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Abstract

Military training and weapons testing activities leave behind munitions debris, including both
inert fragments and explosives that failed to detonate. The latter are known as unexploded
ordnance (UXO). It is important to find and dispose of UXO items that are located where
people could come into contact with them and cause them to detonate.

Typically there exists uncertainty about the locations of UXO items and the sizes of UXO-
containing regions at a site, so statistical analyses are used to support decisions made while
planning a site remediation project. The Visual Sample Plan software (VSP), published by the
Pacific Northwest National Laboratory, is widely used by United States military contractors to
guide sampling plan design and to identify regions that are likely to contain UXO.

VSP has many features used for a variety of situations in UXO cleanup and other types of
projects. This study focuses on the sampling plan and geostatistical mapping features used
to find target areas where UXO may be present. The software produces transect sampling
plans based on prior information entered by the user. After the sample data are collected, VSP
estimates spatial point density using circular search windows and then uses Kriging to produce
a continuous map of point density across the site. I reviewed the software’s documentation and
examined its output files to provide insight about how VSP does its computations, allowing the
software’s analyses to be closely reproduced and therefore better understood by users.

I perform a simulation study to investigate the performance of VSP for identifying target areas
at terrestrial munitions testing sites. I simulate three hypothetical sites, differing in the size and
number of munitions use areas, and in the complexity of the background noise. Many realizations
of each site are analyzed using methods similar to those employed by VSP to delineate regions
of concentrated munitions use.

I use the simulations to conduct two experiments, the first of which explores the sensitivity of
the results to different search window sizes. I analyze two hundred realizations of the simplest
site using the same sampling plan and five different window sizes. Based on the results, I select
90% of the minor axis of the target area of interest as the window diameter for the second
experiment.

The second experiment studies the effects of the prior information about the target area size
and spatial point density of munitions items. For each site, I use four prior estimates of target
area size and three estimates of point density to produce twelve sampling plans. One hundred
realizations of each site are analyzed with each of the twelve sampling plans. I evaluate the
analysis in terms of the detection rates of munitions items and target areas, the distances
between undetected munitions items and identified areas, the total area identified, and other
practical measures of the accuracy and efficiency of the cleanup effort. I conclude that the most
accurate identification of target areas occurs when the sampling plan is based on the true size of
the smallest target area present. The prior knowledge of the spatial point density has relatively
little impact on the outcome.
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1 Introduction

Warfare, by nature, involves handling and using dangerous munitions items. Even outside of
wartime, new weapons are continually developed and tested, and troops are trained in their use.
Munitions-related debris are inevitably left behind wherever military activities occur, at battlefields,
training sites, and test sites both on land and at sea. These debris are typically bullets and inert
metal fragments, but can also include toxic chemicals and live mines, grenades, or explosive shells
that failed to detonate. Often, these items remain at a site for years. Each type of munitions device
has a unique set of associated hazards and various methods have been developed to address them.
This paper focuses specifically on explosives used in terrestrial warfare.

Explosive munitions items which fail to detonate and are left behind are known as unexploded
ordnance (UXO) and present a potential danger to anyone who encounters them. The United
States military conducts ground-based training activities in wilderness and rural areas where there
is little immediate danger to bystanders. However, many of these sites are leased from civilian
owners and returned to the owners when they are no longer needed by the military. Other sites
are made available as public land after they are decommissioned. These areas are often used for
agriculture or outdoor recreation, and may be transferred to private ownership for development.
The Department of Defense funds projects to clean these sites and reduce the risk that UXO poses
to civilians.

For example, the Motlow Range, near Tullahoma, Tennessee, was established in 1941 and used by
the US Army for artillery testing. The site is now used largely for agriculture, but is also occupied
by several houses and a community college (Pulpisher et al. 2014). In Montana’s Helena Valley, part
of the Chevallier Ranch was used in the 1940s and 1950s by the Montana Army National Guard
for tank and artillery training. Urban growth around the city of Helena has resulted in residential
areas encroaching upon the former firing ranges (Neptune and Company, Inc. 2008). There is a
possibility that live explosives remain at these locations. In the interest of safety, these sites have
undergone efforts to find and remove munitions items before they are unintentionally encountered
by the public.

In many cases there exist historical records of where military activities took place, sometimes with
detailed information about the locations from which the munitions were fired and the locations of
the intended targets. In other cases, such detailed information is not available and so the process
of finding and removing ordnance involves a high degree of uncertainty. Sophisticated statistical
techniques and software have been developed to help manage this uncertainty.

One software package that has become commonly used in recent years is Visual Sample Plan (VSP
Development Team 2016), published by the Pacific Northwest National Laboratory (PNNL). It
includes tools to help design statistical sampling plans, analyze sample data to identify possible
munitions use areas, and implement quality control measures. VSP is recommended by several
government agencies and is designed to be used by individuals who are not experts in statistics.

To produce a sampling plan, VSP relies heavily on prior information contained in the conceptual
model of the site. Specifically, the software requires information about the sizes and shapes of
the munitions use areas and the spatial density of munitions-related items in these areas. There
may be a lot of uncertainty in these quantities, especially if a detailed history of the site is not
available. Additionally, mapping the level of contamination across the site after sampling requires
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selecting the size of a search window in which the software computes a moving average of spatial
point density. This window size parameter has no direct connection to the conceptual site model,
so it is also of interest to assess the importance of the window size choice.

Previous case studies and simulation studies performed by the development team at PNNL have
verified the accuracy of probabilities and confidence levels reported by VSP, and concluded that
sampling plans created with VSP are adequate for verifying that a cleanup is successful or that the
quantity of munitions items in a sampling area is acceptably low (Pulsipher et al. 2011, Pulpisher et
al. 2014). There is less information available about the quality of VSP’s results when the objective
is identification of unknown munitions use areas.

The goals of this project are (1) to exposit the methods and assumptions used by VSP to identify
munitions use areas, (2) to assess the sensitivity of these methods to different prior information
about the site, and (3) to provide a starting point for further studies of target area delineation
methodologies.

I accomplish the first goal through a thorough review of guidance documents, the Visual Sample
Plan documentation, and the help files included with the software1 (Sections 2 and 3). A simulation
study addresses the second goal (Sections 4–6). Code for the simulations is provided in Appendix A
and online.2 Finally, discussions of future investigations and comparisons with other analysis
methods contribute to the third goal (Section 7).

For the simulation study, I define conceptual models of three tank and artillery training sites
with different levels of complexity. These models define target areas where munitions items are
concentrated, and I simulate many realizations from these models using spatial Poisson processes
to generate the locations of munitions items and background noise items. I then implement the
entire process of designing a sampling plan and identifying possible munitions-containing regions
on the realized sites using the techniques employed by VSP.

Success of the VSP analysis is measured for each realization by the detection rate of munitions items
(where an item is considered detected if it is within a region identified as a possible target area),
the distance between each undetected munitions item and the nearest identified possible target area
(error distance), and the proportion of the true target areas included in the regions identified as
potentially containing munitions. Efficiency of the sampling and cleanup effort is measured through
the distance traversed while sampling, the total area identified for cleanup, the proportion of the
identified regions not actually belonging to the true target areas (false positive proportion), and
the number of distinct possible munitions-containing regions that are identified.

I have prepared this document in the hope that it will not only convey the simulation results,
but that it will also be useful both to the statistician wishing to learn more about UXO data and
VSP, and to the VSP user who desires to gain a deeper understanding of the underlying statistical
methods and assumptions.

1The most up-to-date help files are also available at http://vsp.pnnl.gov/help/.
2The files for this project are publicly available on Github at https://www.github.com/kflagg/vspuxo.
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2 Remediation of Unexploded Ordnance Sites

The general process for clearing a site of UXO is described in detail in the U.S. Army Corps
of Engineers Interim Guidance Document, “Technical Guidance for Military Munitions Response
Actions” (USACE IGD 14-01). An introduction to the methodology and definitions of important
terms are presented below in Section 2.1. I summarize the procedures themselves in Section 2.2.
The procedures are the same regardless of the software used for planning and analysis, and IGD 14-
01 describes several software options. Software packages with features specifically meant for UXO
projects include Visual Sample Plan and UXO Estimator. The guidance document also mentions
some general-purpose geostatistical and GIS software packages like ArcGIS, but VSP receives the
most thorough discussion because it has the most complete set of UXO-specific features.

2.1 Detecting Unexploded Ordnance

At a military site, most munitions-related items are located in regions of concentrated munitions
use surrounding targets, known as target areas (TAs). Extant UXO is expected to be contained in
a TA, so the standard methodology for locating UXO focuses on finding the TAs. The information
in this section comes from Chapters 6 and 8 of IGD 14-01, which contain a great deal of technical
details that I omit here.

Munitions are readily detected by magnetometers and digital geophysical mapping (DGM) equip-
ment. These devices range in size from handheld sensors to larger arrays that are towed by vehicles.
They record a continuous signal in response to magnetic fields as they traverse the surface of a site.
Peaks in the signal represent nearby metallic items. These items are called anomalies, and the
spatial locations of anomalies are recorded when they are encountered during data collection. An
anomaly may or may not be a munitions item, but the spatial distribution of anomaly locations is
the key to identifying target areas.

Anomalies which are ordnance or related debris are known as targets of interest (TOIs). It is
important to specifically define TOI for a particular site. This allows DGM equipment to be
calibrated to detect the type of munitions that are likely to be present, reducing the number of
non-TOI anomalies that are mistaken as possible TOIs. Additionally, ballistic properties have been
well documented for all munitions commonly used by the U.S. military. The distance fragments
typically travel from the impact point can provide an initial estimate of the size of the TAs, and
the maximum penetration depth of the munitions can also be estimated and used to decide how
deep to dig during the cleanup.

Anomalies which are not TOIs may be ferrous rocks or other naturally-occurring geological items,
or they can be things like bottle caps, nails, and coins that arrived at the site through human
activities entirely unrelated to munitions use. These anomalies are considered background noise,
so part of the goal of analyzing the DGM data is to separate the noise from the “signal” of true
TOI items and find where the TOI items are located.

Background anomalies are typically treated as being homogeneously distributed. The spatial den-
sity of the background anomalies can often be known with reasonable certainty based on geologic
information or survey data from areas thought to be free of munitions. If a site is believed to
contain areas of munitions use, it is generally assumed that elevated anomaly density is due to
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the presence of TOI. Therefore, the approach used to find possible target areas is to predict the
anomaly density at each location of the site and identify regions of high density. There are many
decisions and assumptions that must be made in the process.

2.2 The Cleanup Procedure

Clearing a former military site of dangerous material is typically an expensive and time-consuming
project, so it is important that all procedures are carefully defined, and that appropriate quality
control measures are used to assess whether the goals of the cleanup project are met. The ba-
sic procedure described in IGD 14-01 consists of three phases. The first phase is a preliminary
investigation to decide where to focus cleanup efforts and how to allocate resources. The second
phase involves the physical retrieval of all potential TOIs from areas believed to be dangerous, a
process called remediation. The third phase is a quality control measure in which additional data
are collected in order to judge whether or not the remediation was successful.

The focus of this study is on the accuracy of statistical tools used in the first phase, but all three
phases are described below to provide context.

Phase 1: Remedial Investigation

The remedial investigation is a thorough study of the site in which all available information is
compiled into a conceptual site model. This model will be used to plan and justify the remediation
actions, so it must describe what types of hazards may be present and where they are likely to
be located. It describes all aspects of the site, including munitions use history, other current and
historical uses, layout, and geology. Such information is used to provide initial estimates of the
number, sizes, and locations of target areas at the site. Any uncertain aspects of the conceptual
site model should be augmented by collecting additional data and performing statistical analyses.
This can be an iterative process, where information gained through sampling, such as the density
of background anomalies or or additional details about target area locations, is used to update the
conceptual model. Additional sampling may be needed to answer new questions as the site model
is updated.

Sections of the site where munitions use is suspected are sampled with DGM equipment and the
spatial anomaly density is mapped. Systematic transect sampling and random grid sampling are
both frequently used, but transect sampling is more cost-effective and has been demonstrated via
simulation to be more robust to complex background noise (Pulpisher et al. 2014). VSP may be
used to develop a transect sampling plan (Section 3.2.1) and then to identify regions with high
anomaly density based on the sample data (Sections 3.2.5 and 3.2.6).

Any regions where the spatial density of possible TOI items is much higher than the density due
to background noise are considered potential TAs unless the elevated density can be conclusively
explained by other aspects of the conceptual site model. Some regions may also be considered to
have a high-risk of TOI presence based on prior information. All high-density or high-risk regions are
considered for remediation. Ultimately the remediation cannot proceed until the project managers
believe they can successfully clear the most hazardous sections of the site while staying under
budget, so a risk assessment may be needed to prioritize different possible TAs. The end product of
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the remedial investigation is a remediation plan defining the regions to be cleared of possible TOI,
the area and depth that must be dug around each possible TOI item, and the maximum number
of TOI items that could remain in the remediated regions without posing a risk to future users of
the site.

Phase 2: Remediation

Once the remedial investigation concludes and potential TAs have been identified, the remediation
occurs. The region selected for remediation undergoes a census in which the full area is swept with
metal detectors or DGM devices. All anomalies that are possibly TOI have their locations recorded
and are dug up. Several randomly selected anomalies that are not suspected to be TOI should also
be dug to check that the DGM equipment is functioning properly.

Phase 3: Post-Remediation Verification

The final phase provides verification that the remediation process successfully cleared the area of
TOI according to criteria defined during the remedial investigation. The remediated areas must be
revisited and either a sample survey or another census is performed to ensure that no TOI items
remain. In the case of a survey, the sampling units can be either transects or the locations of
individual anomalies. Transect sampling is typically more cost-effective than anomaly sampling or
a complete census (Pulsipher et al. 2011). VSP can compute the number of anomaly locations or
transects which must be sampled to make a conclusion at a specified confidence level (Section 3.2.9).

As another check on equipment function, the remediation team seeds several TOI items at the site
prior to data collection. If transect sampling is used, the seed items are placed in randomly selected
locations within the transects selected for sampling. Otherwise, the seed items are placed at random
locations throughout the site, and their locations are added to the list of sampled locations before
the list is given to the DGM personnel.

If the anomaly detection equipment detects all the seed items and finds no other TOI items, the
remediation is declared successful and the project leaders make a statement such as “we are 95%
confident that at least 99% of the area is free of TOI.” Otherwise, the remediation is unsuccessful
and the project must return to the remedial investigation phase.

3 Visual Sample Plan

The Visual Sample Plan user’s guide describes VSP as “a software tool for selecting the right
number and location of environmental samples or transects so that the results of statistical tests
performed on the data collected via the sampling plan have the required confidence for decision
making”(Matzke et al. 2014). It also includes tools for analyzing data collected from the sampling
plans that it creates. VSP is meant to provide autonomy for project managers who do not have
statistical expertise but need to develop and justify sampling plans.

VSP was originally developed to help project managers implement the Environmental Protection
Agency’s Data Quality Objectives Process, a sequence of seven steps meant to ensure that envi-
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ronmental studies are performed efficiently and effectively (EPA 600-R-96-055). The first six steps
involve defining the inputs, outputs, goals, and scope of the project. The seventh step is to choose
an optimized sampling design based on the needs stated in the previous steps. VSP’s sampling
design tools are organized so that users who follow steps 1–6 can enter information about their
project and then easily compare different sampling plans to choose one that meets their needs.

Visual Sample Plan Version 1.0 was released in 2001. Its features are meant for geostatistical
studies where a continuous response, such as the concentration of a chemical contaminant, can
be measured at any point of the site; it has no UXO-specific features and the word “ordnance”
does not appear in the user’s guide (Davidson et al. 2001). UXO features have been gradually
added to subsequent versions, and this expansion of the feature set is at least partly motivated
by inappropriate application of VSP’s other features to UXO sites (Pulpisher et al. 2014). Visual
Sample Plan Version 7.5, released in early 2016, satisfies most or all of the data analysis needs of
a typical UXO cleanup project.

However, Visual Sample Plan has by no means become a solely UXO-oriented software package.
It includes features applicable to many different types of projects. To illustrate this diversity,
Section 3.1 provides a brief overview of some of the software’s capabilities. Section 3.2 gives more
details about the features that apply specifically to UXO sites. In Section 3.3, I discuss the theory
of spatial prediction and the technical details of the implementation in VSP, and Sections 3.3.2 and
3.3.4 describe how VSP interacts with GSLIB (Deutsch and Journel 1998), a library of geostatistical
programs that provide VSP with geostatistical mapping abilities.

3.1 General and Non-UXO Features

The user interface of VSP is built around a graphical display of the site. The user can load a
background image, or VSP can download maps or satellite images from MapQuest or Open Street
Map (Figure 1). Detailed maps can be constructed by pointing and clicking to create polygons
and simple shapes. Maps can also be imported and exported as shapefiles. Figure 2 (left) shows a
map of a site used in the simulation study in Section 4.1.2). For sites within buildings, rooms may
be drawn and viewed in 3D, including a selection of 3D models of furniture that can be placed in
rooms (Figure 2, right).

Sections of the map can be defined as sample areas (seen as yellow regions in the figures). Within
one site or building, multiple sample areas can be created. Each sample area can have its own
sampling plan and be analyzed individually.

The sampling design and data analysis tools appear in the “Sampling Goals” menu and are grouped
by purpose. There are general tools for estimating means and proportions, and for testing if
the mean or proportion exceeds a threshold. Each of these features can create a sampling plan,
place samples on the site map, and analyze collected data. Sampling methods include simple
random sampling, stratified simple random sampling, systematic grid sampling, adaptive cluster
sampling, and others. An example of the “Compare Average to Fixed Threshold” feature appears
in Figure 3. These tools use classical Normal- and t-distribution techniques for proportions and
means of Normally distributed responses. The user can also choose robust methods for non-Normal
quantitative data.
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Other features can locate and delineate hot spots of heavy contamination, use the Mann-Kendall
test to detect trends, or use Kriging to map a variable across the sample area. There are tools
meant specifically for use on radiological sites. The user can manually augment any sampling plan
by specifying the locations of judgment samples; the help file includes a warning that the feature
is provided “as a convenience and [the developers] cannot be held responsible for its misuse.”

