see Appendix B for 

results).  The best fit model according to AIC was the same model for the 3 different time 

periods.  This model included the variables SWEA (local snow water equivalent), SNHA 

(local snow heterogeneity), HBT (habitat type), ELV (elevation), and SRI (Solar 

Radiation Index).  All of these variables are numerical variables except habitat.  The 

baseline level for HBT was geothermal areas with the other factors being burned forest 

(BF), unburned forest (UB), and meadow (M).  The parameter estimates for the β’s for 

each of the time periods is given in Table 4. 

 



 
Table 4 – Parameter Estimates for each of three time periods 

 
 Pre-Wolf Transition Period Established Wolf 
 Parameter 

Estimates 
Standard

Error 
Parameter 
Estimates 

Standard 
Error 

Parameter 
Estimates 

Standard 
Error 

SWEA -2.83 0.12 -3.36 0.25 -4.96 0.31 
SNHA 5.80 0.24 7.16 0.51 7.74 0.64 

HBT(BF) -0.58 0.06 -0.65 0.11 -0.74 0.11 
HBT(UB) -0.38 0.05 -0.32 0.09 -0.28 0.10 
HBT(M) -0.46 0.06 -0.59 0.11 -0.77 0.12 

ELV -2.06 0.06 -2.21 0.09 -2.87 0.10 
SRI -0.28 0.10 -0.46 0.15 -1.20 0.15 

 
 
 Since each of the models is measuring the same thing, only during different time 

periods, we can directly compare the coefficients from one time period to another.  This 

is important because we are then able to compare how the elk responded due to the re-

introduction of wolves.   

 The interpretation of the odds ratios is a little more difficult for this example.  All 

the numerical variables in the model were scaled from -1 to 1 and because of this the 

odds ratios are interpreted a little differently.  For example, for the pre-wolf data, SWEA 

has a parameter estimate of -2.83 with e-2.83 = .059.  The interpretation is for every one 

unit increase in SWEA elk is estimated to be only 0.059 times as likely to select that area.  

However a one unit increase under the scaling procedure is half the range of that variable.  

For this data set there is more interest in being able to compare the parameter estimates to 

each other.  This way it is easier to see which variable has more strength in determining 

the location of an elk.   

 Looking at just the pre-wolf estimates in Table 4, it appears from the SWEA 

estimate the elk are more likely to be located in areas with lower amounts of snow.  The 

SNHA estimate suggests this is true especially in areas that have snow heterogeneity.   



There are four levels of the habitat variable: thermal, burned forest, unburned 

forest and meadow.  We only have parameter estimates for three of them(BF, UN and 

M).  This makes thermal areas the reference for parameter estimates of the other three.  

Since all the estimates for the habitat variables are negative, the elk seem to prefer the 

thermal areas over all of the other areas: burned forest, unburned forest and meadow.  

Because of the fact the elk seem to prefer to be in areas with lower SWEA values, then it 

is expected they would also want to be in lower elevation areas and this is backed up by 

the parameter estimate for ELV.  However it must be mentioned there are could be 

multicollinearity problems between ELV and SWEA because as the elevation decreases 

the amount of snow is going to generally decrease.  The correlation between ELV and 

SWEA is only .40 so multicollinearity is not a big concern for this model.   

 Approximate 95% confidence intervals for all the parameter are shown in Table 5.   

Table 5 – 95% Confidence Intervals of the  
parameters for each of 3 time periods 

 
 Pre-Wolf Transition Established 
 Standard 

Error 
Parameter 
Estimates 

Parameter 
Estimates 

SWEA (-3.06, -2.59) (-3.85, -2.87) (-5.57, -4.35) 
SNHA (5.33, 6.27) (6.16, 8.16) (6.49, 8.99) 

HBT(BF) (-.70, -.46) (-.87, -.43) (-.96, -.52) 
HBT(UB) (-.48, -.28) (-.50, -.14) (-.48, -.08) 
HBT(M) (-.58, -.34) (-.81, -.37) (-1.01, -.53) 

ELV (-2.18, -1.94) (-2.39, -2.03) (-3.07, -2.67) 
SRI (-.48, -.08) (-.75, -.17) (-1.49, -.91) 

