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| 1 Introduction

Population biologists define a population as a group of individuals of a single
species, living in a defined area at a particular time, having the potential
for genetic exchange. Consider salmon as an example. These fish hatch
in streams and spend their first year or more living in freshwater. They
subsequently swim to the ocean to finish maturing. After up to five years at
sea, they return to their natal (home) stream to spawn (reproduce). Salmon
die shortly after spawning. Thus, salmon who have returned to their natal
stream to spawn are considered as one population. Salmon at sea come from
many populations.

The goal of a population viability analysis (PVA) is to estimate the
probability that a population of interest will persist for a certain amount of
time. Population viability analyses are most often applied to species that
are endangered; that is, they are at high risk of going extinct.

2 Deterministic Population Growth Models

The first element of a PVA is a deterministic population growth model, and
these models differ dramatically depending on whether or not a population
has age structure. Whether or not a population has age structure is, in
turn, determined by the biology of the species. A species can be either
semelparous or iteroparous. A semelparous species produces all of its
offspring at one time and then dies, whereas an iteroparous species produces
offspring at more than one time during its life. Annual plants (those that
live only one year), many insects and salmon are semelparous. Trees, deer
and humans are examples of iteroparous species. Iteroparous species give
rise to populations with age structure (different aged individuals in the
same population at the same time.) Semelparous species generally give rise
to populations without age structure; that is, generations do not overlap.
The remainder of this paper focuses on population viability analyses for
populations without age structure.

Non-age structured population growth models are based on one of the



two following sets of assumptions. First, survival and birth rates are
constant across all individuals, and generations are non-overlapping. This
means that only one age class is alive at a given time, as occurs for
semelparous organisms where individuals mature at the same rate. Second,
there are only two age classes: adults and offspring. In this case, adults
have constant per capita survival and birth rates, and offspring have both a
constant per captia survival rate and a constant rate of maturation. Most
models are based on the assumption that offspring become reproductively
mature before the next breeding cycle begins, but some models allow for a
time lag in maturation. A non-age structured model is fit to a time series of
total population size estimates.

Furthermore, nonQage structured population growth models are gener-
ally based on two parameters: r and K. The former is known by names
including the intrinsic rate of increase, the exponential growth rate and the
Malthusian parameter. Populations that are not limited by competition or
effects of crowding grow geometrically, and they are modeled as growing
at the rate of ¢” or 1 + r. Carrying capacity (K) is defined as the point
at which the population size at one time step equals the population size at
the next time step. Biologists consider carrying capacity to represent the
maximum number of animals a habitat can support over a long period of
time; however, this is a very general concept, not a mathematical definition.

It is worth noting that population growth models do produce non-
integer population sizes. Extinction, however, is always defined by whole
numbers. That is, a simulated population that has dropped below one is
considered extinct. Usually, a quasi-extinction level is defined. For example,
a population of sexually reproducing organisms is effectively extinct when
the population drops below two, and effective extinction may occur at higher
numbers because of inbreeding or behavioral problems. For example, if the
few individuals remaining in a population live in a vast area, they may not
be able to find each other to mate. Such as population would be effectively
extinct at a whole number greater than two.

The simplest population growth models describe density independent
growth. Density independence refers to situations without overcrowding;
because of this, the growth rate is independent of population size. This
type of growth is typical of founding populations, where population size is
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small, and resources such as food and nest or den sites are easily available.
The discrete form of density independent population growth is given by the
following equation,

AN =rN;, where (1)
N = population size
t = time
r . = intrinsic rate of increase.

It follows from Equation (1) that

Nt+1 = Nt -+ ’I"Nt = (1 + ’I")Nt. (2)

The predominant characteristics of this model are that population growth is
unlimited and population size in the next time step is directly proportional
to the current size of the population.

In continuous time, Model (1) becomes

dN
q TN, ®3)
which integrates to
In(N) =rt+C,
giving
N =¢"(C'.

Finally, solving for C’ at t =0 and N = N, gives

Nt = N, oert. . (4)
Most populations residing at high lattitudes are birth-pulse populations,
meaning that individuals give birth during a short portion of the year.