Figure 1: The VSP program window shows the site area used for the simulation study in Section 4.
This is a 952.4 acre (roughly 1.4 by 1.1 mile) region situated northwest of Bozeman, Montana. A
real geographic location is used only to demonstrate VSP’s map feature; the simulated sites are
entirely fictitious.

Figure 2: VSP allows drawing detailed maps and buildings with a simple point-and-click interface,
and can import maps created in other software. The map (left) was imported via a shapefile.The
room (right) was created entirely within VSP.
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Figure 3: The user provides information about the project goals in the “Compare Average to
Fixed Threshold” dialog box, and then VSP a generates a simple random sample of locations to
be measured.

3.2 UXO-Specific features

This section describes the options available for analyzing UXO data, presented in the order in which
they are employed if an analyst uses VSP for an entire project from start to finish. Sections 3.2.1–
3.2.7 discuss remedial investigation features used for mapping and identifying target areas. Mapping
may not be applicable to all parts of a site, so Section 3.2.8 describes features used for other aspects
of the remedial investigation. Section 3.2.9 documents VSP’s verification sampling plan tools.

Sections 3.2.5 and 3.2.6 introduce VSP’s anomaly density mapping features, with an emphasis on
the interaction between the user and the software. I replicate the methods used by these features
in my simulation study, so I devote Section 3.3 to the theoretical background and technical details.

3.2.1 Transect Sampling Plans for Remedial Investigation

At any time during a remedial investigation, if the locations of target areas cannot be precisely
estimated based on the information available, additional sample surveys should be conducted to
collect more information. VSP constructs systematic plans of evenly-spaced transects for this
purpose. The transects can run north-south, east-west, or in both directions to form a grid.

If the sample area has not been previously surveyed, the new transects will cover the entire region.
If data have been loaded from a previous survey, VSP can compute the probability that the survey
traversed a target area of a specified size, and an option is available to augment the previous survey
by placing new transects in sections of the site that were not sampled.

VSP assists the user in selecting the between-transect spacing to achieve a certain probability of
detecting a target area of specified size and density. In VSP, transect spacing is defined as the
distance from the right edge of one transect to the left edge of the next transect to the right. The
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space between the centerlines of adjacent transects is the spacing plus the transect width. The
width is the footprint of the DGM equipment, and is input by the user. Figure 4 shows an example
of a parallel transect plan on a sample area that was not previously surveyed. My simulations use
only parallel transect sampling plans and areas not previously surveyed.

3.2.2 Target Area Detection Probability

Visual Sample Plan assists the user in creating a transect sampling plan by displaying a detection
probability curve based on user-input information about a target area and the distribution of
anomalies at the site. The target area is considered detected if at least one rectangular search
window placed on a transect is found to have a higher anomaly density than the assumed background
density. VSP computes the detection probabilities using Monte Carlo simulation, which relies on
many probabilistic assumptions. The simulation and search window density computations are
described in detail in Section 3.2.2.1.

The user inputs a detailed description of the prior information. This includes the transect width,
the background anomaly density, the estimated size and anomaly density (above the background
level) of the target area, and a false negative rate if it known that the equipment fails to detect
a certain proportion of anomalies. The TA is assumed to be circular or elliptical with a random
orientation. The user also specifies an interval of transect spacings over which VSP evaluates
the detection probability. VSP then plots the detection probability curve as a function of transect
spacing and the user clicks a point on the curve to set the spacing for the sampling plan. (Figure 5).

Figure 4: The VSP window shows a parallel transect sampling plan with 225 foot spacing between
6 foot wide transects.
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Note that a TA is “detected” if the sample data provide evidence of its presence; the user must be
aware that having evidence a TA exists is very different from producing an accurate map of it. If
the sampling plan will be used for geostatistical mapping, a transect spacing selected to achieve a
specified detection probability is, at best, a rough guideline.

Figure 5: The VSP program window shows a detection probability curve assuming a 1,200 foot by
800 foot elliptical target area. The points on the curve were created by Monte Carlo simulation
based on user-input assumptions about the size of the TA, the background anomaly density (100
anomalies per acre), and the TA anomaly density (200 anomalies per acre above the background
density). The circles show the point estimates for each transect spacing that VSP simulated.

3.2.2.1 Details of the Detection Probability Simulation

Visual Sample Plan computes the detection probability curve using Monte Carlo simulation, where
many realizations of the target area of interest are generated from a spatial point process, and then
it applies a transect sampling plan to each realization. The software computes the proportion of
realizations where the target area is detected in at least one rectangular search window, and uses
that proportion as an estimate of the detection probability. It simulates additional realizations until
the variability in the estimated probability falls below a threshold (Section 3.2.2.2). It repeats the
simulation process to estimate the detection probability for multiple different transect spacings in a
user-specified interval, and then fits a smooth curve to the estimates and plots the curve onscreen.

For each realization, VSP simulates a site with one elliptical target area. The target area has the
size and shape specified by the user, and is rotated to a random orientation. The simulated site is
just large enough to contain the target area. To generate background anomalies, VSP uses the user-
specified background density and equipment false positive rate to compute the expected number
of background anomalies that would be detected at the site. The software draws the number of
realized background anomalies from a Poisson distribution where the mean is the expected number
of detectable background anomalies, and then draws the spatial locations of these anomalies from a
bivariate Uniform distribution. VSP then simulates TOI anomalies in a similar manner, using the
input TA size and density to compute the expected number of detectable TOI anomalies, drawing
the number of anomalies from the corresponding Poisson distribution, and generating the anomaly
locations from the user’s choice of target area distribution (Uniform or a bivariate Normal). If the
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user selects a Uniform distribution, all TOI anomalies are placed inside the ellipse. In the Normal
case, the distribution is scaled so that 99% of the TOI anomalies will be inside the ellipse.

The target area is considered detected if at least one rectangular search window is found to have
a higher point density than the background density. After simulating the anomaly locations, the
software lays down transects across the site, with the first transect placed at a random starting
point. It places rectangular windows on the transects; the dimensions of the windows are the
transect width by a window length parameter (Section 3.2.2.3). Multiple overlapping windows are
placed on each transect, with the window centers separated by one-sixth of the window length.

For each window, the software uses a hypothesis test to decide if the anomaly density in the window
is higher than the background level. Under the null hypothesis, the number of detected anomalies
in the window is assumed to follow a Poisson distribution with a mean equal to the number of
background anomalies expected to be found in the window if the prior information entered by the
user is correct. If there is enough evidence at a certain significance level to reject the null hypothesis
for any window, VSP records that the TA was detected for that realization. The significance level
cannot be adjusted by the user and is not stated in the documentation.

One transect sampling plan is applied to each realization, but several different sampling plans are
applied to different realizations. The software dynamically creates a set of transect spacings to use
for different sampling plans. Initially, only the smallest and largest spacings in the user-specified
interval are used; additional spacings are added as needed to increase the smoothness of the esti-
mated detection probability function. For each transect spacing considered, the sample proportion
of realizations where the target area is detected is the estimate of the detection probability. VSP
uses an undocumented method to fit a smooth curve to the estimated probabilities and plots the
curve onscreen.

3.2.2.2 Stopping Criteria for the Detection Probability Simulation

Visual Sample Plan uses parameters called the maximum error and the minimum precision to
decide when to end the simulation. These have default values set, but the user can override the
defaults. Their default values are 0.03 and 0.01, respectively; decreasing the values causes the
simulation to run longer and results in a smoother detection probability curve.

VSP uses the maximum error to decide when to stop simulating each transect spacing. It treats
the set of realizations analyzed with one transect spacing as a random sample from the population
of all realizations that could be analyzed using that transect spacing. For each realization, the
outcome of “TA detected” or “TA not detected” is recorded. If VSP applies transect spacing s

to ns realizations, the sample proportion of realizations where the TA is detected using transect
spacing s is p̂s. VSP computes

MOE = 1.96

√
p̂s(1− p̂s)

ns
,

the margin of error of a 95% confidence interval for the true proportion of realizations where the
TA is detected with a spacing of s. It increases ns until the MOE is less than the maximum error.

The software uses the minimum precision to assess whether it should simulate additional transect
spacings. Once each transect spacing satisfies the maximum error criterion, VSP compares the
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estimated detection probabilities for each pair of consecutive transect spacings. If the absolute
difference in the estimated probabilities for a pair of transect spacings is larger than the minimum
precision, it adds an intermediate transect spacing to the simulation. The simulation continues
until all transect spacings satisfy the maximum error criterion and all pairs of adjacent of transect
spacings have estimates that differ by less than the minimum precision.

3.2.2.3 Window Length for the Detection Probability Simulation

The window length could have a substantial impact on the simulated detection probabilities, but
this effect would be invisible to the user without comparing several window lengths. I investigated
the sensitivity of the detection probability curve to the window length and conclude that the default
length is a reasonable value to use for a 1,200 foot by 800 foot target area (Figure 6). I had VSP
generate ten curves for each of seven window lengths: 10%, 20%, 50%, 80%, 90%, and 125% of the
minor axis, as well as 125% of the major axis. I kept the default values for minimum precision and
maximum error, and set the false negative rate to 0%. I set all other inputs to the same values as
in the Kriging window size experiment (Section 5). Some curves for the two largest windows look
very rough; this is an artifact of fitting smooth curves to the point estimates. It could be remedied
by increasing the minimum precision, but the other curves appear reasonably smooth.

For transect spacings under 200 feet, the detection probabilities are very close to one for all window
sizes. For any window size larger than 200 feet, there is a trend where the probability of detecting
the TA decreases as the window size increases. The window lengths of 50% to 90% of the minor axis
of the TA yield very similar curves, suggesting that choosing a window length in this interval has
little effect on the outcome of VSP’s simulation. Therefore, a window length of 90% of the minor
axis should result in a detection probability curve that is relatively uninfluenced by the window
length choice. For the rest of this project, I use this default window length.
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Figure 6: These detection probability curves for a 1,200 ft by 800 ft elliptical were created using
Monte Carlo simulation within Visual Sample Plan. The target area is assumed to have a Gaussian
distribution and 200 anomalies per acre at the center, and the background density is assumed to
be 100 anomalies per acre. For each window length, ten curves illustrate the Monte Carlo error.
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Figure 7: VSP calculates target area sizes for 76 mm and 105 mm surface-launched high-explosive
shells.

3.2.3 Target Area Size Calculation

To construct a remedial investigation sampling plan, the user must have some prior knowledge
of the target area size. Visual Sample Plan provides size estimates based on the fragmentation
distance of a specified munition type fired at a single target. The interface is simple, with a few
types of weapons to choose from and a slider to select the size of the munitions. Figure 7 shows
the output used to inform the TA sizes for the simulated sites described in Section 4.1.

3.2.4 File Formats for Sample Data

Visual Sample Plan uses two types of files for UXO data: course over ground (COG) files and
anomaly files. COG files contain records of the actual path traversed during sampling, represented
as a sequence of waypoints. COG files have columns for the longitudinal and latitudinal coordinates,
and optionally a column of timestamps. The width of the transect is not contained in the file, but
is manually entered into VSP. Anomaly files contain the coordinates of all anomalies detected, and
may include a third column for the value of the detector response at the location. This response
value is currently ignored by VSP. Both types of files are plain text files with one entry per line
and columns separated by commas or tabs.

Additionally, VSP uses the GeoEAS file format to export observed anomaly densities for use by
GSLIB. A GeoEAS file is a plain text file with a simple header specifying the number and names
of the variables. The data are output with one observation per line and columns are separated
by tabs. VSP creates four columns for the longitudinal and latitudinal coordinates of the window
center, the elevation, and the spatial anomaly density. VSP works only in two dimensions, so all
elevation values are set to zero.
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3.2.5 Flag High-Density Locations

The more basic of Visual Sample Plan’s two methods of identifying possible target areas is to mark
high-density locations along the transects. It does this using circular search windows centered on
the transects to compute a moving average of the anomaly density across the sampled portion of the
site. The user specifies a diameter for the windows and a critical density value; regions of the site
where the observed density exceeds the critical value are flagged as possible target areas. The user
chooses either to use the critical value as a hard threshold, or to treat it as the known background
level and have VSP find areas where the density is “significantly greater than background density.”
Locations with high density are turned into polygonal regions.

Windows are centered along the centerline of each transect. VSP places the first windows at the
south or west edge of the site. It places subsequent windows farther along the transects with the
window centers separated by one-sixth of the window diameter (Figure 8). The density in a window
is computed as

window density =
number of anomalies inside the window

sampled area inside the window
.

VSP uses large, overlapping windows to smooth out small-scale variation in the observed densities.

If the user chooses the “significantly greater than background density” option, VSP performs a
hypothesis test for each window. The number of detected anomalies in the window is assumed to
follow a Poisson distribution; the null hypothesis is that the Poisson mean is equal to the user-
specified background density multiplied by the sampled area in the window. The significance level
defaults to 0.05 but can be changed by the user. VSP marks windows where the null hypothesis is
rejected (or where the density is above the hard threshold) by placing “flags” on the map at the
window centers (salmon-colored squares in Figure 9).

Once windows are flagged, VSP delineates the high density regions by centering square blocks
at the centers of the flagged windows. The user specifies the block size, which should be large
enough to overlap blocks from adjacent transects so that a cluster of adjacent blocks appears as a
contiguous region. VSP encloses overlapping blocks in polygons and ignores any polygons smaller
than a user-specified minimum area.

3.2.5.1 Comments on Statistical Assumptions

Visual Sample Plan’s “significantly greater than background density” option is statistically prob-
lematic. VSP performs the hypothesis tests as if the windows are independent, but this is not
the case because the windows overlap. This dependence can be a source of excess variability in
the observed anomaly counts, known as overdispersion, which the Poisson distribution does not
account for. This leads to the null hypothesis being rejected too easily.

Furthermore, the default significance level is too high for this situation. The significance level is the
Type I error rate, or the proportion of tests where the null hypothesis is rejected when it is actually
true. With a significance level of 0.05, this means that on average 5% of windows containing only
background anomalies will be flagged as possible target areas. One analysis can involve hundreds of
windows (Figure 8, left, shows 807 windows), so a large number of false positives must be expected.
The significance level should be lowered to adjust for the large number of tests.
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Figure 8: These diagrams illustrate the circular search windows used for calculating the local
anomaly density. Left: All of these windows are used to analyze data from one sampling plan with
6 foot wide parallel transects and 390 feet of between-transect spacing. The window diameter is
800 feet. The blue points are the actual window centers generated by VSP. Right: This example
shows how the window density is computed. All detected anomalies within the circle (red dots) are
counted; the detected anomalies outside the circle (black dots) are ignored. The area used in the
computation is the area of the intersection between the transects and the circle (shaded in grey).

Figure 9: Left: This VSP dialog box is where the user specifies the window size and density
threshold. Right: This example shows possible target areas based on 800 foot windows. The small,
salmon-colored flags represent windows where the anomaly density is above 100 anomalies per acre
at a 0.05 significance level. The program created the larger, colored regions are created by placing
a square block at the center of each window. The transect spacing is 390 feet, so a block size of
400 ensures that blocks placed on adjacent transects can overlap. VSP creates the final result by
drawing polygons around intersecting blocks.
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3.2.5.2 Window Size for Flagging High-Density Locations

The only guidance the user’s guide offers for choosing a window size is that the diameter should
be at least as large as the between-transect spacing, but smaller than the assumed diameter of
the target area of interest. The lower bound ensures that the density estimate undergoes some
minimum amount of smoothing, although it is not apparent why the transect spacing in particular
is a suitable bound. The upper bound is reasonable because windows that are larger than the
target area will always include lower-density sections outside of the target area, causing the density
estimate to be too low, and possibly resulting in the failure to detect a target area that truly exists.

These guidelines are only minimally helpful when there is a large difference between the transect
spacing and the assumed target area size. VSP includes a sensitivity analysis tool to help make the
window size decision (Figure 10). This feature compares density estimates among several window
diameters. VSP tabulates the total high-density area delineated by each analysis and presents color-
coded maps showing which parts of the site are marked as possible target areas. This information
can be used to choose a window size and critical value that give an adequate amount of smoothing
and result in identifying a portion of the site that can be remediated or investigated further while
staying within the project’s budget.

Figure 10: VSP’s window size sensitivity analysis tool summarizes the detected high-density regions
graphically and in tabular form. The two smallest window diameters (400 and 600 feet) give the
appearance of the site being covered in small, isolated high-density regions. In reality these are due
to naturally-occurring random variation. The larger window sizes (800 and 1,000 feet) tell more
reasonable stories where similar (same-colored) densities are observed in adjacent windows. The
user will choose the analysis where the area of the site labeled as high-density is the most consistent
with the prior information about the extent of the munitions use areas.
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3.2.6 Kriging an Anomaly Density Surface

The more sophisticated of Visual Sample Plan’s two methods of identifying target areas is based
on geostatistical mapping of the anomaly density over the site. This method approximates a
continuous anomaly density surface by Kriging to produce a grid of predicted densities using a
parametric covariance model to incorporate spatial dependency (see Section 3.3 for details about
covariance functions and Kriging). Then, it finds contiguous regions of the site with high predicted
density and delineates them as possible target areas. Kriging is a complicated process where many
choices must be made, but the software automates it. The user can click one button to produce a
density map using default settings. This Kriging methodology is the primary focus of my project.

VSP’s Kriging tools analyze the same moving average anomaly densities as the flagging feature
(see Section 3.2.5 for details). The most important difference is that only windows centered on
transects can be flagged, but Kriging predicts the anomaly density in grid cells placed both on and
between transects.

VSP can either predict numerical densities or predict the probability that the density in a cell ex-
ceeds a threshold. From the user’s perspective, the software interface is the same whether densities
or probabilities are predicted. I use anomaly density prediction to illustrate the Kriging features.

To get started, the user must load COG and anomaly files, and specify the window diameter. Once
these tasks are done, the Kriging process occurs in three steps. The user can click a “Launch”
button to have VSP automatically do the first two steps in “Basic Mode,” which uses default
settings. In the first step, VSP estimates a covariance model from the observed data and plots a
semivariogram (see Section 3.3.1 for additional details). In the second step, ordinary Kriging is
done to construct the anomaly density surface (details in Section 3.3.3). The outcome of these
steps is a map of the site, colored by predicted density (Figure 11).

