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Abstract

The primary objective of this paper is to study the dynamics of Eritrean Malaria cases at the subzone level.
Malaria in Eritrea varies both spatially and temporally. Two classes of models are considered in this study,
the conventional Generalized Linear Models (GLM) and the Generalized Linear Mixed Models (GLMM)
to model count data. A poisson GLM was fit, but due to lack of independence of the observations a high
overdispersion parameter resulted. As a result, GLMM with two random intercepts was fit to accomodate
the dependence within zones and subzones, Two different random effect structures are considered, one with
random intercepts for subzones only and one that nests those random intercepts within a zone level random
effect. The GLMM was fit using an offset based on the population size of subzones and considering between
a 1 and 4 month rainfall lag to impact malaria rates. The GLMM model for a 3 month rainfall lag with
nested random effects was found to be the top model as per the AIC selection criterion. 4 programs for
estimating GLMM were considered to fit the model and the estimates and performance of the top model

were compared and evaluated across those programs where possible.
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Chapter 1

Introduction

1.1 Ba.ckgrdund

Eritrea is a country located in the Horn of Africa with a total area of approximately 124,000 km?. Tt shares
borders with Sudan, Ethiopia and Djibouti. Most of this is defined as semi-arid tropical COnVergence zone,
indicating low, sporadic rainfall, ranging between 250 millimeters {mm) annually in the lowland areas and
900 mm in the highland region [1]. Since 1996, the country has been divided into six administrative zones.
It is further divided into subzones (groups of villages). Currently there are 58 subzones. The 6 zones and
their corresponding subzones are presented in Table 1.1,

Eritrea has three epidemiologic strata, [6, 9]. There are four lowland zones. The first is western lowland,
with altitude 600-1000 meters above sea level and 2 zones (GBarka and Debub). This area is prone to high
malaria cases. The second is also lowland located in the east of the country (coastal plain) along the Red
Sea at 0-1000 meters above sea level. Northern Red Sea (NRS) and Southern Red Sea (SRS) belong to this
strata. The third one includes the remaining two highland zones (Maekel and Anseba), with an average

elevation of 1500-2000 meters. These three distinct climate systems affect the rainfall and hence malaria in

[ ZoneT] Subzones

—

| Anseba Aditekelezan, Asmat, Elabered, Geleb, Habero, Hagaz, Halhal, Hamelmalo, Keren, Kerkebet and Sein

Debub Adikeih, Adiquala, Areza, Dekemhare, Bubaruwa, Emnihaili, Maiaini, Maimine, Mendefera,
Segeneiti, Senafe and Tsorong

Mulki, Shambuko and Tesseney

GBarka Agordat, Barentu, Dighe, Forto, Gogne, Guluj, Haikota, Lalaygash, Logoanseba, Mensura, Mogolo,

Maekel Berik, Galanefhi, NE, NW, SE, Serejeka and SW

NRS Adobha, Afabet, Dahlgk, Foro, Gelalo, Ghinda, Karura, Massawa, Nakfa and Shieb

SRS Araeta, Assab, So.Denkel and Ce.Denkel

Table 1.1: Zones and Subzones



CHAPTER 1. INTRODUCTION CT 1.2. SIGNIFICANCE OF THE STUDY

Eritrea. The months March-May are a season of short rains, which fall mainly in the Eritrean highlands,
the July-October rains are seasons that usually bring heavy rains to the south-west of the country including
the western escarpments, and the third season is between December - February that occurs mainly in the
eastern lowlands and escarpments. In Eritrea, 67% of the population live in malaria endemic areas [6]. The
predominant malaria parasite is Plosmodium Flaciparum and is mainly transmitted by Anopheles Arobiensis

84% and P. Vivaz 16% [g].

1.2 Significance of the Study

The absence of informative models for malaria counts in Eritrea can make it hard for policy makers to
intervene and allocate the right resources. This is because without, the model it becomes hard if not impossible
to seperate seasonal changes from other patterns of malaria dynamics. Therefore, studying the dynamics
of malaria at the subzone level and modeling it will help the Malaria Control Program at the Minisiry of

Health in planning their work and to evaluate success of control efforts.

