




INTRODUCTION

The territory belonging to a certain indigenous tribe is threatened by construction and
over-development. It is important to preserve the cultural quality of these lands, while at
the same time allowing for industrial growth. The tribe has hired a non-profit organization
(NGO) to help them produce a report that will summarize areas in this territory of high
cultural importance. The report will provide guidance to the local government in its land
use and development program. The hope is that the government will be able to avoid
developing and building on culturally important lands, thereby preserving the tribes most
valuable and sacred resource.

The first step in identifying areas of high cultural importance is to actually define
culturally important as far as the tribe is concerned. The tribes largest food source comes
from the streams, rivers, and lakes that are native to the land. Historically, salmon has
been a huge part of their diet. They also hunt caribou and moose. With the help of the
NGO, a data set of use sites has been compiled. A specific use site is a site that has been
positively identified by a tribe member as being a place that they have visited and used
for at least the past three generations. Typically a use site represents a camping, fishing,
and hunting site. Up until this point, if a use-site was pointed out to the local government,
the only precautions taken to preserve this land was to draw a circle around it, then build
around the circle. This effort to preserve cultural importance has failed miserably since a
use site is no longer useful when it is surrounded by buildings. It is also believed that there
are historical use sites whose locations have been lost due to the invasion of technology
and the modern world into the tribes culture. Sites that they historically may have used
to hunt, fish, and camp, may not be visited any more since there is no need thanks to
technology. Therefore, the tribe needs to be able to classify every single piece of their
territory as either culturally important or not, but up until this point had no way of doing
that. In the hope of solving the problem, the NGO began by measuring multiple variables
on each known use site using a GIS. These variables included, for example, path distances
to the nearest lakes and rivers as well as elevation and slope of the land. The hope is
to use these sites as models for typical tribal habitat. Then the surrounding lands will
be classified as either culturally important or unimportant, based on whether the land is
similar to that of the typical tribal habitat or not. The hope is to create a habitat model
that will be used by the local government in their plans for the development of the land.
It will enable them to avoid construction and development of these culturally important
lands.

The actual habitat model will be created using the Mahalanobis Distance Statistic
shown below:

Mahalanobis Distance = (x− µ̂)′ Σ̂−1 (x− µ̂)

In this statistic, x represents the vector of different variables measured on each site, µ̂ is
the estimated mean vector of x, and Σ̂−1 is the inverse of the estimated covariance matrix
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of x. The idea is to calculate µ̂ and Σ̂ using the measurements taken on all use sites. Then
the same variables measured on the use sites will be measured on all random sites. Random
sites are sites that are classified to be in the territory of the tribe, but it is unknown as to
whether they are use sites or not. Finally, the Mahalanobis distances between the average
and every use site will be calculated. If a particular random site has a small Mahalanobis
distance associated with it, this will imply that it contains characteristics similar to that
of the typical tribal habitat. This site will then be classified as culturally important and
will be marked as an area that should not be developed. In this way the typical habitat of
the tribe will be modeled and mapped for the use of the local government.

There is a problem with simply averaging over all use sites. Based on the tribes his-
torical tendencies, there may be more than one type of typical use site. For example, a
specific site located near a river may be only visited and used for fishing. While another
site located father away from any body of water would be more useful for hunting. These
sites would have very different variable measurements. In fact, there probably exists an
unknown number of groups of use sites where the estimated mean vector of one group
varies greatly compared to another. This would imply that averaging over all use sites
in order to calculate µ̂ could create an estimated mean vector that is not representative
of any use site in general. In order to address the problem of the possibility of multiple
groups, a cluster analysis will be performed on the data in the hope that easily identifiable
groups will emerge. Then, these clusters should suggest groups for which an estimated
µ̂ vector should be calculated. Finally a Mahalanobis distance can be measured for each
random site based on these vectors. This rest of this paper will concentrate on the process
of cluster analysis, and its application to the use site data set described above.

Cluster Analysis

Generally speaking, a cluster analysis is the classification of a group of objects into separate
groups or clusters of similar objects. The first step in any cluster analysis is to choose a set
of relevant variables. This is a subjective process, based solely on the researchers expertise
in the field of interest. However, this process should not be taken lightly. It is possible to
add too many variables to the data set and in turn obscure the end result. In other words,
irrelevant variables may make the final clusters fuzzy and un-interpretable. (Gordon 24)

After a relevant suite of variables is chosen, the next step in a cluster analysis is to
create a distance matrix from the original data set. This matrix will usually contain a
similarity or dissimilarity measure for every pair of objects. Then a clustering algorithm
that employs either an agglomerative or divisive method is chosen. This algorithm should
eventually produce reasonable groups of similar objects. While the idea sounds simple, the
actual methods are wide ranging and can potentially be confusing. Its up to the researcher
to choose an appropriate method for the data set being studied.