 

   Comparing the 95% confidence intervals of each variable it can be determined if 

the coefficients are statistically significant from one time period to another.  A 

comparison of the coefficients for SWEA provides information on the possible impacts of 

wolf reintroduction on elk behavior.  The difference from the pre-wolf to the transition 



time periods is not significantly different, however the coefficient from the established 

time period is significantly different from either of the two earlier periods.  The negative 

coefficients tell us there is significant evidence to suggest elk are locating in areas of less 

snow with the introduction of wolves.  The SNHA coefficient of the established time 

period is also significantly different from the coefficient for the pre-wolf time period.  

Since this coefficient is positive there is also strong evidence to suggest the elk are 

locating in areas that have higher snow heterogeneity.  It is also noteworthy to notice the 

coefficients for habitat type are not statistically different from each other in any of the 

time periods.  So the elk do not seem to have drastically changed the type of habitat they 

choose to inhabit because of the introduction of wolves.  However it appears there may 

be some degree of movement away from the meadow areas that may need to be 

investigated further. 

 

Conclusion 

 Matched pairs logistic regression can be the appropriate way to run the statistical 

analysis, given the appropriate dataset.  When two samples are statistically dependent on 

each other and can naturally be matched together to form cases and controls the dataset 

could be used for matched pairs logistic regression.  We use matching to control the 

variability due to predictors we are not generally interested in.  For example the elk study 

had 20 random points that were matched by date to the one case that was the actual 

location of an elk.   

The Madison elk herd study is an example of a dataset that can be analyzed using 

matched pairs logistic regression.  The results of the study provide evidence the elk in 



general tend to use areas of less snow during the winter.  This tendency was more 

pronounced after the reintroduction of wolves.  This may be due to the ability of elk to 

run away from wolves easier in less snow.  Elk may choose areas of high snow 

heterogeneity so they can expend less energy in finding food.  The reason for the increase 

in the use of the high snow heterogeneity areas following reintroduction of wolves may 

be that elk can run away faster and get to areas of no or less snow.       
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Appendix A 
 

Part 1 
SAS computer code for 1 – 1 matched case-control logistic regression for low weight 
birth mothers.  This includes the code for all 3 models in the paper. 
 
data try; 
infile ‘c:\lowwtbaby.txt’; 
input ID LOW AGE LWT RACE $ SMOKE PTD HT UI; 
RACE2=0; 
RACE3=0; 
IF RACE='2' THEN RACE2=1; 
IF RACE='3' Then Race3=1; 
case=2-LOW; 
 
proc phreg; 
strata ID; 
model case = SMOKE; 
 
 
proc phreg; 
strata ID; 
model case = LWT; 
 
proc phreg; 
strata ID; 
model case = LWT SMOKE RACE2 RACE3 PTD HT UI; 
run; 
 
Part 2 
SAS computer code for finding the midpoints and ranges to scale the elk data from -1 to 
1 for each explanatory variable 
 
dm 'log;clear;out;clear;'; 
data pre; 
infile 'PREWOLF.CSV' delimiter=','; 
input east north date mmddyy8. elv elkid randid slope aspect GHF MAP sri LULC 
SWE_100 Stdev_100 StudySWE StudyStdev ernd bf uf md; 
Format date mmddyy8.; 
 
data post; 
infile 'PostWolfTrans.csv' delimiter=','; 
input east north date mmddyy8. elv elkid randid slope aspect GHF MAP sri LULC 
SWE_100 Stdev_100 StudySWE StudyStdev ernd bf uf md; 
Format date mmddyy8.; 



 
data est; 
infile 'PostWolfEstab.csv' delimiter=','; 
input east north date mmddyy8. elv elkid randid slope aspect GHF MAP sri LULC 
SWE_100 Stdev_100 StudySWE StudyStdev ernd bf uf md; 
Format date mmddyy8.; 
 
data pooled; Set pre post est; 
 