1.3 Objectives of the Study.

The objectives of this study are to:
1. Understand the dynamics of Eritrean malaria cases at the Sub-Zone level.

2. Study the relationship between rainfall and malaria cases and determine the optimal rainfafl lag to

predict increases in malaria cases,
3. Study the distribution of malaria cases between zones and subzones over time.

This is done by understanding the factors that contribute to the incidence of malaria cases and how the
seasonal changes relate to the patterns of malaria cases. Generalized Linear Mixed Models (GLMM) are
used to identify the optimal-lag between rainfal]l and malaria counts and estimate trends in cases. After
identifying an optimal rainfall lag, we can then estimate the impact of rainfall on malaria incidence,

Various methods have been used in modeling malaria dynamics by different authors [8] and [10). [10] used

Moving Average (SARIMA) model. In this study, GLMM are considered. Different versions of GLMM are
available in R, glmer, Imer, glmmPQL and glmmML can call estimate versions of GLMMs. The rest of

the paper is organized as follows. The next section describes the data set used in this study and visually

3



1.3. OBJECTIVES OF THE STUDY. CHAPTER 1. INTRODUCTION

explores the data. This is followed by the description of the models used in this study. A presentation
and interpretation of the results ave then discussed in some detail and finally conclusions and implications

together with some suggestions for future work will be presented.



Chapter 2

Data and Descriptive Data, Analysis

The data consists of monthly records on malaria outpatients and inpatients from all the health facilities,
reported monthly to the National Malaxia Control Program of the Ministry Health of Eritrea, by subzone, for
the period January 2000-December 2007. In Eritrea, there are 6 zones and 58 subzones and the prevalence
of malaria varies spatially and temporally. The 2000 population estimate for each subzone obtained from
National Health Management Information System (NHMIS), Ministry of Health, will be used in this study
for adjustment of malaria incidence at the subzone level, as was used in I5]. This population size might
not necessarily be accurate and does not reflect the population growth over the period of study. The way

adjustment is made for the population size will be discussed in the subsequent chapters.
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CHAPTER 2. DATA AND DESCRIPTIVE DATA ANALYSIS
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Figure 2.1: Time Series Plot of Malaria Cases

Fig. 2.1 shows the time series plot of the adjusted and unadjusted monthly malaria cases in each subzone
over the period of 8 years. In total there are 5557 monthly observations used in this study. Explanations on
how adjustment is made will follow in the subsequent chapters. Figures 22,23, 24,25, 2.6, and 2.7 show
the overall trend of the plot at the subzone level for each zone. As seen in the plots, the malaria incidence
declines as we progress over the study period. The decrease in the incidence of malaria in Eritrea can be
attributed to a number of factors. The achievement might be due to the increase in health facilities, training
given by the Malaria Control Program to the viltage health agents, coordinated endeavors made to control
the infection,_the distribution of sufficient and effective anti-malaria medicine, the provision of malaria nets
to the population fiee of charge, as well as the active popular participation in maintaining envirenmental

sanitation.
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Malaria Counts
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Figure 2.2: NRS Subzones Monthly Malaria Times series plot,
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CHAPTER 2. DATA AND DESCRIPTIVE DATA ANALYSIS
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CHAPTER 2. DATA AND DESCRIPTIVE DATA ANALYSIS

Rainfall in Eritrea varies both spatially and temporally as explained previously. The rainfall data consists
of the monthly average in mm for each subzone for the period January 2000- December 2007. The rainfall
data is provided along with the malaria counts by the Ministry of Health Control Program.

In this Chapter, the distribution of malaria cases and rainfall will be described. Fig. 2.8 shows the time
series of the monthly average rainfall in millimeter over the period of 8 years for all the subzones and is
plotted by subzone in zones in Figures 2.9, 2.10, and 2.11. The plot does not show a clear trend in the
distribution of rainfall but there were some “wet” subzone months in the last year of study. The plots show

that there is a difference in the amount of rainfall received by the zones.