In the third step, VSP thresholds the density surface and places polygons on the map to delineate
high-density regions of the site. The software offers the user two options for doing this. Either
(1) a fixed threshold for the density is used, or (2) VSP finds regions using an “upper confidence
bound” of the predicted density at each grid cell. The latter feature is new in VSP version 7.5 and
is not yet documented; I will not discuss it further. Typically, the user will examine the anomaly
density map and subjectively decide on a threshold value, as demonstrated in Pulpisher et al.
(2014). The software identifies the grid cells where the estimate exceeds the threshold, and draws
polygons around contiguous clusters of cells to mark possible target areas. The user must specify a
minimum area single delineated region, and any polygons below this area threshold are discarded
and their grid cells are not included in the identified high-density area.

3.2.6.1 Window Size for Kriging

The window diameter acts as a smoothing parameter for the density surface (Figure 12). A small
window results in a surface with many small hotspots that make it difficult to discriminate between
a large target area and background noise. On the other hand, a large window could smooth the
surface too much, making target areas appear larger and lower in density than they actually are. It
is important to choose a window size that can accurately describe the target areas that are present.
VSP does not include any tools to help the user choose a window size for use in Kriging.
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Figure 11: These example Kriging results use 800 foot windows. The transects are 6 feet wide and
spaced 390 feet apart. The site contains a true 1,200 foot by 800 foot target area in the upper
left and a true 2,000 foot by 900 foot target area in the lower right. Left: VSP’s semivariogram
selection window shows an empirical semivariogram as points and a parametric semivariogram as a
curve. Right: This anomaly density map results from Kriging with the covariance model associated
with the semivariogram curve on the left. The orange, green, and blue polygons enclose sets of
contiguous grid cells with estimated densities above 140 anomalies per acre and areas above 5 acres.
I chose these values because they are able to separate the highest-density (red) elliptical regions
from the relatively disordered-looking background (purple, blue and green). The blue polygon
correctly delineates the first TA. The green polygon is at the center of the second TA, but much of
the TA area is outside the polygon. The orange polygon only contains background noise.

(a) 200 foot windows (b) 500 foot windows (c) 900 foot windows (d) 1,200 foot windows

Figure 12: VSP’s automated Kriging procedure makes it easy to re-analyze data with different
window sizes. These predicted density surfaces result from using four different window diameters
and the same sample data as used in Figure 11. Larger search windows result in smoother surfaces.
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3.2.7 Plots of Anomaly Density by Region

Once potential target areas have been delineated within VSP, the user can view histograms and
boxplots of the window densities by region. The plots are color-coded by region and are helpful
for describing the distributions of the anomaly density, checking that the results fit the prior
information about background and target area density, and assessing if the observed anomaly
densities can be approximated by a Normal distribution. Figure 13 shows plots corresponding to
the regions seen in Figure 11.

Figure 13: Visual Sample Plan plots the anomaly density in delineated regions as a histogram or
boxplots. Yellow corresponds to the portion of the site not marked as a possible target area, and
shows the predicted distribution of the background noise given the modeling and threshold choices
made by the user.

3.2.8 TOI Rate Estimation and Confirmation that a Site is Clean

The features described in Sections 3.2.1–3.2.7 are used for remedial investigation of regions where
prior information suggests concentrated munitions use occurred and many target of interest items
are expected to be present. For sections of the site where that is not the case – regions that were
not used as target areas so TOI would arrive only by accident or after ricocheting a long distance,
or regions that were previously remediated – no high anomaly density areas are expected to be
present. Analysis methods for this situation typically use a simple random sample or systematic
sample of short transects. The goal for regions expected to have few TOI items is to show that the
spatial density of TOIs is satisfactorily low by the criteria defined for the project.

Visual Sample Plan’s “Target of Interest (TOI) rate estimation” tool helps the user decide how
many transects to sample to meet this goal. The user inputs the size of the transects, the desired
confidence level, and the maximum number of TOI items that would be acceptable in the sample
area. VSP uses a Binomial model for the number of TOI items found during sampling. The
proportion of the total area covered by the transects is used as the probability p of detecting each
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item. The total number of TOI items N is unknown, so VSP elicits prior information from the
user and uses a Bayesian analysis to find the posterior distribution of N given the number of
TOIs detected during sampling. The “confidence level” is defined as the posterior probability that
N does not exceed the user-specified maximum. The models used by VSP lead to closed-form
posterior distributions, so VSP assumes that zero TOI items will be observed and solves for p. It
then recommends the number of transects of the user-specified size that cover p of the site area.

After sampling, the user can input the number of TOIs that were found. The software uses this
information to find the posterior quantile corresponding to the confidence level, and then suggests
a “confidence” statement that can be made about the density TOI items present, treating the
posterior quantile as an upper bound.

The user can choose to use an informative or uninformative prior distribution for N , or to use
a maximum likelihood analysis instead of a Bayesian analysis. If the user selects an informative
prior, N follows a Poisson distribution with mean λ, and λ follows a Gamma distribution. The
user inputs some additional information about λ, and VSP selects one of several pre-programmed
shapes for the Gamma distribution and plots the resulting marginal prior distribution of N . If the
user desires an uninformative prior, VSP assumes that all nonnegative integers are equally likely
values of N , and no additional options are available. The maximum likelihood option uses the same
model as the uninformative prior option, but includes additional output regarding the probability
of concluding the TOI rate is acceptable when in fact it is higher (analogous to a Type I error rate
if “the TOI rate is acceptable” is considered as a null hypothesis).

Figure 14 shows an example of the TOI rate estimation feature. The “Presumptively Clean Valida-
tion” feature offers similar functionality, but models the number of small grid cells containing TOIs
rather than modeling the number of TOI items. Analyzing grid cells lets the user state conclusions
in terms of how much area is free of TOIs instead of the number or density of TOI items.

Figure 14: The user provides information to help VSP construct a prior distribution for the number
of TOI items in the area. VSP then recommends a number of transects to be sampled.
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3.2.9 Verification Sampling Plans

The final UXO-related feature is used after remediation to assess the success of the cleanup. The
project team needs to demonstrate that very few targets of interest remain. VSP uses accept-on-
zero attribute compliance sampling methodology to guide the user in constructing a sampling plan.
The user can choose to use either transects or the locations of remediated anomalies as the sampling
units. If the verification sample is collected and no TOI items are found, the team will make a
statement of the form “We are Y% confident that at least X% of the N possible sampling units do
not contain TOIs” where N is the total number of transects or anomaly locations in the remediated
region that could have been sampled. At this point, the true number of detectable anomalies is
known because remediation involves a census of the whole region.

The data from verification sampling are used for a hypothesis test. Under the null hypothesis, the
number of units that contain TOI items in a simple random sample of n units follows a hyperge-
ometric distribution where N

(
1− X

100

)
units contain TOI. Y

100 is taken as the probability that no

units in the sample contain TOI, so 1 − Y
100 is the Type I error rate. X, Y , N and n have the
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presented in Bowen and Bennett (1988, §17.2) in the context of using the hypergeometric distri-
bution with data from accept-on-zero sampling plans where the sampling units are containers of
radioactive material. The total number of sampling units N is known. The user specifies two of
X, Y , and n, and VSP solves for the third. Figure 15 shows an example where the sampling units
are 300 foot by 6 foot transects. The user wants to be 99% confident that at least 99% of the area
of the site is free of targets of interest and VSP computes that 454 transects should be sampled.

Figure 15: The user specifies a confidence level and the proportion of transects that must be free
of targets of interest, and then VSP outputs a sample size.
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3.3 Theory of Spatial Prediction

Visual Sample Plan’s Kriging feature computes a moving average anomaly density at points along
the transects, and uses this moving average density as the response variable in a spatial linear
model. It constructs a density surface over the entire site by using the model to predict the moving
average density at unsampled locations. To help clarify the issues related to the Kriging analysis
in VSP, this section presents an overview of spatial linear models. Sections 3.3.1–3.3.4 discuss the
technical details in the context of UXO data and describe the default behavior of VSP’s Kriging
procedure.

Linear models extend to the realm of spatial data in the following manner (Schabenberger and
Gotway 2005, §5.1). Suppose the outcome of a process is observed at spatial locations s1, . . . , sn.
Let Z = (Z(s1), . . . , Z(sn))

′ be a vector of responses and let X be a matrix of explanatory variables
where the ith row contains the values at location si. in general, X may contain linear or polynomial
functions of the spatial coordinates, as well as other covariates collected along with the response.
Visual Sample Plan does not include any covariates or functions of the spatial location in X, but
other software can fit more complicated models.

The spatial linear model is
Z = Xβ + ǫ,

where β is a vector of coefficients and ǫ is a multivariate Normal random error vector with mean
0 and variance-covariance matrix Σ. The covariance between two observations depends on the
distance (and possibly direction) between their locations. These relationships are described by a
covariance function and a semivariogram, explained further in Section 3.3.1.

A single real-world site is one realization of some underlying process. In spatial statistics, the
interest is typically in mapping the response across the one realization by predicting the response at
unobserved locations while using the correlation structure to account for the relationships between
nearby points. A family of predictors known as Kriging predictors are the best linear unbiased
predictors (BLUPs) under squared-error loss in several situations. Important Kriging predictors
include the simple Kriging predictor (BLUP when Xβ is known), the ordinary Kriging predictor
(BLUP when Xβ is unknown but constant), and the universal Kriging predictor (BLUP in the
general case where Xβ is not spatially and β is unknown).

The spatial linear model requires a continuous response variable observed at fixed locations. The
raw data from a UXO site are the random locations of the anomalies, recorded as a list of points.
Visual Sample Plan processes the list of locations into a continuous density variable. It does this
by computing the observed spatial anomaly density Z(si) as a moving average in a circular window
at locations si on the transects (see Section 3.2.5). VSP does not use any explanatory variables, so
the linear model simply describes variation around the overall mean. The model becomes

Z = µ1+ ǫ; ǫ ∼ N(0,Σ),

where Z = (Z(s1), . . . , Z(sn))
′, 1 is a vector of ones, and µ is the mean anomaly density across the

whole site. An anomaly density map is produced by using the model to predict values of Z(s) at
many new values of s.

It should be pointed out that the mean density µ is not the same as the background density because
the higher-density target areas are included when computing the mean. If µ is considered unknown,

26



this superficially looks like an ordinary Kriging problem. However, a fundamental assumption of
ordinary Kriging is second-order stationarity, meaning that the mean is spatially constant and
the covariance between two points depends only on the distance between them, not their absolute
locations. The presence of TAs is a violation of stationarity. Nonetheless, Visual Sample Plan uses
ordinary Kriging and so I follow suit for my simulation. I revisit these assumptions in Section 7.

3.3.1 Covariance Functions and Semivariograms

In one realization of a spatial process, observations located near each other tend to have similar
values. Thus, an observation at one location depends upon the values observed at other locations.
Nearby locations are more strongly related than locations that are far apart. For a second-order
stationary process, the covariance function C(h) = Cov (Z(s), Z(s+ h)) quantifies the strength
of the spatial relationship between two points separated by a displacement vector h. Under the
assumption of second-order stationarity, s is any arbitrary spatial location. The presentation in
this paper uses some simplifying assumptions; see Schabenberger and Gotway (2005, Chapter 4)
for a more thorough treatment.

The covariance function is a fundamental probabilistic concept, but in geostatistical applications
it is more common to describe the spatial dependency by the semivariogram, which measures the
variability of the difference in response values between a point and its neighbors. Under second-
order stationarity, the semivariogram is defined as

γ(h) =
1

2
Var(Z(s)− Z(s+ h)).

The statistical models used by VSP are both second-order stationary and isotropic, meaning that
covariance between observations at two points does not depend on the direction between the points.
In an isotropic context, the displacement vector can be replaced by the distance between the points,
called the lag. This assumption makes the semivariogram simple to write out in terms of the
covariance function. For any pair of points that are a lag h = |h| apart, the covariance is denoted
C(h). The semivariogram simplifies to

γ(h) = C(0)− C(h).

Semivariograms exhibit a characteristic shape where they start at or near 0, increase, and level off
at or near a value of C(0) = σ2. The value σ2 is the variance of the response variable, known in
geostatistics as the sill.

Other important quantities for summarizing the structure of the spatial dependency are the range
and the nugget. The range α is the lag beyond which points are uncorrelated, so that C(h) = 0
and γ(h) = σ2 for h > α. In situations where the semivariogram approaches the sill asymptotically,
α instead represents the practical range where the semivariogram becomes approximately equal to
the sill. A common definition of the practical range is the lag where the semivariogram reaches
95% of the sill (γ(α) ≈ 0.95σ2).

The nugget c0 is a constant that is added to the semivariogram to represent small-scale variation or
measurement error. The canonical example of a nugget arises when mapping mineral concentration
across a large region. The statistical model captures general trends in concentration, but nearby
observations are not perfectly correlated. One location can contain a nugget of highly concentrated
ore, but another location just a few inches away may have a much lower observed concentration.
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3.3.1.1 The Empirical Semivariogram

A considerable amount of theory has been developed for both estimating and modeling covariance
functions and semivariograms. The techniques used by Visual Sample Plan originate in geostatistics
and emphasize the semivariogram over the covariance function, so the rest of this section centers
around semivariogram estimation.

The classical semivariogram estimator is known as the Matheron estimator or empirical semivari-
ogram. It has the form

γ̂(h) =
1

2|L(h)|

∑

(i,j)∈L(h)

(Z(si)− Z(sj))
2

with the lag class L(h) defined as the set of distinct pairs of indices such that locations si and sj
are separated by a lag of h. Usually, lags are binned because there may be only a small number
of locations that are a given distance apart. In that case, L(h) is defined to include all pairs with
lags in the interval [h − ǫ, h + ǫ), and the semivariogram is estimated only for a finite set of lags.
Estimated semivariograms can be heavily influenced by the binning, especially when some bins
include few pairs. Schabenberger and Gotway suggest choosing ǫ so that each bin includes at least
30 pairs.

3.3.1.2 Parametric Models for the Semivariogram

Spatial statistical models require covariances to be defined for any lag h ≥ 0, not just for the
distances between the observed locations, so a functional form must be specified for the covari-
ance. Many common models are parameterized to include the range, sill, and nugget, and these
parameters are estimated from the data. Any covariance function model has an associated semivar-
iogram. Visual Sample Plan allows the user to inspect semivariograms; the covariance functions are
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Figure 16: These semivariograms result from different parametric models for the covariance func-
tion. Each has a nugget of c0 = 1. The spherical, exponential, and Gaussian models have σ2 = 9
and α = 8. The power model has θ = 4.5 and ω = 0.3.
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hidden behind the scenes. The covariance models supported by Visual Sample plan are the spher-
ical, exponential, and Gaussian models, As implemented in GSLIB (Deutsch and Journel 1998),
and including a nugget, they have the following semivariograms. Figure 16 illustrates example
semivariograms for the four different models.

The spherical semivariogram is

γ(h) =

{
c0 + σ2

(
1.5 h

α
− 0.5

(
h
α

)3)
, h < α

c0 + σ2, h ≥ α
.

In this model, α is the true range.

The exponential semivariogram is

γ(h) = c0 + σ2

(
1− exp

{
−
3h

α

})
.

Here, α is the practical range, where γ(α) ≈ 0.95σ2.

The Gaussian semivariogram is

γ(h) = c0 + σ2

(
1− exp

{
−

(
3h

α

)2
})

.

In this case, α is the practical range, with γ(α) ≈ 0.99σ2.

Finally, the power semivariogram has the form

γ(h) = c0 + θhω

where 0 < ω < 2. The parameters θ and ω are not easily interpretable, but the power model is
flexible in that its semivariogram takes on a variety of different shapes for different ω values. It can
be useful for describing spatial processes where the range is larger than any of the observed lags.

3.3.1.3 Theory of Fitting Parametric Semivariogram Models

In the past, geostatisticians traditionally fit parametric semivariogram models by trial and error,
plotting curves with different parameter values over the empirical semivariogram values until a curve
was judged to fit the points adequately. Nonlinear least squares methods for fitting semivariograms
gained popularity as computing power increased in the 1980s and 1990s. Now, more sophisticated
Bayesian and maximum likelihood methods are available for estimating covariance parameters. If a
probability model is fully defined for (Z(s1), . . . , Z(sn))

′, maximum likelihood (ML) and restricted
maximum likelihood (REML) estimators for covariance parameters can be derived. Estimates can
be computed numerically using all of the observed data.

However, much of the developed theory regarding the properties of the least squares and maximum
likelihood estimators assumes the spatial process is a Gaussian random field, so the observed data
vector (Z(s1), . . . , Z(sn))

′ follows an n-variate Normal distribution. That is a hefty assumption
that Schabenberger and Gotway insist is rarely met in reality. In many research fields, it is still
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common practice to use least squares to fit a parametric semivariogram function to the empirical
semivariogram without stating any particular distribution for the original observations. The co-
variance function is constructed from the parameter estimates and then treated as if it were the
truth, so the resulting Kriging predictions fail to account for the uncertainty associated with the
covariance parameter estimates.

The least squares approach with the most theoretical justification is generalized least squares (GLS),
which accounts for the correlation between values of the empirical semivariogram at different lags.
Schabenberger and Gotway discuss GLS estimation; the expression for the correlation is complicated
and GLS is infrequently used in practice.

Weighted least squares (WLS) ignores the correlations but is much easier to implement than GLS.
Cressie (1985) proposes the approximation

Var(γ̂(h)) ≈
2γ(h,θ)2

|L(h)|

which leads to the weighted sum of squares

1

Var(γ̂(h))

∑

h

(γ̂(h)− γ(h,θ))2 ≈
∑

h

|L(h)|

2γ(h,θ)2
(γ̂(h)− γ(h,θ))2

=
∑

h

|L(h)|

2

(
γ̂(h)

γ(h,θ)
− 1

)2

.

The vector of parameters θ is estimated by minimizing the above expression, which is easily done
numerically.

A further simplification is to ignore the variance weight and use ordinary least squares (OLS),
which is also extremely easy to implement. Schabenberger and Gotway insist that OLS and WLS
are generally poor approximations of GLS because the empirical semivariogram values are strongly
correlated. Simulation studies (Zimmerman and Zimmerman 1991) suggest, at least for Gaussian
random fields, that ML, REML, WLS, and OLS perform similarly well at estimating covariance
parameters for Kriging.