Dissimilarity Measures
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Dissimilarity measures are mostly reserved for quantitative data, however, some dissim-
ilarity measures can be adapted to give distances between categorically measured objects.
The application of distance measures to categorical data will be discussed later in the
paper. Usually a distance measure is restricted to satisfy the following four conditions:

(i) dij ≥ 0

(iv) dij = 0 iff i = j

(iii) dij = dji

(v) dij ≤ d−ik +dki for all ijk in Rd.

(Seber 236) The first three restrictions imply that the distance matrix will be positive
definite and symmetric. The fourth shows that the measure satisfies the triangle inequality.
When a distance measures does satisfy (i)-(v) it is said to be a metric.(Seber 236) Some of
the most popular types of dissimilarity metrics are the Euclidean Distance, Mahalanobis
Distance, Canberra Distance, and the Manhattan or City-Block Distance.

Euclidean Distance

The Euclidean distance (shown below) is probably the most common metric used.

Euclidean Distance =

√√√√i=n∑
i=1

(xij − xkj)2

In one, two, or three dimensions, this distance is easy to envision, as it is the straight
line distance between two points. However, it becomes more complicated as the dimension
of the data increase. (Wiley58) While Euclidean distance is highly favored for its ease of
interpretation, it can be inappropriate for data sets with variables that are not comparable
with one another. This is due to the fact that it is sensitive to skew, outliers, and large
variability. Essentially, some variables may wrongly have more weight placed on them than
others. In cases like this, all variables should be measured in the same units, or transformed
to have the same units. If this is not possible, some kind of weighting is in order and a
weighted Euclidean distance can be used:

Weighted Euclidean Distance = (
j=p∑
j=1

ωj(xij − xkj)2)
1
2

Here, wj represents a weight specific to the variable. Typically, wj is inversely propor-
tional to the variance of that variable. This will down weight variables with large variances
and assign more weight to variables with small variances. The problem with scaling in
cluster analysis is that it has the potential to reduce the importance of a variable that may
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explain most of the group separation. Down weighting these important variables through
scaling can decrease the clarity between groups. In fact, it may actually be desirable
to weight some variables more than others based on importance. However, this type of
weighting is usually subjective. (Wiley 60)

For clustering objects, it makes sense to create clusters where the within group vari-
ability is small compared to the between group variability. Ideally, we would like to work
with data where the within cluster variability is equal across groups, and the between
cluster variability is large compared to within. This idea is similar to the theory behind a
MANOVA. This equal variance across groups could be accomplished by properly scaling
the data. However, this implies that we would need to know the clusters before we scale
the data. If, in fact, we did know the clusters, what would be the point of performing a
cluster analysis in the first place? In fact, if the groups are already known, it would provide
more information to perform a discriminant analysis on the data. Essentially, weighting
is a circular argument, and should only be used with extreme caution, and expert advice.
(Hartigan 62)

Mahalanobis Distance

It should also be noted that that the Euclidean distance does not take into account the
fact that certain variables may be highly correlated. If variables are highly correlated, it
may be reasonable to down weight them so that the information that they contain is not
over emphasized. The Mahalanobis distance takes into account the relationships between
variables. In fact, any linear transformation of the data will not affect this metric. There-
fore it avoids the scaling issue as well as the problem of correlated variables. However,
the clarity of cluster separation is reduced even more when using the Mahalanobis dis-
tance. This is due to the fact that within-cluster distances are increased compared to the
between cluster distances which, as previously argued, reduces cluster clarity.(Seber 354)
This implies that a Mahalanobis distance is more appropriated for assessing the distances
of objects from an overall average, rather than separating objects into groups. This is the
main reason that this distance is used to create the actual habitat model.(Wiley62) )

City Block and Canberra Distances

The City Block or Manhattan Distance (shown below) is an alternative dissimilarity
measure to the Euclidean or Mahalanobis distances.

City Block Distance =
p∑

j=1

|xij − xkj |

(Gordon 20)
Note that it is simply the sum of the absolute values of the distances between two objects

for each variable. This metric will tend to highlight variables with larger variability, skew
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or outliers. However, as previously noted, these types of variables can in fact be the main
discriminating variable in a cluster analysis. In this sense, the city block distance may be
helpful in highlighting the importance of these variables. Essentially, the researcher needs
to be aware of which variables are contributing most to the distance measure and whether
this contribution is appropriate or not.