Density independent growth for birth-pulse populations is best modeled
in discrete time. At low lattitudes, animals often reproduce year round,
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making the continuous time model more appropriate. Because 1 + r is the
first order Taylor approximation of e” at r = 0, the discrete time model and
the continuous time model give very similar results for r near zero; however,
as the distance between zero and r increases, the results of the two models
diverge (Figure 1). When —0.2 < r < 0.2 the discrete time model and
the continuous time model give results that are similar enough to be used
interchangeably (Case 2000).

Because populations cannot grow without limit for an indefinite pe-
riod of time, density dependent population growth models have been
developed. These growth curves have a sigmoidal shape showing essentially
density independent growth at small population sizes, and a decreasing
growth rate as population size increases. When growth is density depen-
dent, the discrete time models and the continuous time models produce
qualitatively different growth curves (Case 2000), thus the decision to model
in discrete or continuous time is made by choosing the population growth
curve that best fits the data. Discrete logistic growth (Figure 2) is governed
by the following equation,

AN = Ntr(g—;{ﬂ), where (5)

Il
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time

intrinsic rate of increase
carrying capacity.

I

f
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t
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K

It follows from (5) that

Nepr = Ny (1 + T(K I_(Nt)>

At very small population sizes, Nyy1 =~ (1 + r)NV;, and population
growth is essentially density independent. At N; = K, the equation becomes
Niy1 = Ny, and the population is at equilibrium. Population size can easily
overshoot carrying capacity when r is large. When population size exceeds
carrying capacity, the discrete logistic equation yields negative growth.
Both exceedence of carrying capacity and negative population growth are
observable in nature. However, in the model of discrete logistic growth,
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if the population size exceeds K(r+1)  the model will produce a negative

r )

population size in the following time step, obviously a biological impossibility.

The Ricker equation (Ricker 1954, 1958; Figure 3) corrects this defi-
ciency and can be written as

New = N5, - (6)

As population size becomes vanishingly small, Ny, = Nie”, and population
growth again becomes density independent. At N; = K, N;y3 = Ny, again
showing an equilibrium. Exceedence of K produces negative growth, and a
very large population size will precipitate a population crash; however, the
population size will not go below zero.

The behavior of both of these density dependent models depends very
much on the magnitude of the intrinsic rate of increase. When projected
through time, both the discrete logistic model and the Ricker model grow to
carrying capacity if the intrinsic rate of increase is is greater than zero and
less than or equal to one. Between one and two, the population trajectory
oscillates, but dampens to K. As r increases above two, stable oscillations
are produced, and as r increases toward three, the population trajectory
becomes chaotic.

Another commonly used model of density dependent population growth
is the Beverton-Holt model (Beverton and Holt 1957, Figure 4), which
also is referred to as continuous logistic growth. This model can be written as

dN (K—N).

VK

(7)



Rearranging (7) gives

Integrating with respect to N and ¢ yields

In(N) In(N—-K) rt
K K K
which can be rearranged as

+C,

[z =rt+C'

N _ _ _rt
g =€¢"C".
Solving for C” at t =0 and N = N, gives

N _ Noe”
N—K N,-K’

and solving for N gives
NO e’rt

N e ®

As in the Ricker model, extremely small population sizes experience essen-
tially geometric growth, because

NO ert

————”:Nert+ON2, )
1+No—(eK_1) ’ (o) .
and if Ny = K,
Noe'rt
—— T = K,
1+ Nl
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showing an equilibrium at K.

However, ,
Noe"
lim ————0— = K,
e 1 NO(e_K}l :
and
NO ert ) ert K

1i = ,
Nowoo 1 + N (et 1)

meaning that over time, the population grows to carrying capacity, and a
population initialized above K grows to the population ceiling, which is,
in fact, larger than K. Thus, the functional difference between the Ricker
model and the Beverton-Holt model is that at high population levels, the
former models a population that crashes to zero, whereas the latter models a
population that simply stops growing. The Ricker model describes scramble
competition: if the population size is too large for the available resources,
then everyone suffers, hence the population crash. Species that respond in
this manner are said to be r-selected, and their adaptations include good
colonization abilities and high intrinsic rates of increase. The Beverton-Holt
model describes contest competition: if the population size is too large
for the available resources, then there are winners and losers. Species
that respond in this manner are said to be K-selected, and their primary
adaptation is competitive ability. Although there are multiple models of
density dependent population growth, the most striking difference among
the models is this response to large population sizes.