Monthly Average Rainfalil
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Figure 2.8: Time Series of Rainfall

Fig. 2.12 shows the monthly variation in the number of malaria cases and the monthly variation of
monthly average rainfall. Fig. 2.12 shows clearly that the highest number of malaria incidence occur in the
month of October and the highest season for malaria is between August-November. This is in line with the
fact that the peak of malaria transmission occurs at the end of rainy seasons. The monthly average rainfall
plot on the right side of Fig. 2.12 shows that the rainy season is June-September and the effect of rainfalf
starts to be observed after these months. As was explained in the introduction, these are seasons of heavy
rain in the south-west of the country and western escarpments.

The left panel of Fig. 2.13 depicts the general decline of malaria cases over the study period of 8 years.
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Figure 2.9: SRS and NRS Zones Time Series of Rainfall
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Figure 2.10: Debub and Gash Barka and Zones Time Series of Rainfall
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CHAPTER 2. DATA AND DESCRIPTIVE DATA ANALYSIS
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CHAPTER 2. DATA AND DESCRIPTIVE DATA ANALYSIS

In addition, the right panel of the plot is the distribution of yearly average rainfall in millimeters and, as can
be seen from the plot, rainfall varies with 2005 and 2006 being the years with the highest amount, of rain.
Fig. 2.13 shows a general decline in the malaria incidence and 2001 was the year with the highest number of
incidence. The median

However, compaxing the distribution of rainfall and malaria incidence in Fig. 2.13, there is an indication

rainfall was highest in 2006. There is no clear pattern in the distribution of rainfall,

that there are some other driving forces that affect malaria incidence other than rainfall.
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CHAPTER 2. DATA AND DESCRIPTIVE DATA ANALYSIS

is located.

However, in order to compare the distribution of malaria al the zone or subzone level, it is better to
tompare the adjusted counts which have been adjusted based on population size, with more details on the
adjustment below. Fig 2.15 and Table 2.1 show the order of prevalence rate has now changed after the
adjustment is made. As a result, Gash Barka, NRS {Northern Red Sea), and Debub are the high prevalence
rate zones. Note also that NRS has many outliers. The va-riation from zone to zone will be incorporated in

the model in chapter 4.

[ | SRS [ Anseba | Mackel [ NBS [ Debub | GBaila [

Mean before adjusting for Popsize 13.2 23.1 35 55.7 | 1024
’T\/Iean after adjusting for Popsize 12 1.3 1 0.6 37 1.9
Median before adjusting for Popsize | 3.0 7.0 26.0 11.0 57.0
’ Median before adjusting for Popsize | 0.4 0.2 O.U 0.2 1.0

Table 2.1: Measure of center for adjusted and unadjusted cases

15
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Figure 2.16: Average adjusted counts and Rainfall by zone
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Figures 2.17 and 2.18 show the distribution of monthly rainfall and monthly counts of malaria at the
subzone level over the study period of 8 years. The lines in each panet represent a particular year, The zones
with the highest number of malaria incidences and heavy rainfall are once again shown at the subzone level,
For example, Teseney, Haikota, Agordot Gutluj, Shambuko ete. all recieve heavy rainfall in the summer and
all belong to the Gash Barka zone. The same is true of the subzones in the Debub Zone.

Fig. 2.18 also shows the same trend that we observed at the zone level. The subzones with the highest
malaria counts belong to Gash Barka and those with the lowest number of cases belong to the coastal zones,
in particular SRS (Southern Red Sea}. Gulij is the subzone with the highest malaria incidence and subzanes
from SRS, in particular Dahlak have the lowest malaria counts. However, since we are interested in modeling
at the subzone level, the adjusted data should be used. The subzone with the highest prevalence rate of
malaria is Dahlak, with a population under 4000, Tt seems that, due to its low population size or other
related factors, this subzone get less attention from the health officials (Malaria Control Program).

The trend of the other subzones can ot be seen clearly in Fig. 2.19 as the scale in the plot is dictated
by that one subzone. Fig. 2.20 is a similar plot to Fig. 2.19 after removing Dablak to enable us to see
the seasonal/trend in other subzones. Hence, now the trends for the remaining subzones can be seen more

clearly. The highest rates occur in the subzones that belong to Gash Barka.