3.3.2 Semivariograms in VSP and GSLIB

Visual Sample Plan relies on GSLIB to compute empirical semivariograms. GSLIB is a collection
of open source geostatistics computer programs written in FORTRAN by faculty and graduate
students at Stanford University. Development of GSLIB began around 1980 (Deutsch and Journel
1998). It was originally written in FORTRAN 77, but has been updated to FORTRAN 90 and
is now available in 32-bit and 64-bit versions for Windows, Mac OS X, and Linux (Deutsch and
Schnetzler 2003).

GAMV is the GSLIB routine that estimates empirical semivariograms. VSP creates a configuration
file which tells GAMV how to set up the binning of the lags. This file specifies a lag separation xlag,
a lag tolerance xtol and a number of lags nlag. GAMV reads the file and then outputs the empirical
semivariogram values for lags 1xlag, 2xlag, 3xlag, . . . , nlagxlag. All pairs of observations separated by
a distance in the interval [kxlag−xtol, kxlag+xtol) are used to estimate the semivariogram at the kth
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lag. Visual Sample Plan uses one-sixth of the window diameter as the lag separation, one-twelfth
of the window diameter as the lag tolerance, and requests 36 lags. GAMV offers additional features
for dealing with anisotropy and for working with points in three-dimensional space, but VSP does
not make use of these.

For large windows, the 36th lag may be larger than the maximum possible distance at the site. In
this case, GAMV only estimates the semivariogram for lag classes that contain at least one pair
of points. It does not return any values for lags larger than the site. Empirical semivariograms
computed using VSP’s default settings may include unreliable values for larger lags where few data
are available.

Visual Sample Plan estimates covariance parameters itself based on the empirical semivariogram
output from GAMV. VSP considers spherical, exponential, Gaussian, and power models; it au-
tomatically selects the “best fitting” of these, but the documentation does not explain how it
estimates the parameters or how it compares the different models. I have not been able to exactly
replicate VSP’s estimates, but its estimator behaves similarly to Cressie’s WLS estimator. In par-
ticular, parametric semivariograms chosen by VSP match the empirical semivariogram closely for
small lags and are relatively uninfluenced by extreme values of the empirical semivariogram for
large lags.

3.3.3 Ordinary Kriging

Kriging uses a linear function of the observed data to produce estimates and predicted values by
interpolating between the observed values. The model assumed by Visual Sample Plan is

Z = µ1+ ǫ; ǫ ∼ N(0,Σ)

where (Z(s1), . . . , Z(sn))
′ is a vector of observed moving average anomaly densities. Ordinary

Kriging assumes the mean µ is unknown but spatially constant and that Cov (Z(si), Z(sj)) =
C (|si − sj |) depends only on the distance between si and sj . For a point s, the predicted anomaly
density is

Z(s) = µ̂+ σ′Σ−1 (Z− 1µ̂)

where σ = (C(|s− s1|), . . . , C(|s− sn|)) and µ̂ =
(
1Σ−1

)
−1

1′Σ−1Z. The predictor is derived by
using Lagrange multipliers to minimize the squared-error loss function (Schabenberger and Gotway
2005, §5.2). The variance of this predictor is

σ2(s) = C(0)− σ′Σ−1σ +

(
1− 1′Σ−1σ

)2

1′Σ−11
,

known as the Kriging variance.

Note that the predicted value of Z(s) at an observed point s will always equal the observed value of
Z(s). That is, Kriging preserves the observed anomaly densities. The predicted anomaly densities
at unobserved locations are found by interpolating between the moving average densities at observed
locations. Kriging produces a continuous density surface, but does not do any smoothing in the
sense of removing local variability from the observed anomaly densities. Smoothing comes from
computing the observed densities in windows, and the amount of smoothing is controlled by the
window size.
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3.3.4 Kriging in VSP and GSLIB

Visual Sample Plan sets up a grid over which the anomaly density surface is constructed. The grid
cells are squares with side lengths of one-sixth of the window diameter. VSP uses the ordinary
Kriging functionality of GSLIB to predict the anomaly density at the center of each cell.

GSLIB’s Kriging routine is called KT3D. VSP outputs a configuration file that specifies the form
and parameters of the covariance function and instructs KT3D on how to set up the grid of locations
where the anomaly density will be predicted. The grid is defined by setting values for the numbers
of cells in the longitudinal and latitudinal directions (nx and ny), the sizes of the cells in each
direction (xsize and ysize), and the coordinates of the center of southwesternmost cell in the grid
(xmin and ymin). VSP sets xsize and ysize to one-sixth of the window diameter. xmin and ymin are set
so that the edges of the grid will pass through most southern and western points of the site. Then
it chooses nx and ny so that the grid will cover the whole site. KT3D then predicts the anomaly
density at the center of each grid cell, and VSP reads the KT3D output and plots the predicted
values as a heatmap.

KT3D uses only the observations in a local neighborhood to compute predicted values; this is a relic
from a time when limited computer memory and processor speed made such compromises necessary.
The neighborhood can be defined to include the entire site, but VSP’s default settings inexplicably
limits the neighborhood to the nearest 50 points. My simulations involve moving average densities
computed at hundreds of locations within each realization of a site, so KT3D makes each prediction
in ignorance of much of the available information.

KT3D includes many other features that VSP does not use. Some interesting examples include
anisotropic covariance models, Kriging in three dimensions, an automated leave-one-out cross val-
idation function, and the ability to compute the prediction error at points in a user-specified
validation set for jackknife resampling. The cross-validation and jackknife features could be useful
in selecting a search window size (Section 7.1).

4 Simulation Methods

The main component of this project is a simulation study to investigate how decisions made in
constructing a sampling plan influence the possible target areas identified after Kriging by Visual
Sample Plan’s methods. I define three hypothetical sites to provide a realistic context for comparing
the performance of the VSP-style analysis across different situations.

The conceptual models of the sites specify the prior information available when creating the sam-
pling plan, and also define the “truth” that the results of the analysis are compared to. Section 4.1
describes the sites. Realizations of the anomaly locations at the sites are generated from spatial
Poisson processes. These processes generate events at discrete locations and thus have an entirely
different character from the continuous response variable assumed by the models described in Sec-
tion 3.3; the reader can consult Section 4.2 for a primer on the theory of spatial Poisson processes.
I generate 3,000 realizations of each site so I have a large pool available to analyze.

I use sampling plans recommended by VSP based on the prior information in the conceptual site
models; Section 4.3 gives the details of how I create the sampling plans and implement them on

32



the simulated sites. Then I perform spatial prediction and delineate possible target areas using
methods meant to mimic those used by VSP. There are a few aspects of VSP’s analysis that I
either cannot reproduce or consider necessary to modify for simulation purposes, so Section 4.4
explains my prediction and delineation procedure and points out the differences from the VSP
procedure. Section 4.4.4 explains how the results of the analysis are summarized. Results from my
analysis are presented in Sections 5 and 6.

I use the R software, version 3.2.3 (R Core Team 2015), and the spatstat package (Baddeley,
Rubak, and Turner 2015; Baddeley and Turner 2005) to automate the simulation, sampling, and
analysis. For consistency with VSP, I use GSLIB (Deutsch and Journel 1998) to compute empirical
semivariograms and Kriging predictions. The R code is provided in Appendix A. The simulation
takes roughly 220 hours to run on a Lenovo Thinkpad SL410.

4.1 Descriptions of Simulated Sites

The sites vary in complexity and are designated as easy, medium, and hard according to the
intended difficulty of accurately identifying the true target areas. All sites have the same shape, an
approximately 7,400 ft by 5,600 ft quadrilateral (952.4 acres). I use the North American Datum
1983 Montana State Plane Cartesian coordinate system and give the sites a geographic location
near Bozeman, Montana. For a site of this size, the Earth’s curvature has a negligible effect on
distance and area measurements, so I use Euclidean distances measured in U.S. Survey Feet. A
real coordinate system is not necessary for the simulation, but adds realism when working in VSP.

All three sites have a background anomaly density of 100 anomalies per acre, and this value is
considered known. At the easy site, the background anomalies come from a homogeneous process.
The medium and hard sites have more complicated background processes that could make it more
difficult to distinguish between the TAs and the background noise.

Each site has two known TAs of different sizes. The medium and hard sites have a third unknown
target area of an intermediate size. The target areas are circular or elliptical, and all have an
anomaly density at the center of 200 anomalies per acre above the background level. The density
decreases away from the center of the TA. I define the “true” TA region as the ellipse that contains
99% of the target area anomalies lying along any cross-section going through the center of the TA.

4.1.1 Conceptual Model of the Easy Site

The easy site is meant to represent the best possible scenario, where the terrain is easy to traverse
and the background process is simple. The terrain is open grassland and easily accessible for a
vehicle-towed DGM array with a six-foot-wide footprint. The site now part of a wildlife refuge.
Recreational activities are prohibited so the area sees little human activity, and thus the background
anomalies are mostly due to iron in the soil and rocks. Some preliminary surveys were performed
nearby to calibrate the DGM equipment. From these data, it appears reasonable to assume that
the background anomalies are homogeneously distributed with a density of 100 anomalies per acre.

In the 1940s, the site was used by the U.S. Army to train tank crews. 76 mm shells were fired from
a single firing point in the center into two target areas. A single target in the northeastern corner
resulted in a 1,200 ft diameter by 800 ft diameter elliptical target area (TA1). To the south, several
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targets in a straight line resulted in a 2,000 ft diameter by 900 ft diameter target area (TA2). At
their centers, both TAs have anomaly densities of 200 anomalies per acre above the background.

Retired Army personnel have provided reliable eyewitness accounts of the training activities, so the
sizes of the target areas are known but the precise locations are not. Based on the level of site use
described in these accounts, the anomaly density in the target areas is expected to be anywhere
from 100 to 400 anomalies per acre above the background level.
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Figure 17: The easy site contains two target areas and homogeneous background anomalies. The
target areas are designated TA1 and TA2. The axes on the plot are marked in feet.

4.1.2 Conceptual Model of the Medium Site

The medium site is meant to represent a realistic scenario. The terrain is accessible and the
background has some debris from human activity. Not all details of the target areas are known.
It is in a wilderness area, now part of a National Forest, and is bordered by a mountain range to
the north. The environment at the site consists of foothills and thin forest. Any transect would be
accessible to a DGM array with a six-foot-wide footprint towed by an ATV.

The site sees moderate human activity. There is a city of 50,000 people to the south, and a lake to
the west. The lake is a popular weekend recreation destination. A two-lane highway runs through
the site, connecting the city to the lake. A dirt fire road runs from the center of the site to the
west, and is used to access trails for hiking, mountain-biking, and cross-country skiing. Background
anomalies are from iron in soil and rocks, metallic debris along roads, and occasional metallic debris
elsewhere. Equipment tests along the roads have shown that anomalies in the 50 ft wide path along
each road have a homogeneous distribution with a density of 200 anomalies per acre. Another UXO
cleanup occurred several miles away at a site with similar geology, where the background was found
to be homogeneous with 100 anomalies per acre. Several randomly-selected locations at this site
were used for equipment calibration; data collected during these activities suggest that both sites
have the same distribution of background anomalies.

This site was used during the Second World War for tank and artillery training activities. 76
mm tank shells were fired from two firing points near the west end of the dirt road. Shots from

34



the northern firing point were fired at targets to the north, against the mountains, into a 1,000
ft diameter by 600 ft diameter elliptical target area (T1). Shots from the southern firing point
were fired into an 800 ft diameter circular TA to the southwest (T2). 105 mm artillery shells were
fired from a single firing point in the center of the site at several targets in a 1,500 ft diameter
circular TA in the northeastern section of the site (A). Visible impact craters make the locations
and approximate sizes of T1 and A known, but it is of interest to more precisely map the regions
that may contain munitions items. The existence of T2 is suspected due to spent shell casings
found at the firing point, but the impact points are now obscured by vegetation so the size and
location of the target area are unknown. The anomaly density in the TAs is unknown, but several
munitions experts have reckoned the density to be 100, 200, or 400 anomalies per acre above the
background level.

4.1.3 Conceptual Model of the Hard Site

The hard site provides an example of complicated background noise where the assumption of
homogeneity does not hold. It has the same layout as the medium site, with the same military use
history and the same prior information available about the munitions use.

The site is a popular hunting and camping area, so background anomalies occur in clusters around
camps. The mean background density is 100 anomalies per acre. A ranch occupies the eastern
portion of the site. The ranch includes an 800 ft square field used for growing feed (R). The
field contains metallic debris from farm equipment, and a corner of the field overlaps the artillery
target area. Anomalies from farming activities and vehicles traveling on the roads are distributed
homogeneously, with 100 anomalies per acre. These anomalies occur in addition to the those
generated by the cluster process, which covers the entirety of the site.
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Figure 18: The medium (left) and hard (right) sites have two known target areas (T1 and A) and
one unknown target area (T2), as well as a road that has elevated anomaly density. Homogeneously
distributed background anomalies cover the medium site, while background anomalies at the hard
site occur in clusters. The hard site contains an additional high density region due to a ranch (R)
which overlaps target area A.
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4.2 Spatial Poisson Processes

Anomalies occur at distinct locations throughout the site and can be modeled as the outcome of a
spatial Poisson process, which is a random set of points in a two-dimensional space (Schabenberger
and Gotway 2005, §3.1). A spatial Poisson process is characterized by an intensity function λ(s)
which describes the density (points per unit area) at a location s = (x, y). The number of points
in a region A has a Poisson distribution with mean µ(A) =

∫
A
λ(s)ds. Poisson processes fall into

two main categories: homogeneous and inhomogeneous.

When Visual Sample Plan calculates the probability that an observed window density is higher than
the background level and a target area is detected (Section 3.2.2), it assumes background anomalies
come from a homogeneous Poisson process where the intensity function is constant, λ(s) = λ, for all
s. The mean number of points in A is simply µ(A) = λ× area(A). The locations of the points are
uniformly distributed, a property called complete spatial randomness. I use a homogeneous process
to generate background anomaly locations at the easy and medium sites. Anomalies from the road
at the medium and hard sites and from the ranch at the hard site also come from homogeneous
processes.

For an inhomogeneous Poisson process, λ(s) is not constant. Some regions have higher intensity
than others. A bell-shaped or Gaussian intensity function,

λ(s) ∝ exp

{
−
1

2
(s− µ)′Σ−1(s− µ)

}
,

concentrates points around a center µ. Spatial point density decays when moving away from the
center, and the locations of the resulting points follow a Bivariate Normal distribution with mean
µ and variance-covariance matrix Σ. I use Gaussian intensity functions to simulate the locations
of the TOI anomalies.

Clustered points can be produced by a two-stage Poisson process, where cluster centers are the
realization of one Poisson process and then child processes generate events around each center. To
create a layer of clustered background anomalies at the hard site, I generate cluster centers from
a homogeneous process with an intensity of two centers per acre, and then generate the anomaly
locations from processes that have an average of 50 anomalies with a Gaussian intensity around
each center, so the overall background anomaly density is around 100 anomalies per acre.

A complicated UXO site can be modeled as the amalgamation of several processes. Each process
generates anomalies for a specific aspect of the site, such as background noise, or a target area, or
a road. The simulation could be made more realistic by modeling the physical processes that bring
metallic items to their resting places at the site, but I use spatial Poisson processes for simplicity.
The R package spatstat (Baddeley, Rubak, and Turner 2015; Baddeley and Turner 2005) includes
functions to simulate many homogeneous, inhomogeneous, and clustered spatial Poisson processes
in regions of any shape or size. Figure 19 shows some example realizations of spatial Poisson
processes simulated with spatstat to illustrate the building blocks that turn the conceptual site
models into realizations of the sites.
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(a) Homogeneous, intensity 10 (b) Homogeneous, intensity 20 (c) Homogeneous, intensity 30

(d) Gaussian, max intensity 100 (e) Gaussian, max intensity 200 (f) Figures (c) and (e) superimposed

(g) A few clusters, low intensity (h) More clusters, high intensity (i) Large, overlapping clusters

Figure 19: These example realizations on a one-unit square demonstrate some of the patterns that
can arise from spatial Poisson processes. Plot (f) shows how a homogeneous background process
and an inhomogeneous foreground process can combine to produce a region with elevated point
density, which is how I simulate target areas. I simulate the background noise at the hard site using
a cluster process similar to the one that generated Plot (i).
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4.3 Transect Sampling Plans from the Conceptual Site Models

To see how prior information affects the sampling plan and subsequent delineation results, I vary
two aspects of the conceptual site model (assumed target area size and assumed target area density)
and constructing sampling plans for each site, holding all other sampling plan inputs constant.

The sampling plans are based on four assumed target area sizes. For each site, two of these sizes
are the true sizes of the two known target areas. I also use a small size that has half the area of the
smallest true TA, and a large size that has twice the area of the largest true TA. The assumed target
area anomaly density values I use are the true value (200 anomalies per acre above background),
as well as half the true value and twice the true value. Because I create sampling plans based on
the true values, as well as sizes that are too small and too large, the results of delineation can be
used to asses the importance of accurate prior information.

Visual Sample Plan’s detection probability feature (Section 3.2.2) guides the sampling design. I
select six-foot-wide parallel transects running north to south, and choose the transect spacing that
detects a target area of the assumed size with probability 0.99 as reported by VSP, given the other
input values. For the assumed background density, the known value of 100 anomalies per acre is
used. A Normal distribution is assumed for the TA anomaly locations, and I leave the maximum
error and minimum precision at their default values. I will assume the detection equipment works
perfectly, so the false negative rate is set to 0%. The resulting detection probability curves for
the easy site appear in Figure 20, and the detection probability curves for the medium and hard
sites appear in Figure 21. For a given transect spacing, the reported detection probability increases
when either the assumed TA size or the assumed TA density are increased. This is unsurprising
because more transects can pass through a larger target area, providing more opportunities for the
TA to be detected, and a higher anomaly density inside a target area makes high moving average
densities more likely to be observed.

The transect spacings for each site are presented in Tables 1 and 2. The VSP-recommended
transect spacing increases with both increasing assumed TA size and increasing assumed TA density.
Sampling plans for the medium and hard sites cover a wider range of transect spacings than the
plans for the easy site because the assumed TA sizes for the medium and hard sites are more
variable. Note that the largest transect spacing for the medium and hard sites (1,145 feet) is larger
than the size of the smallest true target area (T1, 1,000 feet by 600 feet), so transects from this
plan could fail to cross any part of T1.