If skew, or outliers prove to be a problem in the data set of interest, the Canberra
distance metric (shown below) may be a more appropriate measure to use. Each variables
contribution to the distance is weighted by the magnitude of the measurements of that
variable for the specific pair of objects. This causes the Canberra Distance to be very
robust and resistant to skew and outliers.

Canberra Distance =

{
0 xij = xkj = 0∑p

j=1
|xih−xkj |
|xij |+|xkj | otherwise

Sometimes, this metric is also scaled by dividing by p. This ensures that its value stays
between 0 and 1. This type of distance scaling can be harmful or helpful. By reducing
distances that may actually need to be large, the cluster definition can become blurred.
Also, note how sensitive the Canberra metric is to small changes close to zero. This
suggests that quantitative variables may need to be transformed in some way to avoid the
zero problem

Similarity Measures

Typically, similarity measures are used to measure the distance between objects that
have only categorical measurements taken on them. Specifically, there should be p binary
variables measured on each object. If the variables have multiple categories, each category
should be turned into its own binary variable, as with the dissimilarity measures. Among
the most popular similarity measures are the simple matching coefficient, Jaccards coeffi-
cient, and Czekanoqskis (Seber 356) Consider the situation where p binary variables are
measured on a set of objects. Then for a pair of objects a contingency table can be formed
where the following is true:

• a represents the number of binary variables that are present in both objects

• b represents the number of binary variables that are present in object 2 and not
object 1

• c represents the number of binary variables present in object 1 and not object 2

• d represents the number of binary variables that are not present in either object

An example of the type of contingency table than can be formed for two objects is
shown below:
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Object i
1 or Present 0 or Absent Row Totals

Object k 1 or Present a b a + b
0 or Absent c d c + d

Column Totals a + c b + d p = a + b + c + d

Also, let p be the total number binary variables. Then, p = a + b + c + d.

The Simple Matching Coefficient

The simple matching coefficient counts the number of matches out of the total number
of comparisons and computes the proportion of matching traits between two objects.

Simple Matching Coefficient =
a+ d

p

(Seber 356) This similarity measure is appropriate for situations where the simultane-
ous presence of a trait in two objects is equally as important as the simultaneous absence
of a trait. For example, if the specific variable of interest is gender, then male is just as
important as female. The simple matching coefficient would highlight pairs where both
subjects are of the same gender. (Gordon 29) If the researcher is more interested in con-
centrating on pairs where the subjects genders differ, then the simple matching coefficient
can be turned into a dissimilarity coefficient. Instead of dividing (a + d) by p, you would
divide (b + c) by p. This will give the proportion of mismatched traits. (Gordon 18)

Jaccards and Czekanowskis Coefficients

While the simple matching coefficient works well for highlighting both co-absence and
co-presence of a trait, there are situations where it is more important to concentrate on
co-presence only. For example, in some agricultural studies it is more important when a
certain species is present on two plots of ground rather than when it is absent from both.
In this situation, Jaccards Coefficient may be more appropriate.

Jaccard′s Coefficient =
a

(a+ b+ c)

(Gordon 29) Jaccards Coefficient excludes all variables where a trait is absent from
both objects and calculates the proportion of all pairs where a specific trait is present in
both. Like the simple matching coefficient, Jaccards coefficient can also be turned into a
dissimilarity measure. The formula is shown below:

Jaccard′s Dissimilarity Coefficient =
(b+ c)

(a+ b+ c)
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(Gordon 18) Excluding all co-absence pairs, Jaccards dissimilarity coefficient is calcu-
lating the proportion of pairs with mismatching traits.

In some instances, matching pairs are so important that the researcher wishes to place
double emphasis on them. In this case Czekanowskis Coefficient is appropriate:

Czekanowski′s Coefficient =
2a

(2a+ b+ c)

This is very similar to Jaccards except that the weight of a positive match has doubled.

Mixed Data Sets

Generally speaking, similarity measures are meant to describe categorical data while
dissimilarity measures are meant to describe quantitative data. However, there are ways
to measure similarity and dissimilarity when there are a mixture of variables types in the
data set. For dissimilarity measures, the n categories in each categorical variable must
be transformed into n separate binary variables where 1 represents the presence of a trait
and 0 represents the absence of that trait. Then, each metric will increase when a trait is
present in one object and absent in another. This will highlight objects with no similarities.
(Gordon 20) Care should be taken here though since a variable with too many categories
could potentially produce too many variables in the data set. As previously mentioned,
large numbers of variables, especially variables that may not be relevant to the study, have
the potential to blur the cluster definition.