16
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Figure 2.17: Rain Fall for each Subzone Grouped Yearly
Rainfall
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Figure 2.20: Adjusted counts without Dahlak
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Chapter 3

Methods:

3.1 Generalized Linear Models (GLM)

Typical linear Tegression assumes that the responses, Y;, follow a normal distribution, Y;~ & (p:,0) with
M=o+ /Xt ..+ Py Xiq. Generalized Linear Models (GLM) are an extension of linear regression that
allows for non-normal distributions for the response variable. There are many ChC‘IiCES for the link between
the mean of the response variable and the explanatory variables. Depending on the nature of the data, one
can use distributions such as Binomial, Negative Binomial and Poisson. In this study, since the responses

are counts of malaria cases, GLM with a Poisson distribution is used. A Poisson QLM has 3 parts.
1. The response variable(Counts) Y;n Poisson(y;) E¥Y)=p = Var(Y;)
2. The systematic part is given by the predictor function M Xay ey Xig) = o + X+ .. + B Xig, and
3. The logarithmic link, log(p:) = n(Xa, ..., Xig) or g7 = e Xy Xig)

This link function ensures the fitted values are non-negative. Good references on GLM include [7] and [19).

3.2 Poisson Rate Modeling

The response variable Yijx, is the number of malaria cases for each subzone 1, each year 7, and month k.
Where 4=1,...58, J=1,..8and k=1,....12. Note that in this study there are 8 years (2000-2007), 6 zoneé, and 58
subzones. The number of monthly malaria incidences are obtained from each subzone and the subzones have
different population sizes, Hence, an adjustment using the population size as an offset is needed to model the

malaria rate in Counts/Person. The typical offset fixes the coefficient at 1 (which assumes proportionality
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3.3. GENERALIZED LINEAR MIXED MODEL FITTING CHAPTER 3. METHODS:

between count and population size) and has this form: log(p/t) = Bo + B1.X where ¢ is the population size.
When using an offset, the broportionality can be checked by estimating a coefficient for the offset, To estimate
the GLM with a typical offset, we use log(i) = log(t) + Bo + A X . Using log() = alog(t) + G + FiX,
the coefficient, for the offset dictates the adjustment that is made to the counts using log(p/t*} = By + B X.
For example, if the proportionality assumption is met, that is the offset coefficient «, estimate is 1, then
dividing the counts by the population size is the ideal adjustment that needs to be made. Unfortunately, in
this study, the offset coefficient, 4= 0.2 in the top model. Thus, Counts o /% is used as an adjustment.
This suggests that the malaria counts increase as a function of fifth root of population size which is & more
complicated relationship than proportionality. Proportionality suggests that with more People, you see more
malaria cases but our results suggest that counts increase as a nonlinear function of population size.

A key assumption in GLM is the statistical independence of the observations. However, in this study
the malaria counts are related or dependent from one month to the next. ‘There is variability from zone
to zone, a spatial type of dependence, and variability from subzone to subzone. There is also variability
from subzone to subzone within a zone. These variabilities need to be taken into account when modeling,
A GLM with Poisson family was fit using a systematic component of log{x) = alog(t) + Bo + BLR.Fally +
BYr(01)+...+ BYr(07) +Basin(2%m+ (Month)/12) +Brocos(2+m x(Month)/12) for the data with a search
for the optimal lag of rainfall, k. In Chapter 2, monthly seasonality was observed and there was also a trend.
To deal with that a harmonic sine and cosine function was used for within year variation around a yearly
trend. When this model was fit, not surprisingly, the overdisperison parameter was large, é = 169.92. The
overdisperision parameter (variance inflation factor) is estimated using & = %2' and under the assumption
of identically and independently distributed (iid), é=1. x? is the usual Pearson goodness-of-fit test statistic
and df is the degrees of freedom for the test. In real biological data, & is often in the range between 1 and
3 [2]. X & s large, that means there are structural issues with the model. Due to the structural issues of
the model in this study, a model that can account for some of the previously discussed random effects is

discussed below.