If SWE_100<0 Then delete; 
If Stdev_100<0 Then delete; 
 
swea=SWE_100; 
snha=Stdev_100; 
sweasnha=swea*snha; 
swel=StudySWE; 
snhl=StudyStdev; 
 
laswea=swea*swel; 
lasnha=snha*swel; 
lhswea=swea*snhl; 
lhsnha=snha*snhl; 
 
lhelv=snhl*elv; 
lhsri=snhl*sri; 
lhbf=bf*snhl;lhuf=uf*snhl;lhmd=md*snhl; 
snbf=bf*swea;snuf=uf*swea;snmd=md*swea; 
sweasnha=swea*snha; 
shbf=bf*snha;shuf=uf*snha;shmd=md*snha; 
elvbf=bf*elv;elvuf=elv*uf;elvmd=elv*md; 
sribf=bf*sri;sriuf=uf*sri;srimd=md*sri; 
 
Proc Means Data=pooled; 
Var swea snha sweasnha sri elv lhelv; 
Output out=center 
Min= mswea msnha msweasnha msri melv mlhelv 
Max= xswea xsnha xsweasnha xsri xelv xlhelv; 
Title 'Center and Scale'; 
 
Proc Print Data=center; 
 
Data center; Set center; 
midswea=(xswea+mswea)/2; 
Rswea=xswea-mswea; 
midsnha=(xsnha+msnha)/2; 
Rsnha=xsnha-msnha; 



midsweasnha=(xsweasnha+msweasnha)/2; 
Rsweasnha=xsweasnha-msweasnha; 
midsri=(xsri+msri)/2; 
Rsri=xsri-msri; 
midelv=(xelv+melv)/2; 
Relv=xelv-melv; 
midlhelv=(xlhelv+mlhelv)/2; 
Rlhelv=xlhelv-mlhelv; 
 
Proc Print Data=center; 
 
run; 
 
Part 3 
SAS computer code for 1-M matched case control logistic regression of the elk data.  
This includes scaling, coding variable names for interactions, and other explanatory 
variables.  All models are included in the code for the prewolf data.  The only change for 
the transition and established time periods is the infile and the data specified for each 
model.  
 
dm 'log;clear;out;clear;'; 
data pre; 
infile 'PREWOLF.CSV' delimiter=','; 
input east north dat mmddyy8. elv elkid randid slope aspect GHF MAP sri LULC 
SWE_100 Stdev_100 StudySWE StudyStdev ernd bf uf md; 
Format date mmddyy8.; 
 
If SWE_100<0 Then delete; 
If Stdev_100<0 Then delete; 
 
strt=1+ernd; 
 
swea=SWE_100; 
snha=Stdev_100; 
sweasnha=swea*snha; 
swel=StudySWE; 
snhl=StudyStdev; 
 
laswea=swea*swel; 
lasnha=snha*swel; 
lhswea=swea*snhl; 
lhsnha=snha*snhl; 
 
lhelv=snhl*elv; 
lhsri=snhl*sri; 
lhbf=bf*swel;lhuf=uf*swel;lhmd=md*swel; 



snbf=bf*swea;snuf=uf*swea;snmd=md*swea; 
sweasnha=swea*snha; 
shbf=bf*snha;shuf=uf*snha;shmd=md*snha; 
elvbf=bf*elv;elvuf=elv*uf;elvmd=elv*md; 
sribf=bf*sri;sriuf=uf*sri;srimd=md*sri; 
 
swea=((swea-0.43420)/0.434695); 
snha=((snha-0.41252)/0.41252); 
sweasnha=((sweasnha-0.13058)/.13058); 
sri=((sri-339.647)/658.83); 
elv=((elv-2331)/291); 
lhelv=((lhelv-261.110)/261.231); 
 