I implement each sampling plan on each realization of the site by randomly choosing the horizontal
position of the first transect, and then placing additional transects separated by the transect spacing
plus the width of the detection equipment. A rectangular spatstat window object is centered over
each transect, and all anomalies within the rectangles are considered detected. The locations of
these anomalies are saved as the sample data. I place circular windows along the transects as
described in Section 3.2.5, and then save the moving average density values in a GeoEAS file.
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(a) TA1 (b) TA2

(c) Half the area of TA1 (d) Twice the area of TA2

Figure 20: Visual Sample Plan created these detection probability curves by Monte Carlo simula-
tion, based on different assumptions about the target area size and density at the easy site. These
curves were used to choose the transect spacings for the sampling plans.

Assumed Anomaly Density Above Background
Assumed Target Area Size 100 per acre 200 per acre 400 per acre

Small (849 ft by 566 ft, 8.66 acres) 40 ft 100 ft 220 ft
TA1 (1,200 ft by 800 ft, 17.3 acres) 125 ft 225 ft 465 ft
TA2 (2,000 ft by 900 ft, 32.4 acres) 170 ft 390 ft 655 ft
Large (2,828 ft by 1,273 ft, 64.9 acres) 270 ft 565 ft 935 ft

Table 1: These Transect spacings for the easy site are recommended by VSP to traverse and detect
a target area of each size in 99% of samples, given the specified assumptions about the anomaly
density above background at the center of the target area.
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(a) T1 (b) A

(c) Half the area of T1 (d) Twice the area of A

Figure 21: Visual Sample Plan created these detection probability curves by Monte Carlo simu-
lation, based on different assumptions about the target area size and density at the medium and
hard sites. These curves were used to choose the transect spacings for the sampling plans.

Assumed Anomaly Density Above Background
Assumed Target Area Size 100 per acre 200 per acre 400 per acre

Small (707 ft by 424 ft, 5.40 acres) 30 ft 65 ft 130 ft
T1 (1,000 ft by 600 ft, 10.8 acres) 70 ft 135 ft 315 ft
A (1,500 ft by 1,500 ft, 40.6 acres) 175 ft 400 ft 785 ft
Large (2,121 ft by 2,121 ft, 81.1 acres) 320 ft 780 ft 1,145 ft

Table 2: These Transect spacings for the medium and hard sites are recommended by VSP to
traverse and detect a target area of each size in 99% of samples, given the specified assumptions
about the anomaly density above background at the center of the target area.
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4.4 Kriging and Delineation

I recreate Visual Sample Plan’s automated Kriging and delineation features (Section 3.2.6) in R (R
Core Team 2015) and spatstat. Compared to VSP, R makes it much easier to repeat the same
analysis on many sets of simulated sample data. Slight differences in the results are expected due
to differences in programming. I kept my methods consistent with VSP as much as possible, but I
considered it necessary to modify some aspects of the analysis to make automation more practical.
These changes are acceptable because the main interest is in the inputs used to create the sampling
plan. My analysis does not produce exactly the same delineated regions as the VSP analysis, but
since I analyze the sample data from each sampling plan in the same way, changes in the sampling
plan should affect my results in the same way they would affect VSP results. For example, my
analysis tends to delineate more total area than a VSP analysis would, but if increasing the assumed
TA size causes my total delineated area to increase, we can assume the change is due to the change
in prior information and that increasing the assumed TA size would also increase the total area
delineated by the VSP analysis. Sections 4.4.1–4.4.3 describe my implementation of the Kriging
and delineation procedure and point out the differences from the VSP analysis.

4.4.1 Estimating Covariance Parameters and Computing Kriging Predictions

In an attempt to preserve some consistency with VSP, I also use GSLIB to compute empirical
semivariograms and Kriging predictions. The VSP installation includes a 32-bit version of GSLIB
(which contains GAMV version 2.000 and KT3D version 2.000). However, some of my sampling
plans result in sample datasets that are larger than what this version of GSLIB can process. Instead,
I use the most recent 64-bit version, which includes GAMV version 2.905 and KT3D version 2.907.
I have no problems running the newer versions and they produce the same results for datasets where
both versions run. I set up the GAMV configuration file in the same manner as VSP (Section 3.3.2).

The VSP documentation does not explain how VSP estimates covariance parameters, but I get
similar estimates using Cressie’s weighted least squares method (Cressie 1985). The optim function
in R uses the L-BFGS-B algorithm (Byrd et al. 1995) to find the parameter values that minimize
the weighted sum of squared errors. I fit spherical, exponential, Gaussian, and power models to
the empirical semivariogram and select the model with the lowest weighted sum of squared errors.
After selecting a parametric covariance function, I use KT3D to compute Kriging predictions over
a grid in the same way that VSP does (Section 3.3.4).

4.4.2 Thresholding the Predicted Densities

There is little guidance available regarding the choice of density threshold value for identifying the
high-density regions, so in practice the choice involves some subjectivity. An automated simulation
requires a rule that applies to all realizations, but I would not expect a subjective choice to result in
consistent performance across different realizations. Some obvious starting points for an objective
choice would be the true background density (if known) or the estimate of the mean density.
However, sampling variability makes both of these poor choices for the threshold. Some search
windows will naturally contain few anomalies and give low observed density values, while other
windows that contain only background anomalies will include more anomalies and give observed
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densities above the true overall background density. Thus, a large part of the site is erroneously
delineated. If most of the site contains only background anomalies, the estimated mean will be close
to the true background density and cause the same issue. A better decision rule should account
for the natural variability in the observed density values. Future work should look into methods of
thresholding the predicted densities based on information contained in the cenceptuak site model
and sound statistical assumptions.

My goal for this project is not to find an ideal threshold, but a threshold that always results in
most of the site being delineated is unsuitable because it would mask the effects of the sampling
plan inputs. I take inspiration from the target area flagging feature in VSP (Section 3.2.5), which
provides the option of using a hypothesis test to decide if the density at an observed location is
high enough that the location is part of a possible target area. I do not claim that this is a good
approach to use, but it accounts for the variability in the moving average densities and allows the
simulation to proceed.

For each grid cell, I conduct a hypothesis test. Under the null hypothesis, the predicted density
in the grid cell comes from a Normal distribution with a mean equal to the background density
(which my site models state as known) and variance equal to the Kriging variance. If

predicted density > background density + 1.645×
√
Kriging variance

the null hypothesis is rejected at a level of 0.05 and then the grid cell is identified as possibly
belonging to a target area.

When working with real data, the normality assumption could be tenuous. The user should always
examine VSP’s histogram of the observed moving average densities and confirm that it has a
bell-shape before using Normal distribution procedures. If the histogram does resemble a Normal
distribution, there typically will be enough observed density values that t-distribution procedures
are not needed.

This method of identifying high-density grid cells is used to eliminate the need for subjective human
input while the simulation runs. It is not entirely sensible when searching for UXO at a real site
because a larger Kriging variance makes a cell less likely to be marked as a possible TA than if
the prediction had a smaller Kriging variance. In reality, it is would be preferable to construct
a rule where greater prediction uncertainty makes a location more likely to be considered a TA.
My decision rule also tends to result in delineating more area than I would deem necessary from
subjective examination of the density map (Figure 22).

4.4.3 Delineating the High-Density Regions

The final difference between the Visual Sample Plan analysis and the methods I use in the simulation
is how the high-density grid cells are combined into regions. VSP draws polygons around clusters
of connected cells, giving its delineated regions a smooth appearance. The documentation does not
describe the algorithm used to create the polygons, but it appears to connect the corners of cells
that extrude from the cluster. It forces some regions to be convex by including lower-density cells,
while other regions are allowed to be non-convex. It is also able to merge nearby regions into larger
regions.
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Any attempt I make to reproduce VSP’s polygons would require some arbitrary decisions about how
to connect corners and merge regions. Instead, I simply find clusters of connected cells and use their
edges as the delineation. This yields minor differences in the area and number of anomalies included
in the delineated regions, but both methods give essentially the same regions since they both
contain all the cells identified as high-density. My delineated regions appear pixelated compared
to the regions produced by VSP, and my results will also include larger numbers of small regions.
Figure 22 illustrates the typical differences.

4.4.4 Summarizing Results

The ultimate goal of target area delineation is to find the targets of interest, so I compare the
results primarily through the proportion of TOI items that lie within delineated regions, called the
detection rate. Other informative summary variables are the proportion of the TA area contained in
the delineated regions, the area and number of delineated regions, the proportion of the delineated
area that is not actually part of a target area (called the false positive proportion), and the distance
of each undetected TOI item to the nearest delineated region (the error distance).

This project is exploratory in nature, and conclusions from my simulation are best used as starting
points for future investigations. For that reason, I forego formal statistical inference and instead
present the results graphically. I analyze many realizations with each sampling plan, and therefore
histograms provide informative displays of the distributions of the summary values. I use these
plots throughout the paper to compare results among the sampling plans.

60

80

100

120

140

160

Figure 22: The left and center images show the anomaly density maps produced by the VSP
analysis and my analysis from the same sample data. Both maps are thresholded at 140 anomalies
per acre, a value which I judged to do well at separating the background noise from the highest-
density regions. The delineated regions contain nearly the same grid cells in both cases. The
disagreements about which cells are high-density are most likely due to slight differences in how
VSP and spatstat compute the moving average window densities. The image on the right shows
the regions delineated by the decision rule used in the simulation, which marked more low-density
regions as possible target areas.
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5 Window Size Experiment

The size of the search window that VSP uses to compute moving the average anomaly density
can have a major influence on the predicted density surface. Before addressing my main goal
of understanding the effects of prior information on delineation results, I look into the choice
of window diameter. This experiment involves repeatedly analyzing the same sample data with
different window sizes. In a real-world situation it is possible to run multiple analyses on one set
of data collected from one realization of a site, but it is difficult to decide which analysis is best if
the true target area locations and sizes are unknown. Simulation allows the results of Kriging and
delineation to be compared to the known truth. Also, the same analysis can be repeated on many
realizations of one site to illustrate the variability that arises simply due to natural variation in the
process that generates anomalies. The easy site is used so that the window diameter effect can be
examined under favorable conditions.

5.1 Design and Analysis

This experiment uses 200 realizations of the easy site. Each realization is sampled once with
a between-transect spacing of 225 feet. This sampling plan should detect TA1 (800 feet by 1,200
feet) with probability 0.99 (see Table 1 on page 39). Each realization is analyzed using five different
window sizes.

Three window diameters (228 feet, 516 feet, 798 feet) range from just above the between-transect
spacing to just under the minor axis length of TA1. These sizes are selected in accordance with the
Visual Sample Plan user’s guide, which recommends choosing a window diameter at least as large
as the between-transect spacing but smaller than the diameter of the target area of interest (Matzke
et al. 2014). Two additional diameters (150 ft and 1,500 feet) are chosen to be much too small and
much too large.

At the end of the analysis, regions of the site with high predicted density are delineated. Vi-
sual Sample Plan discards any delineated regions under a user-specified minimum area, but since
the window size is a smoothing parameter, very small regions could be indicative of inadequate
smoothing. Thus, for the comparisons made within this experiment, I keep all regions regardless
of size.

5.2 Results

The success of the analysis is most directly measured by the detection rate, which is the proportion
of true TOI items that would be removed from the site if all of the delineated area was remediated.
The detection rate increases as the window diameter increases. When using the 1,500 foot window,
it is not uncommon for 100% of the TOI items and 100% of the TA area to be contained in the
delineated regions (Figure 23, top and center rows).

The amount of area delineated is an important practical consideration because a remediation project
has limited resources. It may not be possible to remediate all of the delineated area, so delineating
more area than necessary is undesirable. The total area delineated both increases and becomes
more variable as window size increases. For some realizations, the 1,500 foot window results in over
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half of the 952.4 acre site being identified as high-density (page 47, Figure 24, top right). The 798
foot window gives more manageable results, with the total delineated area being both lower and
less variable while still achieving a detection rate over 80% for most realizations.

The area of the smallest and largest individual regions both increase with the window size; for the
150 foot, 228 foot, and 516 foot window sizes, in most realizations the smallest delineated region
is a single grid cell. This is a sign that these windows sizes provide inadequate smoothing of the
predicted density surface. The 798 foot window does the best job of producing regions that are
close to the sizes of the true target area sizes (page 46, Figure 23, bottom row).

At all window sizes, more area is delineated than the area of the true target areas. Large windows
have a smoothing effect on the density surface, so small numbers of large regions are delineated.
Conversely, small windows are sensitive to local density hotspots and result in large numbers of
very small regions being delineated. There is a tradeoff between large windows, which yield a few
regions and a large amount of variability in the total area, and small windows, which result in less
total area divided up into too many individual regions (page 47, Figure 24, center left).

In all cases, most of the delineated area does not belong to the true target areas (page 47, Figure 24,
bottom left). The 516 foot window tends to give a slightly lower false positive proportion than the
other window sizes do, but overall there is little variation in false positive proportion among window
sizes.

The error distances have extremely right-skewed distributions, with most error distances being
much smaller than the sizes of the target areas (page 48, Figure25). The tail of the distribution
increases in length as the window size increases because larger windows reduce the detail in the
density map, forcing the delineation to be less precise. Most undetected TOIs are very close to the
boundary of a delineated possible TA; exceptions are only observed for the 1,500 foot window. For
two realizations, the analysis with the largest window completely failed to detect one TA, resulting
in a cluster of very large error distances.

There is no window diameter that is obviously the best choice. Larger windows result in more
TOIs being found, but the tradeoff is that more area must be remediated to do so. None of
the delineations could be considered both accurate and precise. Window diameters larger than a
target area or smaller than the space between transects cannot be recommended; these result in,
respectively, far too much area delineated or an unrealistically large number of regions identified.
When using the 516 foot and 798 foot windows, detection rates above 90% are common. Further
studies (perhaps based on real-world sites) could help formalize more general guidelines, but for the
easy site, it seems advisable to use a window size near the true size of the target area of interest.
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Figure 23: The detection rates and the proportion of the true area delineated measure the ability
of the analysis to find the TAs and TOI items. Larger windows result in more of the TOIs being
detected. The areas of the smallest and largest regions help in assessing whether the analysis
produces regions that tend to be around size of the true TAs. The red lines mark the true areas of
TA1 (17.3 acres) and TA2 (32.4 acres).
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Figure 24: Plots showing the relationships between the number of regions and other variables for
the window size experiment. The red vertical lines mark the true total area of the target areas
(49.7 acres) and number of target areas (2).
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Figure 25: The distribution of error distances is right skewed both for all realizations combined
and for individual realizations. Most undetected TOI items are near the boundary of a delineated
region. The two clusters seen in the top right plot come from realization 1,984, where the analysis
completely failed to detect TA2, and one other realization where TA1 was not detected.
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6 Prior Information Experiment

The primary focus of this project is how prior information about the target area size and anomaly
density input into Visual Sample Plan affects the delineation of target areas through the sampling
plan. The window size experiment (Section 5) involved repeated analysis of one set of sample
data from each of multiple realizations of the easy site, but the prior information experiment more
fully uses the benefits of simulation by using multiple sampling plans on each realization, which
would typically be prohibitively expensive at a real site. To illustrate the inherent variability in the
anomaly-generation process, this experiment also uses multiple realizations of each site. All three
sites (easy, medium, and hard)are used so the effect of their differing complexity can be seen.

6.1 Design and Analysis

The factors of interest are the assumed target area size and the assumed target area density that
are input into VSP. The site (easy, medium, and hard) is a third factor. For each site, I consider
four levels of assumed TA size: (1) a small size half the area of the smallest TA, (2) the true size of
the smallest TA, (3) the true size of the largest TA, and (4) a large size twice the area the largest
TA. There are three levels of assumed TA density: (1) 100, (2) 200 (the true value), and (3) 400
anomalies per acre above the background density. In Section 4.3, I used each combination of these
factors to create a sampling plan for each site (Tables 1 and 2). For this experiment, I apply all
twelve sampling plans to 100 realizations of each site. The true sizes, true densities, and all other
sampling plan inputs are held constant.

The window size experiment revealed that a search window size close to the true size of the smallest
target area gives relatively good performance for the easy site (Section 5.2). In reality, the true
TA size would be unknown, but if the project team trusts their prior information they would use
whatever they know about the TA size to make the window size decision. To realistically model
how the TA size information is used, I let the prior information influence the window size for this
experiment. I set the search window diameter to 90% of the minor axis of the assumed TA size.

During a real remedial investigation, the analyst would ignore regions considered too small to be a
target area. The analyst enters a minimum area threshold into VSP, and then VSP does not draw
any possible TAs under this size on its map (Section 3.2.6). For this experiment, I consider regions
under 3 acres too small to be target areas and are I omit them from the results.

As with the window size experiment, I evaluate the results mainly in terms of the TOI detection
rate. For themedium and hard sites, the road and ranch are nuisance regions that have intermediate
anomaly density, lower than the density in the target areas, but higher than the background density
across the rest of the site. The proportion of these regions that are delineated is also an interesting
outcome of the analysis.

6.2 Detection Rate Results

The results from all three sites show similar patterns in how the assumed target area size and density
affect the detection rates and in the proportion of the total TA area that is delineated. There is a
slight trend of decreasing detection rate as the assumed target area size or the assumed density are
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increased, but the most noticeable pattern is that the variability in the detection rate gets larger as
either factor is increased. For all sites, sampling plans based on the two largest assumed TA sizes
and the largest assumed TA density result in more diverse detection rates compared to the other
sampling plans.

For the easy site, the detection rates are generally very high, but for some realizations, the sampling
plans based on the size of TA2 or the large size result in the analysis doing a poor job of detecting
items from the smaller TA1. (page51, Figure 26).

At themedium and hard sites, when the target area anomaly density is assumed to be 100 anomalies
per acre above background, all sampling plans result in detection of nearly all of the TOI and
target areas, with the only exception being the sampling plan based on the large TA size (page 52,
Figure 27 and page 53, Figure 28). The detection rate gets more variable as the assumed target
area size and density increase. For all assumed TA densities, the analysis using the large size tends
to either detect all items from T1 or detect none of the items from T1. When the true size of T1 or
the small size are used to create the sampling plan, the analysis tends to detect most, but not all, of
the TOI items from A; this could be because the small windows do not provide enough smoothing
to accurately map the anomaly density in the large artillery range.