3.3 Generalized Linear Mixed Model Fitting

Genera,lized Linear Mixed Models (GLMM) are methods used when the data are hierarchically structured
[12]. GLMM accommodates the lack of independence of the observations and differences from zone to zone
and subzone to subzone using the random effects of the model. That is, unlike the GLM, GLMM relaxes the
assumption of independence through the introduction of random effects. This is because there is variation

between the subzones and the subzones within zones. Thus, in this study, two different random intercept
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CHAPTER 3. METHODS: - 3.4. PROGRAMS (SED

structures are considered. This is in order to accomodate the month to month dependency of the observations
in the subzones and existing variation between zones and variation between the subzones even in the same
zones. Subzones are to be nested within zones and a random intercept will be estimated for each zone and

for each subzone within the zones.

3.4 Programs Used

Generalized Linear Mixed Models were fit using 4 different programs. gimer, Imer, glmmPQL and glmmML,
[12).

1. glmer is a function in R from the package Imed [3]
2. lmer is also a function in R from the package Imed [3).

3. glmmPQL is also a function used for mixed models from the R package MASS. Since this function
maximizes a penalized quasi-likelihood rather than the full likelihood, it does not provide AIC [11].

4. glmmML is a function in R from the the package glmmML [4]. This estimates the mode] parameters

using maximum likelihood and provides AIC.

Note that lmer and glmer are functions that are nearly interchangeable. The reason for that js if liner with
the family different from the default {normal) distribution is used then the cali for Imer is replaced by a call
to glmer [3]. In this study, since the poisson family is used_in both Imer and glmer both fits give the same

result: and hence they are interchangeable,

3.5 Model Selection

Akaike (1973) used Kullback-Leibler (K-L) Information as the basis for model selection. K-L information
is the distance between the approximating rodel and the reality or measures the information lost when
a model is-used to approximate the reality. -Akaike found the relationship between the K-L information
and the maximum log-likelihood. He showed that the expected K-L information can be estimated and it is
related to log-likelihood function at its maximum {2]. However, the maximum log-likelihood is biased and
he found that the bias correction factor is approximately equal to k,l where k is the number of parameters in
the model. That is, K-L information and E(K-L information)=1 — k and multiplying this by -2 yields what
is defined as Akaike’s An Information Criteria (AIC), AIC = —2L + 2%

where L is the maximum log-likelihood of the model [1). He multiplied by -2 because the ratio of

2 maximized likelihood values is asymptotically distributed as a chi-square under certain assumptions and
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conditions. The model with the smallest AIC is selected because the selected model minimizes the information
lost in approximating the reality by a fitted model. Thus, a model with the lowest AIC is selected as the
top model. Ranking the AIC and taking the difference, V; defined as Vi = AIC; — AIC,.;y, is used. These
values are the distance between the best selected model and the i*® model. The best model is the one with
Vi=0.

The Bayesian Information Criteria {BIC) is based on Bayesian approach and attempts to find the model
with the highest posterior probability of being correct model, It is defined as BI C = -2L + Klog(n), where
7 is the number of observations. AIC and BIC differ in their penalty term. As described in [2], if n > 8 the
penality in BIC is a little larger and as a result selects smaller dimensioned models than AIC. In Table 4.1,
we have reported the AIC, BIC and ranking of the difference of the estimated values.
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Chapter 4

Results and Discussion

4.1 Lagging Rainfall

cases. With the availability of temperature ag in [10], lags of 4-12 weeks are considered due to biclogical
considerations. The number of lags could be shorter for high temperature areas [10]. The assumption used in
most studies is that changes in temperature and rainfall at a particalar time do have an important influence
on the reproduction rate of mosquitoes. Temperature data is not available in this study and thus lags between
1 and 4 months were considered for rainfall. Note also that in this study that the data set is constrained
to use the same number of responses regardless of lag of rainfall considered to allow direct comparisons of
models. This means that 232 observations are dropped from the analysis, the 4 months from January-April,

2000.