 
ADD MODELS 
 
SWEA + (SWEA*SWEL) 
SNHA + (SNHA*SWEL) 
SWEA + SNHA + (SWEA*SWEL) + (SNHA*SWEL) 
 
proc phreg data=pre; 
strata dat; 
model strt*ernd(1) = bf uf md/ ties=discrete; 
title1 "model 1.1"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = sri/ ties=discrete; 
title1 "model 1.2"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = elv/ ties=discrete; 
title1 "model 1.3"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = bf uf md sri/ ties=discrete; 
title1 "model 1.4"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = bf uf md elv/ ties=discrete; 
title1 "model 1.5"; 
 
proc phreg data=pre nosummary; 



strata dat; 
model strt*ernd(1) = sri elv/ ties=discrete; 
title1 "model 1.6"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = bf uf md sri elv/ ties=discrete; 
title1 "model 1.7"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea/ ties=discrete; 
title1 "model 2.1"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = snha/ ties=discrete; 
title1 "model 2.2"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha/ ties=discrete; 
title1 "model 2.3"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha sweasnha/ ties=discrete; 
title1 "model 2.4"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea bf uf md/ ties=discrete; 
title1 "model 3.1"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea bf uf md elv sri/ ties=discrete; 
title1 "model 3.2"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha bf uf md/ ties=discrete; 
title1 "model 3.3"; 
 
proc phreg data=pre nosummary; 
strata dat; 



model strt*ernd(1) = swea snha bf uf md elv sri/ ties=discrete; 
title1 "model 3.4"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea bf uf md snbf snuf snmd/ ties=discrete; 
title1 "model 3.5"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea bf uf md lhbf lhuf lhmd/ ties=discrete; 
title1 "model 3.6"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha bf uf md snbf snuf snmd/ ties=discrete; 
title1 "model 3.7"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha bf uf md shbf shuf shmd/ ties=discrete; 
title1 "model 3.8"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha bf uf md lhbf lhuf lhmd/ ties=discrete; 
title1 "model 3.9"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha bf uf md sweasnha/ ties=discrete; 
title1 "model 3.10"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha bf uf md sweasnha snbf snuf snmd/  
ties=discrete; 
title1 "model 3.11"; 
 
proc phreg data=pre nosummary; 
strata dat; 
model strt*ernd(1) = swea snha bf uf md sweasnha shbf shuf shmd/  
ties=discrete; 
title1 "model 3.12"; 
 
proc phreg data=pre nosummary; 



strata dat; 
model strt*ernd(1) = swea snha bf uf md sweasnha lhbf lhuf lhmd/  
ties=discrete; 
title1 "model 3.13"; 
 
run; 
 

Appendix B 
 

AIC Values for Elk Models    

 Prewolf
Col-
Wolf

Est-
Wolf 

      
Landscape Models   
HBT 35364 12485 11995 
SRI 36566 12792 12199 
ELV 32663 11423 10315 
HBT+SRI 35363 12481 11951 
HBT+ELV 31713 11140 10012 
SRI+ELV 32664 11417 10255 
HBT+SRI+ELV 31711 11132 9957 
    
Snow Models    
SWEA 32131 11466 10652 
SNHA 35301 12424 12133 
SWEA+SNHA 31756 11337 10576 
SWEA+SNHA+(SWEA*SNHA) 31656 11267 10554 
    
Landscape and Snow Models    
SWEA+HBT 32081 11446 10608 
SWEA+HBT+ELV+SRI 30861 10856 9677 
SWEA+SNHA+HBT 31736 11332 10543 
SWEA+SNHA+HBT+ELV+SRI 30268 10664 9538 
SWEA+HBT+(SWEA*HBT) 32020 11439 10596 
SWEA+HBT+(SNHL*HBT) 32013 11402 10591 
SWEA+SNHA+HBT+(SWEA*HBT) 31728 11334 10537 
SWEA+SNHA+HBT+(SNHA*HBT) 31656 11304 10524 
SWEA+SNHA+HBT+(SNHL*HBT) 31658 11290 10531 
SWEA+SNHA+HBT+(SWEA*SNHA) 31628 11259 10516 
SWEA+SNHA+HBT+(SWEA*SNHA)+(SWEA*HBT) 31628 11265 10514 
SWEA+SNHA+HBT+(SWEA*SNHA)+(SNHA*HBT) 31562 11243 10503 
SWEA+SNHA+HBT+(SWEA*SNHA)+(SNHL*HBT) 31573 11227 10505 

 
 
 
 
 
 
 



 