For similarity measures, both Gordon and Seber suggest the following distance. Con-
sider a data set with d1 binary variables, d2 multistate categorical variables, and d3 quan-
titative variables. The following formula can be used to describe the similarity between
two objects:

sik =

∑d
j=1 cikj∑d
i=j wikj

For the binary variables where co-presence is more important than co-absence, cikj is
1 if the specific trait is present in both objects and 0 if it is absent in one an present in
the other. The wikjs are equal to 1 unless the trait is absent in both. Below is a table
illustrating these values:

object i + + - -
object k + - + -
cikj 1 0 0 0
wikj 1 1 1 0

For the binary variables where co-presence is equally as important as co-absence, the
following specifications for cikj and wikj should be used.
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object i + + - -
object k + - + -
cikj 1 0 0 1
wikj 1 1 1 1

For the d2 multistate categorical variables, cikj is equal to 1 if objects i and k agree on
variable j and is equal to 0 otherwise. wikj is always 1 for these variables.

Finally for the d3 quantitative variables wikj is always 1 and the following formulas for
cikj :

cikj = 1−
|xij − xkj |

Rj

where Rj is the range of variable j. Note that if all of the variables are binary where
absence has less importances than presence, then sik is Jaccards coefficient. (Seber 358) If
all of the variables are binary, where each state is equally important, then this coefficient
is the simple matching coefficient.

Agglomerative Clustering Methods

Hierarchical, agglomerative clustering methods are some of the most widely used meth-
ods in cluster analysis. In an agglomerative method, each object starts in its own class or
cluster. At each step of the process, objects or clusters that are closest to each other are
combined into a single cluster. How close two objects are is based on the specific clustering
criterion chosen. Four of the most common criterion are the single linkage, average link-
age, complete linkage, and Wards methods. They will produce a hierarchically-nested set
of partitions of n objects which can then be displayed through a dendrogram or tree graph.
(Gordon 78) These methods were originally used in biological classification where there
was a need to classify organisms into a certain species, then genus, family, etc. Biologists
are interested in the entire tree and its structure. They have no need to create an optimal
number of groups, which is the goal of most other cluster analyses. (Everitt 79) Therefore,
the problem lies in the fact that these methods will produce several levels of grouping,
starting with the uninformative single object groups and ending with the equally uninfor-
mative overall group. This leaves the burden of choosing an optimal number of groups
on the analyst. There are many suggested stopping rules for agglomerative hierarchical
cluster analysis, two of which will be discussed in this paper.

The four previously mentioned clustering methods can be described in terms of a specific
recurrence relation: Let Ci ∪ Ck represent the mergence of groupsCi and Cj and let any
other group be Ck. Finally, let the distance between two groups be defined as d(Ci, Cj).
Then the dissimilarity between Ci ∪ Cj and Ck is:

d(Ci ∪ Ck, Ck) = αid(Ci, Ck) + αjd(Cj , Ck) + βd(Ci, Cj) + γ|d(Ci, Ck)− d(Cj , Ck)|
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The set of parameters θ = {αi, αj , β, γ} will then specify the type of clustering algorithm
chosen.

For single linkage, αi = αj = 1
2 , γ = −1

2 , and β = 0. This algorithm will define the
distance between two clusters to be the distance between the closest two points in each
cluster. For example, if the distance between d(Ci, Ck) is 5 and the distance between
d(Cj , Ck) is 6 then the distance between Ci ∪ Ck and Ck is:

d(Ci ∪ Ck, Ck) =
1
2

(5) +
1
2

(6)− 1
2
|5− 6| = 5

which is the smaller of the two distances. In order to see the algorithim in action, lets
consider the following data. Below we have the percent of seven different US states that
voted republican in 1960 and 1964. The original data set is:

1960 1964
GA 37 54
LA 29 57
SC 49 59
WV 47 32
MO 50 36
KY 54 36
MD 46 35

Now lets assume that the Euclidean distance measure is most appropriate for the data
set in this case. Then the distance matrix is shown below:

GA LA SC WV MO KY MD
GA 0 9 13 24 22 25 21
LA 9 0 20 31 30 33 28
SC 13 20 0 27 23 24 24
WV 24 31 27 0 5 8 3
MO 22 30 23 5 0 4 4
KY 25 33 24 8 4 0 8
MD 21 28 24 3 4 8 0