4.2 Results

lag for the top model. As was explained in Chapter 2, there was a nonlinear trend across years and as a
result natural splines based on year with 2 to 6 degrees of freedom were considered. In addition, no trend

and a unique value for each year or 7 degree of freedom spline were also considered. Additionally, two forms
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4.2. RESULTS CHAPTER 4. RESULTS AND DISCUSSION

of random effects were considered. First, a random intercept for the subzones was used. Second, a random
intercept for the zones and a random intercept, for the subzones nested within the zones was used. Note also
that harmonic functions (sine and cosine) are used in the model to accomodate monthly seasonality,

The GLMM model results using year as a linear quantitative (natural spline with 1 degree of freedom)
or the unique (7 degrees of freedom spline is the same as using year as a factor) for the rainfail lagof1to 4

months and two forms of random intercept model structures are presented in Table 4.1,

| Model | Year DF | Rainfall lag | “AIC | BIC | VAIC | VBIC
Nested 7 3 220380 | 220420 0 o
Not Nested s 3 220420 | 220505 40 33
Nested “« 2 223459 | 223552 | 3079 3080
Not Nested “ 2 223500 | 223585 | 8120 3113
Nested i 4 227863 | 227945 | 7473 7473
Not Nested s 4 220894 | 220979 | 7514 7507
Nested « 1 229831 | 229923 | 94a1 9451
Not Nested i 1 220873 | 229958 | 9493 0486
Nested 1 3 245631 | 245684 | 25251 | 25212
Not Nested “ 3 245672 | 245718 | 25293 | 25246
Nested w 2 249708 | 249760 | 20328 [ 29288
Not Nested N 2 249749 | 249795 | 20369 | 20323
Nested * 4 255245 | 255298 | 34865 | 34826
Not Nested « 4 255288 | 255334 | 34908 | 348562
Nested “ 1 258536 | 258580 | 38156 | 38117
Not Nested ke 1 2585680 | 258626 | 38200 | 38154

Table 4.1: GLMM Fit

Table 4.1 shows the ATC and BIC for the 1 and 7 degrees of freedom for the trend. However, all other
possible combinations of these variables as well as different degrees of freedom 2-6 for the year trend were also
fit but not presented here. Regardless of which rainfall lag you consider, the nested random effect structure
is the preferred one, as shown in Table 4.1. That is, nesting subzone within zone resulted in the lowest AIC,
It is also worth mentioning that the population size as an offset with coefficient 1 was also fit, however the
AIC was much worse. The GLMM model nesting the subzone within zone provided the top AIC model.
This is an indication that the introduction of the random effects in the GEMM may have have tackled some
of the problem of dependence that was originally present in the conventional GLM. Table 4.1 indicates that
regardless of which random effect structure used, the optimal rainfall lag is found to be three months. The
finding of this study is that, with the absence of temperature, the optimal rainfall lag to consider is three
months. This is a little bit different result from previous studies done in this area. The optimal lag of rainfali
considered in previous studies was two months [8). However, the finding of this study is in-line with the
descriptive analysis of the data in chapter 2. That i8, the effect of rainfall on the mataria incidence starts to

be felt most strongly three months later.
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Methods
gimer glmmPQL
Parameter Estimates St. Error | Estimates St. errors
Intercept (Y(00)) 2.01200 0.68270 -2,38330 1.54470
Log(Popsize) 0.19420 0.05440 0.61170 0.14206
R.Fall 0.00380 0.00004 0.00381 0.00028
Y(01) 0.21730 0.00450 0.21640 0.00333
Y(02) -0.26020 0.00499 -0.26043 0.00369
Y(03) -(.40010 0.00515 -0.46040 0.03805
Y(04) -1.18400 0.00660 -1.18400 0.04830
Y (05) -1.24800 0.00671 -1.24800 0.49600
Y(06) -2.1100 0.00922 -2.11100 0.06813
Y(07) -1.82000 0.00820 -1.82010 0.06055
sin(2x 7« (M onth}/12) 0.28690 0.00223 0.28690 (.01647
cos(2 = (M onth)/12) | -0.33490 0.60304 -0.33420 0.02250

Table 4.2: Comparison of Methods For the Top Model

In addition, Table 4.1 shows that three months lag and nested model with 7 degrees of freedom {unique
mean for each year) is found to be the best. The models found using a natural spline with 7 degrees of
freedom for the year and treating year as a categorical are exactly the same.