The detection rate varies more for the hard site than for the medium site. A possible explanation
is that the clustered background anomalies lead to greater uncertainty in the predicted density, but
I leave the details of this issue for a future study.

Within a single site, the observed differences in detection rate are better explained by the assumed
TA size than the assumed density.

As a final comment, note that the proportion of the TA area detected tends to be a little lower than
the detection rate of TOI items. The “true” area is based on a region drawn on a map, which is
essentially an artificial construct meant to help the people understand the site. The analysis finds
TOIs; it will not delineate the entire region where munitions use occurred if parts of the region
have few TOI items actually present. This result illustrates that there is a subtle difference between
finding TAs and finding TOIs, so analysts should not be surprised if the map of TOI locations does
not look like the expected map of munitions use areas.

6.3 Identification of the Unknown Target Area

The medium and hard sites contain a third target area, T2, of an intermediate size between the
smaller T1 and the larger A. The conceptual site models state that the size and location of T2 are
unknown, so specific information about it is not available for use in creating a sampling plan. I use
this simulation to see if sampling plans created from knowledge of the other TAs can identify T2.

At both sites, sampling plans based on the small size or the true size of T1 generally detect nearly
all TOI items from T2 (page 54, Figure 29). When the large size or the true size of A are used, the
analysis tends to detect either all or none of the T2 items. It is preferable to find some of the TOI
items and gain additional information about the TA than to miss the TA entirely, so I recommend
using a smaller assumed TA size to design the sampling plan. The assumed density has little effect
on the detection rate of TOIs from T2.
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Figure 26: At the easy site, all sampling plans tend to detect most or all of the TOI items and TA
area. The detection rates are more variable for larger assumed TA size and density.
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Figure 27: Compared to the easy site, detection rates at the medium site tend to be lower but show
similar relationships with the assumed TA size and density.
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Figure 28: For the hard site, detection rates show the same trends as seen at the medium site, but
the detection rates at the hard site are somewhat more variable.

53



Detection Rate of TOI

Items from T2,

Medium Site

Detection Rate

A
ss

u
m

ed
 A

n
o
m

a
ly

 D
en

si
ty

 A
b

ov
e 

B
a
ck

g
ro

u
n
d

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0
 p

er
 A

cr
e

2
0
0
 p

er
 A

cr
e

4
0
0
 p

er
 A

cr
e

Detection Rate of TOI

Items from T2,

Hard Site

Detection Rate

P
ri

o
r 

A
n
o
m

a
ly

 D
en

si
ty

 A
b

ov
e 

B
a
ck

g
ro

u
n
d

0.0 0.2 0.4 0.6 0.8 1.0

1
0
0
 p

er
 A

cr
e

2
0
0
 p

er
 A

cr
e

4
0
0
 p

er
 A

cr
e

Assumed TA Size

Small T1 A Large

Figure 29: At both the medium and the hard site, assuming a small target area size is important
for finding the third target area, T2.

6.4 Number and Area of Delineated Regions

Ideally, analyzing data from a UXO site should result in the delineation of a few regions that contain
TOI items and do not include excess area. Delineating a large number of small regions or a lot
of excess area would lead to a costly and unproductive remediation. My analysis delineates more
regions than the number of TAs, and these regions contain far too much area. The number and area
of the delineated regions are strongly related to the assumed target area size, while the assumed
TA density has little effect by itself. The two factors interact, with a decrease in total area being
associated with an increase in assumed density only for the small size. Overall, larger assumed TA
sizes result in few distinct regions being delineated, but these regions tend to be extremely large.

For the easy site, as the assumed TA size increases, the number of regions decreases while the total
area delineated has a very slight increasing trend (Figure 30). The total area gets more variable
as the assumed density estimate is increased, and this is especially apparent when the assumed
TA size is too large. The sampling plan assuming the small size and 400 anomalies per acre has
a transect spacing similar to the transect spacing of the sampling plan using the size of TA1 and
assuming 200 anomalies per acre (with transect spacings are 220 feet and 225 feet, respectively).
These two plans tend to delineate the least area. Additional studies should be done to see if the
good performance of these sampling plans can be explained by other sampling plan inputs, or even
by the transect spacing itself.
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For the medium and hard sites, the sampling plans separate into two groups corresponding to
the two smallest assumed TA sizes and the two largest assumed TA sizes (page 56, Figure 31).
Analyses assuming the size of T1 or the small size result in similar numbers of individual regions
being identified. The analyses based on the size of A or the large size also yield about the same
number of regions, and they find fewer regions than when a smaller TA is assumed. The number
of regions found is not affected by the assumed TA density value. On average, the two smallest
assumed TA sizes result in the least total area delineated, and the area delineated is much less
variable than when the largest TA sizes are used. The total area plots show an interaction similar
to the one seen at the easy site.

The plots for the medium and hard sites show similar relationships between the summary values
and the factors, but slightly more area is delineated at the hard site. The difference is bigger than
the 14.7 acres of the ranch, so it is partially due to the clusters of background anomalies.
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Figure 30: At the easy site, the assumed target area density has no effect on the number of regions
delineated, but there is an apparent interaction between the assumed TA density and the assumed
TA size. A similar pattern is seen at the medium and hard sites as well. The vertical lines mark
the true number (2) and area (49.7 acres) of the target areas.
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Figure 31: At the hard site, slightly more area is delineated than at the medium site, indicating
that the analysis does not smooth out the clusters in the background anomalies. The vertical lines
mark the true number (3) and area (62.9 acres) of the target areas.
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Figure 32: None of the sampling plans are able to smooth the road or the ranch out of the anomaly
density map. These regions need to be described in the conceptual site model and analyzed sepa-
rately.
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6.5 Detection of Nuisance Regions

The road and ranch are nuisance regions with anomaly densities of 200 anomalies per acre, which is
lower than the true density at the centers of the target areas, but 100 anomalies per acre higher than
the background density elsewhere at the site. In reality, TOI presence in these regions would be
investigated separately, but in this simulation I want to see how they affect the results of sampling
plans developed for other parts of the site.

The medium and hard sites both include the road. At each site, my analysis does not smooth the
road out of the density surface, so on average about half of the road is included in the delineated
regions (Figure 32, top). The proportion of the road that is delineated decreases somewhat as the
assumed TA size or the assumed TA density increases, but it remains large and highly variable.

Only the hard site contains the ranch. It is not unusual for most or all of the ranch to be identified
as a possible target area (Figure 32, bottom). Only the sampling plans with the largest transect
spacing – those based on the large size or the size of A – occasionally result in very little or none of
the ranch area being delineated. The ranch is a true high density region similar in size to a target
area, so it should be expected to appear in the predicted density surface. The ranch would need to
be sampled and analyzed separately since the anomalies there are known to come from a different
process than at other locations within the same site.
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Figure 33: The easy site contains 49.7 acres of target areas, but all sampling plans result in far
more area than this being delineated.
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Figure 34: The medium and hard sites contain 62.9 acres of target areas. As seen at the easy site,
most of the delineated area does not belong to a target area..
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6.6 Sampling Effort

The amount of sampling effort is a very important consideration because a project team needs to
balance the cost of sampling with the cost of remediating the possible target areas found. They
certainly want to collect more data if it helps identify the target areas more accurately or precisely,
but they may wish to avoid spending extra time and money on sampling if it does not save costs
during the remediation. I use the false positive proportion, the total area delineated, and the total
length of transects traversed to investigate the how the assumed target area size and assumed target
area density relate to sampling efficiency.

At all three sites, the false positive proportion is around 0.8 to 0.9 for all sampling plans, meaning
80% to 90% of the delineated area does not belong to the true target areas (Figure 33, left, and
Figure 34, left). The plots of total delineated area against distance traversed show that collecting
more data from additional transects is associated with lower variability in the amount of area
delineated (Figure 33, right, and Figure 34, right). However, the total area delineated does not
approach the true area. Collecting more data does not result in a more efficient remediation.

7 Issues and Considerations Related to the VSP Analysis

Visual Sample Plan is an attractive option for analyzing UXO data because it generally does a
good job of finding the true target areas and it uses standard geostatistical methods that would be
familiar to users with experience working on environmental projects. However, questions remain
regarding the choice of Kriging window size for a particular site, the applicability of the linear
model and Kriging to anomaly data, and how to use the information gained from mapping and
delineating the high-density regions.

7.1 Choosing a Good Window Size

Using an appropriate window size is crucial for obtaining an accurate anomaly density map. Typi-
cally, the window size is chosen after the data are collected, but this is problematic because different
window sizes yield very different results for a given dataset. If a goal of the project is to map the
site with a certain level of detail, it would make more sense to have the window size drive the
sampling plan. The window diameter should be selected to achieve a desired resolution for the
map, and then the transect spacing set to provide enough data for windows of the chosen size.

If the window size is selected after the sampling plan is created, some effort should be made to
choose a window size suitable for the data rather than using a default size. One way to assess
optimality is cross-validation, where subsets of observed anomaly densities are omitted while es-
timating covariance parameters and computing Kriging predictions, and then Kriging is used to
predict the densities at the locations of the omitted observations. The mean squared error (MSE)
for the omitted observations is used as an optimality criterion. Cross validation is repeated for
several window sizes, and the window size with the lowest MSE is selected. Leave-one-out cross
validation, where each window is omitted one at a time, is already available in KT3D. K-fold cross
validation, where 1

K
of the windows are randomly selected and omitted at once, generally gives less

variability in the computed MSE than leave-one-out cross validation does (James et al. 2013, §5.1)
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and could easily be implemented via KT3D’s jackknife feature. An algorithm could be developed
to adaptively choose additional window sizes to evaluate and create a smooth curve in a manner
similar to how VSP’s detection probability simulation chooses additional transect spacings.

7.2 Comments on Stationarity

Even though VSP’s Kriging methods effectively detect the TOI items in my simulations, the ap-
propriateness of the model and analysis should be considered. Ordinary Kriging assumes that the
anomaly densities observed at a site result from a single, stationary process, so that the mean
anomaly density is constant across the site. This is a curious assumption to make when it is be-
lieved that target areas are present and have higher density than other regions. I argue that this is a
reasonable modeling decision, even though the use of ordinary Kriging is inappropriate. The alter-
native linear model approach is to use universal Kriging with polynomial or spline terms to model
the spatial trends, but doing so requires making decisions about how complex the trend surface
is allowed to be. Furthermore, a polynomial or spline surface will have a smoothing effect on the
density surface, but some smoothing is already done when computing the moving average densities.
The additional smoothing needlessly adds complexity to the analysis, so it may be acceptable to
use ordinary Kriging if it produces a reasonable anomaly density map for delineation.

7.3 Other Analysis Methods for Spatial Point Data

Perhaps more troublesome than the stationarity assumption is the application of methods for a
continuous response variable to the outcome of a point process. Most geostatistical methods are
derived and studied under the assumption that the data come from a Gaussian random field, where
the joint distribution of the observations is multivariate Normal. In a Gaussian random field, a
numerical measurement can be made at any location of the site. This is different from the spatial
point process that generates anomlies at random locations around a site.

When Kriging is done in VSP to map a site’s spatial anomaly density, the data being used are the
window densities, not the anomaly locations. Analysis methods for continuous response variables
may incorrectly characterize the outcome of a point process. It could be better to use methods
derived specifically for spatial point processes.

Kernel intensity estimation is a method of estimating a Poisson intensity function that can be
employed to map anomaly density. A kernel function is centered at the location of each observed
anomaly. The sum of the kernels produces a smooth map of the spatial point density. This technique
does not require computing window densities, but a smoothing bandwidth must be chosen. Brooks
and Marron (1991) discuss cross validation for selecting the bandwidth. Applying kernel estimation
to data from transect sampling could be complicated by the fact that points between the transects
are not observed; this issue would be worthy of further research.

For situations where a circular target area is being sought, and mapping the anomaly density is
not necessary, Kulldorff (1997) proposes a spatial scan statistic that would be applicable. The scan
statistic is a likelihood ratio statistic and is used to identify clusters in a point process that are not
described by a baseline model. The baseline model has an intensity defined up to a multiplicative
constant. When analyzing UXO data, it is widely assumed that background noise has a constant
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density. A homogeneous Poisson process would be used for the baseline model, and target areas
are identified by finding the cluster centers and diameters which maximize the likelihood.

7.4 A Risk Management Perspective

Once possible target areas are identified, it may not be clear how to use the information, especially
if insufficient resources are available to remediate all potential target areas, if less area is delineated
than expected, or if high background density makes the analysis difficult. In particularly tough
cases, sampling and geostatistical mapping might not even be helpful or necessary to meet the
project goals. A risk management study could be useful as an alternative to sampling or to augment
information obtained through sampling.

Any historical information can be used to reduce uncertainty about the possible locations of UXO.
Neptune and Company, Inc. (2008) demonstrate a Bayesian approach involving ballistic simulations.
Historical data about firing locations and ordnance discovered by landowners in Helena Valley are
used to develop a simulation of tanks firing rounds into the area where munitions were been found.
The simulations lead to revised information about the firing points and the geographical extent of
the UXO problem, including identification of a low-density region affected by ricochet. The end
result is a spatial map of the risk of UXO encounters, based entirely on historical information and
without requiring a new survey. Even for sites with less information available, such simulations
could still be used to refine the conceptual site model, potentially saving time and money by
reducing the area that must be sampled. This could be especially helpful when there is enough
background noise present to make sampling ineffective at identifying target areas.

8 Conclusions

Visual Sample Plan provides tools to address nearly every sampling and data analysis need of an
unexploded ordnance cleanup project, and can be used by people with little statistical training. Of
particular interest during the remedial investigation phase are the geophysical mapping and target
area delineation tools. These features compute the spatial anomaly density in search windows
that move along the observed transects, use Kriging to map the anomaly density across the entire
site, and threshold the map to delineate high-density regions that correspond to possible target
areas and may contain unexploded ordnance. The successful implementation of these tools requires
many decisions, assumptions, and pieces of prior information. My simulation study investigates
the sensitivity of the delineation to the choice of window size and the prior information about the
target area size and anomaly density, but these are just a few of many components.

8.1 Window Size Selection

No single window size is clearly best for all realizations of the sites I constructed. Choosing a
window size requires a compromise between detecting a high proportion of the munitions items and
wasting effort by remediating a large amount of area that contains little or no munitions debris. A
real project should consider several window sizes, but a window close in size to the assumed target
area size is a good starting point.
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8.2 Prior Information About the Target Area Size and Anomaly Density

Obtaining accurate information about the sizes of possible target areas is very important. Sampling
plans based on an assumed size that is too large can fail to detect the full extent of a smaller target
area. Assumed TA sizes that are too small lead to excess sampling, unnecessarily increasing costs.
If the target area size is used to inform the window size, as in the prior information experiment, an
underestimate can result in the Kriging predictions being too sensitive to local variation in anomaly
density. In this simulation, the best results occur when the sampling plan is based on the true size
of the smallest target area at the site. The prior estimate of the target area anomaly density is
less important. Therefore, efforts to gether prior information should focus on obtaining accurate
information about the target area sizes.

8.3 Sampling Effort and Remediation Effort

When a reasonable window size is selected and accurate prior information about target area size
is available, the methods used in my analysis result in all or nearly all of the munitions items
at the simulated sites being contained within the identified high-density regions. Unfortunately,
the delineation leads to an inefficient remediation. At all three sites, it is typical that roughly
80% of the delineated area is not part of a true target area. It would be intuitive to expect that
collecting more data from more closely-spaced transects would lead to more detailed map of the
high-density regions. This is not the case. Additional transect distance decreases the variability in
the amount of area delineated, but does not improve the accuracy. Increased sampling effort does
not translate into savings in the remediation phase. It would be better to collect as much prior
information as possible so the delineation results can be managed and prioritized in the event that
more high-density area is identified than can be cleaned up.

8.4 Future Investigations

Much remains to be discovered about how VSP can be used most effectively. Future simulations
should use the conceptual models of real sites and could examine prior information about additional
quantities such as the background density or distribution of items in the target areas, and true
parameters of the site like the actual size and density of the target areas.

Other aspects of the analysis should be studied as well, in particular the optimal window size for
one realization. Cross-validation could be an effective way to choose a window size after sampling.
Future studies should also consider how to select a window size before sampling, and then create
a sampling plan that fits the chosen window size. The window size affects the amount of detail
possible in the anomaly density map, so it makes sense to set the window size first. Currently,
there is little guidance available on how to create a sampling plan based on a given window size.