The algorithim begins by choosing the smallest distance between two objects. In this
case the smallest Euclidean distance is between Maryland and West Virginia. The next
smallest distance is between Missouri and Kentucky. Now, using the algorithm described
before, the distance between these two cluster will be 4 since the distance between Maryland
(in group 1) and Missours (in group 2) is the smallest between the two groups. This process
will continue until all states have been combined into one group. Once the clustering
process is complete, the hierarchical structure can be displayed using a dendrogram. The
Dendrogram for the voting data is shown below:
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For complete linkage, the distance between clusters is defined to be the distances be-
tween the farthest two points in each cluster. Using the recurrence relation, αi = αj = γ =
1
2 and β = 0. The dendrogram for complete linkage is shown below:
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Notice that now the West Virginia/Maryland cluster and the Missouri/Kentucky cluster
are combing at a higher height compared to single linkage. This is because the distance
between the two clusters is defined to be the distance between the two farthest points
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instead of the two closest. For this data set, the overall structure is the same, but one can
imagine how, for other data sets, using complete linkage compared to single linkage can
change the structure.

Single and complete linkage can be described as opposites in the clustering algorithm
world. The middle ground is the group average linkage method. The distance between two
clusters in group average linkage is defined to be the average of the pairwise dissimilarities
between objects in the different groups Essentially, its the distance between the mean
vectors of the two clusters. (Gordon87) In terms of the recurrence relation, αi is ni

ni+nj
and

β = γ = 0.
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Now, the West Virginia/Maryland cluster and the Missouri/Kentucky cluster are com-
ing at a height of 6.25. Using the recurrence relation, we can actually calculate this value:

d(WV and MD, KY and MO) =
1
2

[
1
2

(8) +
1
2

(5)] +
1
2

[
1
2

(8) +
1
2

(4)] = 6.25

Finally, the incremental sum of squares algorithm, or Wards method, defines the dis-
tance between two clusters to be the increase in the total sum of squared distances about
the class centroids. In other words, when you combine two clusters, the increase in the
total sum of squares about the new clusters centroid is defined to be the distance between
the two original clusters. Which ever amalgamation causes the smallest increase in this
number, it the optimal amalgamation at that step.
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After studying the dendrogram, it can be seen that the distance between the West Vir-
ginia/Maryland cluster and the Missouri/Kentucky cluster is about 10. Therefore, the
total increase in sum of squares by combining these two groups is about 10.(Gordon 81)

There are many other hierarchical agglomerative methods for clustering. For example,
one criterion defines the distance between two clusters to be the total sum of squares
about the centroid of the new cluster, in stead of the increase in the total sum of squares.
Another defines the distance between two clusters to be the squared distance between their
two centroids, Again, these methods all begin by assigning each object to its own cluster,
then successively combines objects until there is only one giant cluster. There are even
more methods, known as divisive methods, that begin by assigning each object into one
giant cluster, then successively partitions that cluster until all objects end up in their own
group.

Analysis

For the tribal data, I began by discussing with the client exactly which variables would
be important to the discrimination between groups. In cluster analysis, there is no math-
ematical way to choose relevant variables so this process really should depend on expert
opinion. We began by discussing the habits of the tribe. Since they are a fishing/hunting
tribe, it was decided that there was going to be a large, topographical difference between
the typical site used for fishing and the typical site used for hunting. Therefore, elevation
and slope (measured in degrees) were the first two variables added to the list. As a fishing
tribe, one of the biggest staples in their diet is salmon, and in particular sockeye salmon.
Based on this fact, the following variables were also chosen:
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• Path distance to any salmon distribution.

• Path distance to sockeye salmon distribution

• Path distance to nearest Chinook salmon distribution

• Path distance to spawning salmon habitats

The idea is that these variables will play a role in discriminating between ideal fishing
sites and other sites. Another food source for this tribe is moose. The following two
variables were chosen based on this fact

• Path distance to moose high value summer habitat

• Path distance to moose high value winter habitat

These are measuring distances from use sites to areas that moose are most likely to
inhabit. A third set of variables chosen were based on grizzly bear habitats. They are
listed below:

• Path distance to grizzly bear high value fall habitat

• Path distance to grizzly bear moderate value fall habitat

• Path distance to grizzly bear high value summer habitat

While the tribe does not hunt grizzly bear for food, they are likely to be interested in
the same type of habitat that a grizzly bear is interested. For example, a main food source
for grizzly bears is salmon and wild berries, which are also main food sources for the tribe.
Therefore both grizzly bears as well as the tribe are more likely to inhabit these types of
lands. Finally, the last variable chosen was the path distance to traditional tribal trails.

Once the relevant variables have been chosen, it is necessary to decide whicn should
be used. The measure that seemed most appropriate in this example was the Euclidean
distance metric. All of the variables (except for slope which was measured in degrees)
are measured in feet and none of them are categorical. The clustering criterion chosen
was average linkage since this technique is the middle ground between complete and single
linkage.
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