All of the density dependent models considered here produce nonsen-
sical results if the population size is initialized above K and the growth
rate is negative. For discrete logistic growth, if N; > K and r < 0, then
r(1 — %) is positive, and the population will exibit unlimited positive
growth. Under the same circumstances, the Ricker curve also will exhibit
unlimited positive growth. The Beverton-Holt model yields a population
that will crash to a negative size. Clearly, none of these equations would
be appropriate to model a population that had exceeded carrying capacity
and then changed from a positive to a negative growth rate because of a
density-independent factor, such as hunting or an environmental catastrophe.
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The final density dependent model to be considered is the Schnute
model (Schnute 1981, Figure 5),

Ny = —ofb where
et ©
N = population size
t = time
o = a function of the intrinsic rate of increase -
B = a function of the intrinsic rate of increase and
the carrying capacity
~ = ashape parameter that determines the nature of
the density dependent response.
When v =1,
Oth
N, 10

which is simply a reparameterization of the Beverton-Holt model where
a=¢ and §= <L ‘
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‘Furthermore,

aNt

limv_,o —t
(1+ByNe) 7

- limy_.g aN¢
limy_,0 (148vN:)¥

— alV,
lim-,_,o (1+ﬁ’yNt) ¥
aNt

1
lim_y_,o el""((l'l'ﬁ’YNt) 7)

alNg

= T F (1 +BYNY)

aNt

limy_,q £In(1+A7Nz)

e

=N o by I'Hopital’s rule

. BN;
™10 THEAV

— alN
= In:

which is a reparameterization of the Ricker curve, where oo = €" and 8 = .
For values of v between zero and one, the Schnute curve represents a mixture

~ of the Ricker and Beverton-Holt response. When the data are not sufficient
to determine the nature of a population’s response to overcrowding, the
Schnute model gives a more accurate representation of the uncertainty
surrounding predictions about the populations future than would be given
by choosing either the Ricker or the Beverton-Holt model.

3 Error Structure

Once a deterministic mathematical model has been chosen to describe the
population dynamics of a species, an error structure must be incorporated
into that model. Because population growth is a geometric process, its error
is best described by a multiplicative, not an additive, process. The error on
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population growth is considered to be lognormally distributed, giving the
intrinsic rate of increase a normal distribution.

4 Confronting Models with Data

The next step in a population viability analysis is to estimate the model
parameters based on a time series of population size estimates. The
models presented above are simple because all individuals are treated alike;
that is, populations are modeled without age structure or demographic
stochasticity. Yet despite the simplicity of these models, the amount of
varibility in ecological systems and the logistics of collecting field data often
make it difficut to accurately estimate the model parameters. Ten years of
population count data are often considered the minimum’ needed, even for
the simplest of PVA’s (Morris and Doak 2002). Thirty years of data could
well represent a career’s worth of work for a biologist, yet statistically, this
sample size is barely adequate.

Demonstrating how a species responds to competition can be difficult
even with many years of data, either because the population has not been
observed over a large range of sizes or because of the variation due to both
process and observation error. For example, application of the Schnute
model to a salmon population yielded such a broad posterior distribution on
7 that the species’ response to increasing density could not be determined
(Goodman 2004). If a population is suspected to be density dependent,
but the data do not allow for estimation of both r and K , the population
may be modeled by using a density independent model, but allowing r to
vary over time (Goodman 2006). Fitting density dependent models becomes
much easier if one can obtain an estimate of carrying capacity independent
of the population trajectory being analyzed. Finally, it is noteworthy that
PVA'’s for aged structured populations are sometimes conducted by fitting
non-age structured models to time series of population estimates simply
because age-structured data are unavailable.
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5 Future projections

After the inference is complete, the model, the parameter estimates and
the error structure are used to conduct stochastic simulations of population
growth. Future projections of interest include the probability the population
will persist for a certain number of years, the expected population size at a
given date and the expected time to extinction.