The method used to separate high-density regions from the background is another very important
topic for further study. The decision rule used in this simulation is a naive attempt to do the
delineation objectively, and it is probably the reason my analysis delineates so much excess area.
Future work should seek a statistically-justified procedure where any point at the site is considered
hazardous unless the anomaly density at that location is shown to be satisfactorily low according
to criteria defined for the project.
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A R Code Appendix

A.1 Simulations

A.1.1 Easy Site, easy.r

# Generate an easy site with two elliptical TAs

require(spatstat)

source('rfns/data_functions.r')

source('rfns/spatial_functions.r')

nreps <- 3000

bg.dens <- 100 / 43560 # 100 per acre, converted to square feet

fg.dens <- 200 / 43560 # 200 per acre above bg

# 952.375 acres. At 100 bg per acre, we expect 95237.5 bg anomalies.

sitewindow <- owin(poly = cbind(x = c(1564294, 1564495, 1556870, 1557126),

y = c(535421, 541130, 541085, 535576)))

# Generate a vector of random seeds and reseed each iteration

# so the whole set of reps doesn't need to be generated at once.

# Valid seeds are 32 bit signed integers.

set.seed(783614)

seeds <- sample(2^32-1, nreps)-2^31

# Loop to generate many

cat(sprintf('Simulating %d Easy Sites\n', nreps))

pb <- txtProgressBar(max = nreps, style = 3)

timing <- system.time(for(repl in 1:nreps){
set.seed(seeds[repl])

# Uniform background

bg.anomalies <- rpoispp(lambda = bg.dens, win = sitewindow)

marks(bg.anomalies) <- 0

# Target Area 1

fg1 <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1558400, mu.y = 540000,

s.a = 800/(2*qnorm(0.995)), s.b = 1200/(2*qnorm(0.995)), r = pi/6, maxrate = fg.dens)

marks(fg1) <- 1

# Target Area 2

fg2 <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1562000, mu.y = 537000,

s.a = 2000/(2*qnorm(0.995)), s.b = 900/(2*qnorm(0.995)), r = 0, maxrate = fg.dens)

marks(fg2) <- 2

site <- superimpose(bg.anomalies, fg1, fg2)

save(site, file = sprintf('datasets/easy/full/easy_full_bg%03d_fg%03d_rep%04d.RData',

bg.dens*43560, fg.dens*43560, repl))

setTxtProgressBar(pb, repl)

})
close(pb)

print(timing)

64



A.1.2 Medium Site, medium.r

# Generate a realistic site with three TAs and some roads

require(spatstat)

source('rfns/data_functions.r')

source('rfns/spatial_functions.r')

nreps <- 3000

bg.dens <- 100 / 43560 # 100 per acre, converted to square feet

road.dens <- 100 / 43560

tank.dens <- 200 / 43560

art.dens <- 200 / 43560

# 952.375 acres. At 100 bg per acre, we expect 95237.5 bg anomalies.

sitewindow <- owin(poly = cbind(x = c(1564294, 1564495, 1556870, 1557126),

y = c(535421, 541130, 541085, 535576)))

roadwindow <- intersect.owin(

dilation(psp(x0 = c(1559750, 1560000, 1560250, 1560700,

1560700, 1560000, 1558050),

y0 = c(535421, 536400, 536750, 537000,

537000, 537850, 538500),

x1 = c(1560000, 1560250, 1560700, 1564495,

1560000, 1558050, 1557550),

y1 = c(536400, 536750, 537000, 538000,

537850, 538500, 538900),

window = boundingbox(sitewindow)),

25), sitewindow)

# Generate a vector of random seeds and reseed each iteration

# so the whole set of reps doesn't need to be generated at once.

# Valid seeds are 32 bit signed integers.

set.seed(46347)

seeds <- sample(2^32-1, nreps)-2^31

# Loop to generate many

cat(sprintf('Simulating %d Medium Sites\n', nreps))

pb <- txtProgressBar(max = nreps, style = 3)

timing <- system.time(for(repl in 1:nreps){
set.seed(seeds[repl])

# Uniform background

bg.homog <- rpoispp(lambda = bg.dens, win = sitewindow)

marks(bg.homog) <- 0

# Uniform background

bg.road <- rpoispp(lambda = road.dens, win = roadwindow)

marks(bg.road) <- 1

# Tank Area 1

tank1 <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1558000, mu.y = 540000,

s.a = 1000/(2*qnorm(0.995)), s.b = 600/(2*qnorm(0.995)), r = -pi/9, maxrate = tank.dens)

marks(tank1) <- 3
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# Tank Area 2

tank2 <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1558300, mu.y = 537500,

s.a = 800/(2*qnorm(0.995)), s.b = 800/(2*qnorm(0.995)), r = 0, maxrate = tank.dens)

marks(tank2) <- 4

# Artillery Area

art <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1561200, mu.y = 539200,

s.a = 1500/(2*qnorm(0.995)), s.b = 1500/(2*qnorm(0.995)), r = 0, maxrate = art.dens)

marks(art) <- 5

site <- superimpose(bg.homog, bg.road, tank1, tank2, art)

save(site, file = sprintf('datasets/medium/full/medium_full_bg%03d_ro%03d_t%03d_a%03d_rep%04d.RData',

bg.dens*43560, road.dens*43560, tank.dens*43560, art.dens*43560, repl))

setTxtProgressBar(pb, repl)

})
close(pb)

print(timing)

A.1.3 Hard Site, hard.r

# Generate a realistic site with three TAs and some roads

require(spatstat)

source('rfns/data_functions.r')

source('rfns/spatial_functions.r')

nreps <- 3000

# Background has 2 clusters per acre so 50 anomalies per cluster

# gives 100 anomalies per acre

bg.kappa <- 2 / 43560

bg.scale <- 75

bg.mu <- 50

road.dens <- 100 / 43560

ranch.dens <- 100 / 43560

tank.dens <- 200 / 43560

art.dens <- 200 / 43560

# 952.375 acres. At 100 bg per acre, we expect 95237.5 bg anomalies.

sitewindow <- owin(poly = cbind(x = c(1564294, 1564495, 1556870, 1557126),

y = c(535421, 541130, 541085, 535576)))

roadwindow <- intersect.owin(

dilation(psp(x0 = c(1559750, 1560000, 1560250, 1560700,

1560700, 1560000, 1558050),

y0 = c(535421, 536400, 536750, 537000,

537000, 537850, 538500),

x1 = c(1560000, 1560250, 1560700, 1564495,

1560000, 1558050, 1557550),

y1 = c(536400, 536750, 537000, 538000,
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537850, 538500, 538900),

window = boundingbox(sitewindow)),

25), sitewindow)

ranchwindow <- owin(c(1561300, 1562100), c(537900, 538700))

# Generate a vector of random seeds and reseed each iteration

# so the whole set of reps doesn't need to be generated at once.

# Valid seeds are 32 bit signed integers.

set.seed(23467)

seeds <- sample(2^32-1, nreps)-2^31

cat(sprintf('Simulating %d Hard Sites\n', nreps))

pb <- txtProgressBar(max = nreps, style = 3)

timing <- system.time(for(repl in 1:nreps){
set.seed(seeds[repl])

# Clustered background

bg.clust <- rThomas(kappa = bg.kappa, scale = bg.scale, mu = bg.mu, win = sitewindow)

marks(bg.clust) <- 0

# Uniform background

bg.road <- rpoispp(lambda = road.dens, win = roadwindow)

marks(bg.road) <- 1

# Uniform background

bg.ranch <- rpoispp(lambda = ranch.dens, win = ranchwindow)

marks(bg.ranch) <- 2

# Tank Area 1

tank1 <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1558000, mu.y = 540000,

s.a = 1000/(2*qnorm(0.995)), s.b = 600/(2*qnorm(0.995)), r = -pi/9, maxrate = tank.dens)

marks(tank1) <- 3

# Tank Area 2

tank2 <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1558300, mu.y = 537500,

s.a = 800/(2*qnorm(0.995)), s.b = 800/(2*qnorm(0.995)), r = 0, maxrate = tank.dens)

marks(tank2) <- 4

# Artillery Area

art <- rpoispp(lambda = gauss.elliptic, win = sitewindow, mu.x = 1561200, mu.y = 539200,

s.a = 1500/(2*qnorm(0.995)), s.b = 1500/(2*qnorm(0.995)), r = 0, maxrate = art.dens)

marks(art) <- 5

site <- superimpose(bg.clust, bg.road, bg.ranch, tank1, tank2, art)

save(site, file = sprintf(

'datasets/hard/full/hard_full_k%02d_s%03d_m%03d_ro%03d_ra%03d_t%03d_a%03d_rep%04d.RData',

bg.kappa*43560, bg.scale, bg.mu, road.dens*43560, ranch.dens*43560,

tank.dens*43560, art.dens*43560, repl))

setTxtProgressBar(pb, repl)

})
close(pb)

print(timing)
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A.2 Analysis

A.2.1 Window Size Experiment, experiment1.r

# North-South Transect sampling from the easy site,

# with different window sizes.

require(tcltk)

require(spatstat)

source('rfns/data_functions.r')

source('rfns/sampling_functions.r')

source('rfns/spatial_functions.r')

# Paths to command-line versions of GAMV and KT3D

gamv_exe <- 'gamv'

kt3d_exe <- 'kt3d'

# Paths to input/output

fulldir <- 'datasets/easy/full'

sampdir <- 'datasets/easy/sample'

outdir <- 'datasets/easy/exp1'

# Note: GAM/GAMV only support 40 character file paths.

## EXPERIMENT PARAMETERS

nreps <- 3000

nsamp <- 200 # 200 replicates take about 15 hours on my machine

# Sampling plan parameters, 0.99 prob of detecting the smaller TA

spacing <- 225

width <- 6

bg.dens <- 100

fg.dens <- 200

# Spacing is 225, smaller TA has minor axis diameter 800

window.sizes <- c(150, 228, 516, 798, 1500)

ncells <- length(window.sizes)

nobs <- nsamp * ncells

# True TAs and site

TA1 <- ellipse(800/2, 1200/2, c(1558400, 540000), pi/6)

TA2 <- ellipse(2000/2, 900/2, c(1562000, 537000), 0)

TAs <- union.owin(TA1, TA2)

sitewindow <- owin(poly = cbind(x = c(1564294, 1564495, 1556870, 1557126),

y = c(535421, 541130, 541085, 535576)))

# Corners of site and number of discretized rows and columns

corners <- vertices(Frame(sitewindow))

xmin <- min(corners$x) + window.sizes / 12

ymin <- min(corners$y) + window.sizes / 12

nx <- ceiling(6 * (max(corners$x) - min(corners$x)) / window.sizes)

ny <- ceiling(6 * (max(corners$y) - min(corners$y)) / window.sizes)

# Starting values for numerically estimating semivariogram parameters:
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# There should not be a nugget because the simulation has no measurement

# error or microscale variation.

nug.start <- 0

# The number of anomlies in a window follows a Poisson distribution, and

# sites have little area occupied by TAs, so the expected number of

# background anomalies over the area squared (=density over area)

# is a natural starting point for the sill of the local density estimate.

sill.start <- bg.dens / (width*window.sizes/43560)

# The only locations that should be correlated are locations in the same TA,

# so set an initial range on the same order of magnitude as the TA sizes.

range.start <- 1000

# Basic starting point for power model:

slope.start <- 1

power.start <- 0.5

# SELECT THE SAMPLE

set.seed(37478)

seeds <- sample(2^32-1, nreps)-2^31

samp <- sample(nreps, nsamp)

## RESULT STORAGE

# Matrix to store all responses that are not vectors

results <- data.frame(expand.grid('win' = window.sizes,

'Realization' = samp),

'length' = numeric(ncells),

'detect' = numeric(ncells),

'detect1' = numeric(ncells),

'detect2' = numeric(ncells),

'dens' = numeric(ncells),

'detectarea' = numeric(ncells),

'detectarea1' = numeric(ncells),

'detectarea2' = numeric(ncells),

'identarea' = numeric(ncells),

'identcount' = numeric(ncells))

# List of lists to store vectors of distances of false negatives to nearest

# delineated regions

ndist <- array(list(), dim = c(nsamp, length(window.sizes)),

dimnames = list('Realization' = paste0('r', samp),

'win' = paste0('w', window.sizes)))

# List of lists to store vectors of areas of disjoint regions

areas <- array(list(), dim = c(nsamp, length(window.sizes)),

dimnames = list('Realization' = paste0('r', samp),

'win' = paste0('w', window.sizes)))

# Loop for each replicate

pb <- tkProgressBar(max = nsamp+1, min = 1, initial = 1,
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title = 'Sampling and Kriging',

label = 'Sampling and Kriging')

timing <- system.time(for(repl in samp){
itr <- which(samp==repl)

r <- (itr - 1) * ncells

set.seed(seeds[repl])

setTkProgressBar(pb, itr, label = paste0('Iteration ', which(samp==repl),

': Sampling rep ', repl))

## SAMPLING

# Read the ground truth file

load(file = sprintf('%s/easy_full_bg%03d_fg%03d_rep%04d.RData',

fulldir, bg.dens, fg.dens, repl))

# Sample along the transects, starting at a random horizontal coordinate

sample <- sample.transects.NS(site, width, spacing,

offset = runif(1, 0, spacing + width/2))

# Save the sample

filepath <- sprintf('%s/easy_sample_sp%04d_bg%03d_fg%03d_rep%04d',

sampdir, spacing, bg.dens, fg.dens, repl)

write.anomaly(sample$anomaly, paste0(filepath, '.anomaly'))

write.cog(sample$cog, paste0(filepath, '.cog'))

# Loop for each window size

for(w in 1:length(window.sizes)){
setTkProgressBar(pb, itr+w/length(window.sizes),

label = paste0('Iteration ', itr, ': Analyzing rep ',

repl, ' with window size ', window.sizes[w]))

results$length[r+w] <- sample$length

## KRIGING

# Evaluate local density in each window

datfile <- sprintf('%s/rep%04d_w%04d.dat', outdir, repl, window.sizes[w])

ldens <- windowed.density.NS(sample, window.sizes[w])

write.geoeas(ldens, datfile, title = 'Data exported from R')

# Create GAMV parameter file

gpar <- sprintf('%s/rep%04d_w%04d_g.par', outdir, repl, window.sizes[w])

gout <- sprintf('%s/rep%04d_w%04d_g.out', outdir, repl, window.sizes[w])

cat(gamv_par(datfile, gout, window.sizes[w]), file = gpar)

# Run GAMV to compute empirical semivariogram

system2(gamv_exe, input = gpar, wait = TRUE)

# Read semivariogram and discard lags that were not estimated

svario <- read.table(gout, row.names = 1,

col.names = c('l', 'lag.dist', 'semivariogram',

'n', 'tail.mean', 'head.mean'),

header = FALSE, skip = 3)

svario <- svario[svario$n>0,]

# Fit parametric semivariograms
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params <- list('sphere' = optim(c(nug.start, sill.start[w], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.sphere, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'expon' = optim(c(nug.start, sill.start[w], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.expon, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'gauss' = optim(c(nug.start, sill.start[w], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.gauss, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'power' = optim(c(nug.start, slope.start, power.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.power, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, 2),

method = 'L-BFGS-B'))

# Find the model with the smallest sum of squares

# The indices match GSLIB's model type numbers

type <- order(sapply(params, function(x){return(x$value)}))[1]

# Create KT3D parameter file

kpar <- sprintf('%s/rep%04d_w%04d_k.par', outdir, repl, window.sizes[w])

kout <- sprintf('%s/rep%04d_w%04d_k.out', outdir, repl, window.sizes[w])

kdbg <- sprintf('%s/rep%04d_w%04d.dbg', outdir, repl, window.sizes[w])

cat(kt3d_par(datfile, kdbg, kout, nx[w], ny[w], xmin[w], ymin[w],

window.sizes[w], params[[type]]$par[1],

params[[type]]$par[2], params[[type]]$par[3], type),

file = kpar)

# Run KT3D to do the kriging

# Note: Value of -999 indicates that the value that was not computed

system2(kt3d_exe, input = kpar, wait = TRUE)

## ANALYSIS

## Read and clean KT3D output

krige.out <- read.geoeas(kout)

krige.out[krige.out$Estimate == -999,] <- rep(NA, 2)

krige.out$EstimationVariance[krige.out$EstimationVariance < 0] <- 0

kest <- im(matrix(krige.out$Estimate, nrow = ny[w], byrow = TRUE),

seq(xmin[w], length.out = nx[w], by = window.sizes[w]/6),

seq(ymin[w], length.out = ny[w], by = window.sizes[w]/6),

unitname = c('foot', 'feet'))

kvar <- im(matrix(krige.out$EstimationVariance, nrow = ny[w], byrow = TRUE),

seq(xmin[w], length.out = nx[w], by = window.sizes[w]/6),
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seq(ymin[w], length.out = ny[w], by = window.sizes[w]/6),

unitname = c('foot', 'feet'))

# Get the delineated regions, if there are any

highdens <- kest > bg.dens + qnorm(0.95) * sqrt(kvar)

if(sum(highdens) > 0){
identified <- connected(highdens, background = FALSE)

areas[[itr, w]] <- sapply(levels(identified$v), function(x){
return(area(Window(connected(identified==x,

background = FALSE))[sitewindow]))

})

# Ignore regions with non-positive area

ignore <- which(areas[[itr, w]] <= 0)

areas[[itr, w]][ignore] <- NA

results$identcount[r+w] <- sum(!is.na(areas[[itr, w]]))

for(i in ignore){
identified$v[identified$v==i] <- NA

}
}
if(results$identcount[r+w] > 0){
idboundary <- as.polygonal(Window(identified))[sitewindow]

idpoints <- site

Window(idpoints) <- idboundary

missedpoints <- site

Window(missedpoints) <- complement.owin(idboundary,

frame = dilation(Frame(sitewindow), window.sizes[w]))

results$detect[r+w] <- sum(marks(idpoints)>0) / sum(marks(site)>0)

results$detect1[r+w] <- sum(marks(idpoints)==1) / sum(marks(site)==1)

results$detect2[r+w] <- sum(marks(idpoints)==2) / sum(marks(site)==2)

results$dens[r+w] <- sum(marks(idpoints)>0) / area(idpoints) * 43560

a <- intersect.owin(Window(idpoints), TAs, fatal = FALSE)

results$detectarea[r+w] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), TA1, fatal = FALSE)

results$detectarea1[r+w] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), TA2, fatal = FALSE)

results$detectarea2[r+w] <- ifelse(is.null(a), 0, area(a))

results$identarea[r+w] <- area(idpoints)

ndist[[itr, w]] <- nncross(missedpoints[marks(missedpoints)>0],

edges(idboundary), what = 'dist')

}
}

})
setTkProgressBar(pb, nsamp+1, label = 'Done')

invisible(close(pb))

print(timing)

save(results, file = paste0('datasets/easy/results/easy_winresults_sp', spacing,

'_fg', fg.dens, '.RData'))

save(ndist, file = paste0('datasets/easy/results/easy_winndist_sp', spacing,

'_fg', fg.dens, '.RData'))

save(areas, file = paste0('datasets/easy/results/easy_winareas_sp', spacing,

'_fg', fg.dens, '.RData'))
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A.2.2 Prior Information Experiment (Easy Site), experiment2e.r

# North-South Transect sampling from the easy site,

# with twelve different sampling plans.

require(tcltk)

require(spatstat)

source('rfns/data_functions.r')

source('rfns/sampling_functions.r')

source('rfns/spatial_functions.r')

# Paths to command-line versions of GAMV and KT3D

gamv_exe <- 'gamv'

kt3d_exe <- 'kt3d'

# Paths to input/output

fulldir <- 'datasets/easy/full'

sampdir <- 'datasets/easy/sample'

outdir <- 'datasets/easy/exp2'