Table 4.2 contains the estimated parameters for the top model and optimal rainfall lag using the glmer
and glmmPQL fit. The lmer fit is not presented here as both the glmer and Imer yield the same result
as explained in Chapter 3. As can be seen in Table 4.2, both glmer and glmmPQL gave the same resulis
except for the ghmer/lmer result on the estimated intercept and offset coefficient. In this study, we used AIC
selection criterion; glmmPQL. does not provide AIC since it does not use a likelihood, instead-relying on
quasi-likelihood methods. glmmML was also considered in this study. However, glmmML was not available
for the top model as it did not allow nesting subzone within zone,

The estimated coefficient, for the offset is 0.1942 = 0.2 and it is this value that determined the adjustment
that was made when comparing the malaria cases between the different subzones. Therefore, the adjustment
used in Chapter 2 is simply the counts divided by the fifth root of the population size.

The performance of the top model also needs to be checked and different components assessed. For that,
the observed and estimated cases were plotted in Fig. 4.1. Though difficult, to abserve in this plot, the model

captures much of the variation over time and between subzones,
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Figure 4.3: Seasonal effect

But since the aim is to study the malaria cases at the subzone level, the performance of the model has
to be assessed at the subzone level. First, subzones are divided into 3 different groups, low, medium and
high-incidence groups based on the mean incidence in each subzone. Then, one subzone is picked from each
group and the observed versus fitted are plotted in Fig. 4.2 for subzones Nakfa(low), Hagaz(medium) and
Gulij(High). The plot shows the top model has done a decent job of capturing seasonality and trend in these
three subzones.

The seasonal effect of the harmonic functions, after accounting for the effect of rainfall, is shown in Fig.
4.3 and the peak month is found to be July. The peak of malaria rates in most subzones was October as
deseribed in Chapter 2, so the harmonic effect is picking up on a different aspect of seasonality in malaria

rates that is not accounted for by rainfali {lagged 3 months).

4.3 Conclusion

Count data are modeled using a GLM using a poisson family with a log-link. However, this model requires
the assumption of statistical independence of observations. In this study, both the ordinary GLM and GLMM

using a poisson distribution were fit and due to the dependence from month to month and variability from
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zone to zone and subzone to subzone, the GLM model fit resulted in a large overdispersion parameter. The
GLMM model accommodates the existing dependence and a model with random intercept for each zone
and subzone in zone for the 3 month rainfall lag is found to be the best model. However, in most, previous
studies the optimal lag was found to be 2. This could be due to the effect of temperature on the life cycle of
the reproduction of mosquitoes. Accounting for maximum temperature could shorten the number of rainfall
lags to consider. Adjustment on the malaria count in each subzone was performed by dividing the counts
by the fifth root of the population size. The estimated population size for the year 2000 for each subzone
was obtained from National Health Management Information System (NHMIS), Ministry of Health in the
work done by the Environment Health Project [5]. The 2000 population size used in this study might not
be necessarily accurate and does not reflect the population growth over the periad of study. However, that
was the available data and we had to make use of that. 4 programs were also used to fit the model and
this study found out that, especially for nested random effects, Imer/glmer needed to be used in R. This
is because even though glmmPQL could also equally fit the GLMM, the estimation used is quasi-likelihood
based and model selection hased on AIC is not possible, but for glmmML, since it is based on maximum
likelihood, AIC based model selection is possible.

As a conclusion, I would say, today’s rainfall most usefully explains the malaria incidence to come after
3 months. This suggests a control strategy could target certain subzones based on high rainfall. After
controlling for rainfall, malaria rates declined over the study period. Even though 2007 was the wettest
year, malaria incidence was at its lowest level and this clearly shows the success of efforts made by the
Malaria Control Program. This achievement might be due to the the increase in health facilities, training
given by the Malaria Control program to the village health agents, coordinated endeavors made to control the
infection, the distribution of sufficient and effective anti-malaria, medicine, the provision of malaria nets to the
population free of charge, as well as the active popular participation in maintaining environmental sanitation.
The next stage in this research is to incorporate some other additional covariates such as temperature, bed
nets used, amount of spray used and others into this model and study their effect on the malaria rates,
Further analysis could consider differences between coastal and non-coastal zones,

The data was actually available as inpatient and outpatient cases of ageunder 5 and above 5. Modeling the
malaria cases for under 5 and above 5 could also be considered. Moreover, a further look at the distribution
of inpatient and outpatient malaria cases can be also done.
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