It is particularly important in a PVA to distinguish between process
variation and observation error, making the measurement of observation
error an important component of study design. Observation error should not
be used in the forward projections of a PVA, because the population does not
actually experience the variability due to observation error. Furthermore,
inclusion of observation error will bias low the estimate of the mean growth
rate. Consider the K observed population growth rates ();) derrived from a
time series of K + 1 population size estimates.

Furthermore, note that population growth is a geometric process, governed
by the geometric mean of A;,
K 1
AG = [H At] 4 .

t=1

Let \; be generated from a lognormal distribution with mean, 8, and variance,
72, and note that by a Taylor series expansion around 6,

1

'2—05(/\& —0)* + Opl(X: — 6)%]

1
log(h) = log(6) + 5(% — 6) ~
Taking expectations and simplifying gives,
-
Eftog(A)] & log(0) — 5

Furthermore,
1 K
Ellog(NM)] = Bl ; logM)] = E [losl((tl:I1 A)¥)] = Eflog(Aa)]-
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Thus,

72

Eflog(Aa)] = log(6) — 555,

meaning that the expectation of the log of the geometric mean of A;
decreases as the variance of ); increases. Because the natural logarithm is
a monotonic, increasing function, the expectation of the geometric mean
of \; also decreases as the variance of ); increases. Therefore, inclusion
of observation error in the forward projections of a PVA will result in
an increase in the variance of )\; and therefore a decrease in its expected
geometric mean, biasing low the future population size projections.

6 Example PVA

Population viability analyses come in many different flavors. In the example
below, I used simulated data to present one way to conduct a PVA. I try to
be explicit about the assumptions made for this particular example. I used
a density independent, continuous time model, and I incorporated process
variation in the PVA by allowing the intrinsic rate of increase to vary on
an annual basis. However, I made the simplifying assumption that these
growth rates do not show serial correlation.

I simulated ten years (t) of population size estimates (n), which are
presented below, along with the resulting estimates of growth rates (\) and
intrinsic rates of increase (r). The data were generated using an initial pop-
ulation size of 100 and ten independent values for r drawn from a N(-.017,
0.035) distribution. I chose this distribution because it is representative of
parts of the decline of the Steller sea lion, and I simulated ten years of data
because that is considered the minimum needed for a simple PVA.

From the above data, I first conducted a numerical, Bayesian inference on
the true mean and standard deviation of r, which were both unknown. I
specified r; ~ #id N(u, 02), Specifically, the likelihood function was

dwod) - L
) =

eaiz (n=1)s? + n(r-p)?]
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t n A=¢e¢" r

1 99 0.9900 0.0683
2 106 1.0707 0.0279
3 109 1.0283 -0.0092
4 108 0.9908 0.0000
5 108 1.0000 0.0364
6 112 1.0370 -0.0090
7 111 0.9911 0.0000
8 111 1.0000 -0.0182
9 109 0.9820 0.0091
10 110 1.0092

Table 1: Time step (t), population size estimates (n), growth rates (e"), and
intrinsic rates of increase (r). 7= 0.0117, s = 0.0276.

I used independent, improper uniform priors on both u and log(o?).
Because the prior on log(c?) was uniform, the prior on ¢ was proportional
to the reciprocal of o2, resulting in a joint posterior where

iz l(n=1)s? + n(F-p)?]

1
2
Flusofr) o< —3

Integrating over u shows that
n— n—1)s?
F(@%r) o (AT e

indicating that the marginal posterior on o2 is a scaled inverse x? distribu-
tion of the form

Al ~ Invyi(n—1,s%).

Integrating the joint posterior over o2 shows that
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flulr) o [1 N %}_%’

meaning that the marginal posterior on u is a t distribution of the form
2
_ 8
plr ~ t, g (r, —).
n

w—r

s/v/n

In other words,

r ~ tn—l-

Note that p and o® are not independent in the joint posterior, thus
the joint posterior cannot be obtained by sampling from the respective
marginal posteriors. However, the joint posterior can be factored as follows:

.f(ﬂa O'2|I') = f(u|a2,r)f(02!r).

Thus, o can be sampled from its marginal posterior and p can then be
sampled from its posterior conditioned on o2, which is normally distributed as

0.2

f(/-"loja I‘) ~ N(F’ —;L—)

I obtained the joint posterior distribution in this manner, using a sample size
- of 100,000,000. I next projected population size 100 years into the future
for each of the 100,000,000 simulated populations. For each year in each
population projection, I sampled a new r from the N(u;, 0%) distrubution.
I then calculated the next year’s population size using the continuous
time, density independent model of population growth. A population was
considered extinct if its size became smaller than two individuals. I assumed
the variability in the posterior distribution came from process variation, not
observation error.

The chance of extinction during a 100 year time frame was estimated

at 5.7%. Figures 6 - 9 show the posterior distributions of i, 02, the natural
logarithm of population size in 100 years and time to extinction given the
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population went extinct within 100 years. Given the small sample size (ten
years), it is not surprising that the posterior mean of u was substantially
different than the true mean used to generate the data, with the former
showing an average 1.2% per year increase, and the latter showing an
average 1.7% per year decline. This is a sobering commentary on the
nominally minimal sample size of ten.

7 Conclusion

Population viability analyses are used to estimate the probability that a
population of interest will persist for a certain amount of time. The three
components needed to conduct a PVA are a deterministic population model,
an error structure and data. For a population without age structure, the
data are time series of population estimates. The two steps to a PVA are
inference on the model’s parameters and subsequent use of the parameter
estimates to simulate future population growth. Although PVA model
theory is well developed, data requirements are rarely met, underscoring the
need for parsimony.

8 Literature Cited

Beverton, R.J.H. and S.J. Holt. 1957. On the dynamics of exploited fish
populations. Fisheries Investment Series 2, Vol. 19. U.K. Ministry of
Agriculture and Fisheries, London.

Case,T.J. 2000. An Illustrated Guide to Theoretical Ecology. Oxford
University Press. New York.

Goodman, D. 2006. A PVA model for evaluating recovery criteria for
the western Steller sea lion population. Steller Sea Lion Recovery Plan:
Eastern and Western Distinct Population Segments (Eumetopias jubatus).

National Marine Fisheries Services Office of Protected Resources.

Goodman, D. 2004. Uncertainty analysis of stock recruitment relationships

18



for selected western Alaska chum stocks. Report to the Arctic-Yukon-
Kuskokwim Sustainable Salmon Initiative. www.aykssi.org.

Morris, W.F. and D.F. Doak. 2002. Quantitative Conservation Biol-

ogy: theory and practice of population viability analysis. Sinauer Associates,
Sunderland, MA.

Ricker, W.E. 1954. Stock and recruitment. Journal of the Fisheries
Research Board of Canada. 11: 559-623.

Ricker, W.E. 1958. Handbook of computations for biological statistics

of fish populations. Fisheries Research Board of Canada Bulletin. 119:
1-300.

Schnute, J. 1981. A versatile growth model with statistically stable
parameters. Can. J. Fish. Aquat. Sci. 38: 1128-1140.

19



Exponential Growth

Points for Discrete Growth, Lines for Continuous Growth

2000
|

N[t+1]
1000
1

500
|

0
|

N[t]

1000
|

N1
AT

Population Size
600
1
T T TR TR TR TR
N=—200O08G
om N

0 200
1

Figure 1.



Figure 2.

Population Size N[t+1]

Population Size

1000

0

0 600

0 600

Discrete Logistitic Growth with K = 1000

N[t]

4000 5000

L1t

L1l

0
Time
il 1
\ / ¥ ¥ W 4
d E\ \35 \ I'H / \ / \&/ ——re2D
.. =i
I T | I T
0 10 15 20 25 30
Time



N(1)

Population Size

1000 1500

500

0 200 400 600 800

Ricker Curve with K = 1000

|11

~ e =

N==0
owmown

I I I I | I |

0 2000 4000 6000
N@)

-~ =~ =
I

—_—_
oo

Time

N(1)

Population Size

5000

3000

1000

0

2500

1500

0 500

0 2000
N(O)

4000

T | | I | I

0 5 10 15 20 25 30

Time



Beverton-Holt Curve with K = 1000
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Schnute Curve with K = 100 and alpha = 10, for gamma = 0.000001-1.0
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