# Note: GAM/GAMV only support 40 character file paths.

## EXPERIMENT PARAMETERS

nreps <- 3000

nsamp <- 100 # Takes about 25 hours

# Site parameters

width <- 6

bg.dens <- 100

fg.dens <- 200 # TRUE density for the simulation

# Sampling plan parameters (treatments)

ta.prior <- c('Small', 'TA1', 'TA2', 'Large')

fg.prior <- c(100, 200, 400)

spacings <- matrix(c(40, 125, 170, 270,

100, 225, 390, 565,

220, 465, 655, 935), ncol = 3)

window.sizes <- 0.9 * c(566, 800, 900, 1273)

ncells <- length(ta.prior) * length(fg.prior)

nobs <- nsamp * ncells

# True TAs and site

TA1 <- ellipse(800/2, 1200/2, c(1558400, 540000), pi/6)

TA2 <- ellipse(2000/2, 900/2, c(1562000, 537000), 0)

TAs <- union.owin(TA1, TA2)

sitewindow <- owin(poly = cbind(x = c(1564294, 1564495, 1556870, 1557126),

y = c(535421, 541130, 541085, 535576)))

# Corners of site and number of discretized rows and columns

corners <- vertices(Frame(sitewindow))

xmin <- min(corners$x) + window.sizes / 12

ymin <- min(corners$y) + window.sizes / 12

nx <- ceiling(6 * (max(corners$x) - min(corners$x)) / window.sizes)

ny <- ceiling(6 * (max(corners$y) - min(corners$y)) / window.sizes)
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# Starting values for numerically estimating semivariogram parameters:

# There should not be a nugget because the simulation has no measurement

# error or microscale variation.

nug.start <- 0

# The number of anomlies in a window follows a Poisson distribution, and

# sites have little area occupied by TAs, so the expected number of

# background anomalies over the area squared (=density over area)

# is a natural starting point for the sill of the local density estimate.

sill.start <- bg.dens / (width*window.sizes/43560)

# The only locations that should be correlated are locations in the same TA,

# so set an initial range on the same order of magnitude as the TA sizes.

range.start <- 1000

# Basic starting point for power model:

slope.start <- 1

power.start <- 0.5

# SELECT THE SAMPLE

set.seed(87235)

seeds <- sample(2^32-1, nreps)-2^31

samp <- sample(nreps, nsamp)

## RESULT STORAGE

# Matrix to store all responses that are not vectors

results2e <- data.frame(expand.grid('Target' = ta.prior,

'fg' = fg.prior,

'Realization' = samp),

'length' = numeric(ncells),

'detect' = numeric(ncells),

'detect1' = numeric(ncells),

'detect2' = numeric(ncells),

'dens' = numeric(ncells),

'detectarea' = numeric(ncells),

'detectarea1' = numeric(ncells),

'detectarea2' = numeric(ncells),

'identarea' = numeric(ncells),

'identcount' = numeric(ncells))

# List of lists to store vectors of distances of false negatives to nearest

# delineated regions

ndist2e <- array(list(), dim = c(nsamp, length(ta.prior), length(fg.prior)),

dimnames = list('Realization' = paste0('r', samp),

'Target' = paste0('Target', ta.prior),

'fg' = paste0('fg', fg.prior)))

# List of lists to store vectors of areas of disjoint regions

areas2e <- array(list(), dim = c(nsamp, length(ta.prior), length(fg.prior)),

dimnames = list('Realization' = paste0('r', samp),

'Target' = paste0('Target', ta.prior),
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'fg' = paste0('fg', fg.prior)))

# Loop for each realization

pb <- tkProgressBar(max = nsamp+1, min = 1, initial = 1,

title = 'Sampling and Kriging',

label = 'Sampling and Kriging')

timing <- system.time(for(itr in seq_along(samp)){
r <- (itr-1) * ncells

repl <- results2e$Realization[r+1]

set.seed(seeds[repl])

setTkProgressBar(pb, r, label = paste0('Iteration ', itr,

': Loading rep ', repl))

# Read the ground truth file

load(file = sprintf('%s/easy_full_bg%03d_fg%03d_rep%04d.RData',

fulldir, bg.dens, fg.dens, repl))

# Loop for each treatment combination

for(trt in seq_len(ncells)){
ta <- which(ta.prior==results2e$Target[r+trt])

fg <- which(fg.prior==results2e$fg[r+trt])

setTkProgressBar(pb, itr+trt/ncells,

label = paste0('Iteration ', itr,

': Analyzing rep ', repl,

' with spacing ', spacings[ta, fg]))

## SAMPLING

# Sample along the transects, starting at a random horzontal coordinate

sample <- sample.transects.NS(site, width, spacings[ta, fg],

offset = runif(1, 0, spacings[ta, fg] + width/2))

# Save the sample

filepath <- sprintf('%s/easy_sample_t%s_p%03d_bg%03d_fg%03d_rep%04d',

sampdir, ta.prior[ta], fg.prior[fg], bg.dens, fg.dens, repl)

write.anomaly(sample$anomaly, paste0(filepath, '.anomaly'))

write.cog(sample$cog, paste0(filepath, '.cog'))

results2e$length[r+trt] <- sample$length

## KRIGING

# Evaluate local density in each window

datfile <- sprintf('%s/rep%04d_s%04d.dat', outdir, repl, spacings[ta, fg])

ldens <- windowed.density.NS(sample, window.sizes[ta])

write.geoeas(ldens, datfile, title = 'Data exported from R')

# Create GAMV parameter file

gpar <- sprintf('%s/rep%04d_s%04d_g.par', outdir, repl, spacings[ta, fg])

gout <- sprintf('%s/rep%04d_s%04d_g.out', outdir, repl, spacings[ta, fg])

cat(gamv_par(datfile, gout, window.sizes[ta]), file = gpar)

# Run GAMV to compute empirical semivariogram
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system2(gamv_exe, input = gpar, wait = TRUE)

# Read semivariogram and discard lags that were not estimated

svario <- read.table(gout, row.names = 1,

col.names = c('l', 'lag.dist', 'semivariogram',

'n', 'tail.mean', 'head.mean'),

header = FALSE, skip = 3)

svario <- svario[svario$n>0,]

# Fit parametric semivariograms

params <- list('sphere' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.sphere, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'expon' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.expon, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'gauss' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.gauss, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'power' = optim(c(nug.start, slope.start, power.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.power, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, 2),

method = 'L-BFGS-B'))

# Find the model with the smallest sum of squares

# The indices match GSLIB's model type numbers

type <- order(sapply(params, function(x){return(x$value)}))[1]

# Create KT3D parameter file

kpar <- sprintf('%s/rep%04d_s%04d_k.par', outdir, repl, spacings[ta, fg])

kout <- sprintf('%s/rep%04d_s%04d_k.out', outdir, repl, spacings[ta, fg])

kdbg <- sprintf('%s/rep%04d_s%04d.dbg', outdir, repl, spacings[ta, fg])

cat(kt3d_par(datfile, kdbg, kout, nx[ta], ny[ta], xmin[ta], ymin[ta],

window.sizes[ta], params[[type]]$par[1],

params[[type]]$par[2], params[[type]]$par[3], type),

file = kpar)

# Run KT3D to do the kriging

# Note: Value of -999 indicates that the value that was not computed

system2(kt3d_exe, input = kpar, wait = TRUE)

## ANALYSIS
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## Read and clean KT3D output

krige.out <- read.geoeas(kout)

krige.out[krige.out$Estimate == -999,] <- rep(NA, 2)

kest <- im(matrix(krige.out$Estimate, nrow = ny[ta], byrow = TRUE),

seq(xmin[ta], length.out = nx[ta], by = window.sizes[ta]/6),

seq(ymin[ta], length.out = ny[ta], by = window.sizes[ta]/6),

unitname = c('foot', 'feet'))

kvar <- im(matrix(krige.out$EstimationVariance, nrow = ny[ta], byrow = TRUE),

seq(xmin[ta], length.out = nx[ta], by = window.sizes[ta]/6),

seq(ymin[ta], length.out = ny[ta], by = window.sizes[ta]/6),

unitname = c('foot', 'feet'))

# Get the delineated regions, if there are any

highdens <- kest > bg.dens + qnorm(0.95) * sqrt(kvar)

if(sum(highdens) > 0){
identified <- connected(highdens, background = FALSE)

areas2e[[itr, ta, fg]] <- sapply(levels(identified$v), function(x){
return(area(Window(connected(identified==x,

background = FALSE))[sitewindow]))

})

# Ignore regions less than 3 acres

ignore <- which(areas2e[[itr, ta, fg]] < 3*43560)

areas2e[[itr, ta, fg]][ignore] <- NA

results2e$identcount[r+trt] <- sum(!is.na(areas2e[[itr, ta, fg]]))

for(i in ignore){
identified$v[identified$v==i] <- NA

}
}
if(results2e$identcount[r+trt] > 0){

idboundary <- as.polygonal(Window(identified))[sitewindow]

idpoints <- site

Window(idpoints) <- idboundary

missedpoints <- site

Window(missedpoints) <- complement.owin(idboundary,

frame = dilation(Frame(sitewindow), window.sizes[ta]))

results2e$detect[r+trt] <- sum(marks(idpoints)>0) / sum(marks(site)>0)

results2e$detect1[r+trt] <- sum(marks(idpoints)==1) / sum(marks(site)==1)

results2e$detect2[r+trt] <- sum(marks(idpoints)==2) / sum(marks(site)==2)

results2e$dens[r+trt] <- sum(marks(idpoints)>0) / area(idpoints) * 43560

a <- intersect.owin(Window(idpoints), TAs, fatal = FALSE)

results2e$detectarea[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), TA1, fatal = FALSE)

results2e$detectarea1[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), TA2, fatal = FALSE)

results2e$detectarea2[r+trt] <- ifelse(is.null(a), 0, area(a))

results2e$identarea[r+trt] <- area(idpoints)

ndist2e[[itr, ta, fg]] <- nncross(missedpoints[marks(missedpoints)>0],

edges(idboundary), what = 'dist')

}
}

})
setTkProgressBar(pb, nsamp+1, label = 'Done')

invisible(close(pb))
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print(timing)

save(results2e, file = 'datasets/easy/results/easy_exp2results.RData')

save(ndist2e, file = 'datasets/easy/results/easy_exp2ndist.RData')

save(areas2e, file = 'datasets/easy/results/easy_exp2areas.RData')

A.2.3 Prior Information Experiment (Medium Site), experiment2m.r

# North-South Transect sampling from the medium site,

# with twelve different sampling plans.

require(tcltk)

require(spatstat)

source('rfns/data_functions.r')

source('rfns/sampling_functions.r')

source('rfns/spatial_functions.r')

# Paths to command-line versions of GAMV and KT3D

gamv_exe <- 'gamv'

kt3d_exe <- 'kt3d'

# Paths to input/output

fulldir <- 'datasets/medium/full'

sampdir <- 'datasets/medium/sample'

outdir <- 'datasets/medium/exp2'

## EXPERIMENT PARAMETERS

nreps <- 3000

nsamp <- 100 # Takes about 60 hours

# Site parameters

width <- 6

bg.dens <- 100

r.dens <- 100

t.dens <- 200

a.dens <- 200

# Sampling plan parameters (treatments)

ta.prior <- c('Small', 'T1', 'A', 'Large')

fg.prior <- c(100, 200, 400)

spacings <- matrix(c(30, 70, 175, 320,

65, 135, 400, 780,

130, 315, 785, 1145), ncol = 3)

window.sizes <- 0.9 * c(424, 600, 1500, 2121)

ncells <- length(ta.prior) * length(fg.prior)

nobs <- nsamp * ncells

# True TAs and site

T1 <- ellipse(1000/2, 600/2, c(1558000, 540000), -pi/9)

T2 <- disc(800/2, c(1558300, 537500))

A <- disc(1500/2, c(1561200, 539200))

TAs <- union.owin(T1, T2, A)
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sitewindow <- owin(poly = cbind(x = c(1564294, 1564495, 1556870, 1557126),

y = c(535421, 541130, 541085, 535576)))

roadwindow <- intersect.owin(

dilation(psp(x0 = c(1559750, 1560000, 1560250, 1560700,

1560700, 1560000, 1558050),

y0 = c(535421, 536400, 536750, 537000,

537000, 537850, 538500),

x1 = c(1560000, 1560250, 1560700, 1564495,

1560000, 1558050, 1557550),

y1 = c(536400, 536750, 537000, 538000,

537850, 538500, 538900),

window = boundingbox(sitewindow)),

25), sitewindow)

# Corners of site and number of discretized rows and columns

corners <- vertices(Frame(sitewindow))

xmin <- min(corners$x) + window.sizes / 12

ymin <- min(corners$y) + window.sizes / 12

nx <- ceiling(6 * (max(corners$x) - min(corners$x)) / window.sizes)

ny <- ceiling(6 * (max(corners$y) - min(corners$y)) / window.sizes)

# Starting values for numerically estimating semivariogram parameters:

# There should not be a nugget because the simulation has no measurement

# error or microscale variation.

nug.start <- 0

# The number of anomlies in a window follows a Poisson distribution, and

# sites have little area occupied by TAs, so the expected number of

# background anomalies over the area squared (=density over area)

# is a natural starting point for the sill of the local density estimate.

sill.start <- bg.dens / (width*window.sizes/43560)

# The only locations that should be correlated are locations in the same TA,

# so set an initial range on the same order of magnitude as the TA sizes.

range.start <- 1000

# Basic starting point for power model:

slope.start <- 1

power.start <- 0.5

# SELECT THE SAMPLE

set.seed(73578)

seeds <- sample(2^32-1, nreps)-2^31

samp <- sample(nreps, nsamp)

## RESULT STORAGE

# Matrix to store all responses that are not vectors

results2m <- data.frame(expand.grid('Target' = ta.prior,

'fg' = fg.prior,

'Realization' = samp),
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'length' = numeric(ncells),

'detect' = numeric(ncells),

'detect1' = numeric(ncells),

'detect3' = numeric(ncells),

'detect4' = numeric(ncells),

'detect5' = numeric(ncells),

'dens' = numeric(ncells),

'detectarea' = numeric(ncells),

'detectarea1' = numeric(ncells),

'detectarea3' = numeric(ncells),

'detectarea4' = numeric(ncells),

'detectarea5' = numeric(ncells),

'identarea' = numeric(ncells),

'identcount' = numeric(ncells))

# List of lists to store vectors of distances of false negatives to nearest

# delineated regions

ndist2m <- array(list(), dim = c(nsamp, length(ta.prior), length(fg.prior)),

dimnames = list('Realization' = paste0('r', samp),

'Target' = paste0('Target', ta.prior),

'fg' = paste0('fg', fg.prior)))

# List of lists to store vectors of areas of disjoint regions

areas2m <- array(list(), dim = c(nsamp, length(ta.prior), length(fg.prior)),

dimnames = list('Realization' = paste0('r', samp),

'Target' = paste0('Target', ta.prior),

'fg' = paste0('fg', fg.prior)))

# Loop for each realization

pb <- TkProgressBar(max = nsamp+1, min = 1, initial = 1,

title = 'Sampling and Kriging',

label = 'Sampling and Kriging')

timing <- system.time(for(itr in seq_along(samp)){
r <- (itr-1) * ncells

repl <- results2m$Realization[r+1]

set.seed(seeds[repl])

setTkProgressBar(pb, r, label = paste0('Iteration ', itr,

': Loading rep ', repl))

# Read the ground truth file

load(file = sprintf('%s/medium_full_bg%03d_ro%03d_t%03d_a%03d_rep%04d.RData',

fulldir, bg.dens, r.dens, t.dens, a.dens, repl))

# Loop for each treatment combination

for(trt in seq_len(ncells)){
ta <- which(ta.prior==results2m$Target[r+trt])

fg <- which(fg.prior==results2m$fg[r+trt])

setTkProgressBar(pb, itr+trt/ncells,

label = paste0('Iteration ', itr,

': Analyzing rep ', repl,

' with spacing ', spacings[ta, fg]))

## SAMPLING
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# Sample along the transects, starting at a random horzontal coordinate

sample <- sample.transects.NS(site, width, spacings[ta, fg],

offset = runif(1, 0, spacings[ta, fg] + width/2))

# Save the sample

filepath <- sprintf('%s/medium_sample_t%s_p%03d_bg%03d_rep%04d',

sampdir, ta.prior[ta], fg.prior[fg], bg.dens, repl)

write.anomaly(sample$anomaly, paste0(filepath, '.anomaly'))

write.cog(sample$cog, paste0(filepath, '.cog'))

results2m$length[r+trt] <- sample$length

## KRIGING

# Evaluate local density in each window

datfile <- sprintf('%s/rep%04d_s%04d.dat', outdir, repl, spacings[ta, fg])

ldens <- windowed.density.NS(sample, window.sizes[ta])

write.geoeas(ldens, datfile, title = 'Data exported from R')

# Create GAMV parameter file

gpar <- sprintf('%s/rep%04d_s%04d_g.par', outdir, repl, spacings[ta, fg])

gout <- sprintf('%s/rep%04d_s%04d_g.out', outdir, repl, spacings[ta, fg])

cat(gamv_par(datfile, gout, window.sizes[ta]), file = gpar)

# Run GAMV to compute empirical semivariogram

system2(gamv_exe, input = gpar, wait = TRUE)

# Read semivariogram and discard lags that were not estimated

svario <- read.table(gout, row.names = 1,

col.names = c('l', 'lag.dist', 'semivariogram',

'n', 'tail.mean', 'head.mean'),

header = FALSE, skip = 3)

svario <- svario[svario$n>0,]

# Fit parametric semivariograms

params <- list('sphere' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.sphere, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'expon' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.expon, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'gauss' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.gauss, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'power' = optim(c(nug.start, slope.start, power.start),

sv.wss, lags = svario$lag.dist,
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n = svario$n, ghat = svario$semivariogram,

model = sv.power, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, 2),

method = 'L-BFGS-B'))

# Find the model with the smallest sum of squares

# The indices match GSLIB's model type numbers

type <- order(sapply(params, function(x){return(x$value)}))[1]

# Create KT3D parameter file

kpar <- sprintf('%s/rep%04d_s%04d_k.par', outdir, repl, spacings[ta, fg])

kout <- sprintf('%s/rep%04d_s%04d_k.out', outdir, repl, spacings[ta, fg])

kdbg <- sprintf('%s/rep%04d_s%04d.dbg', outdir, repl, spacings[ta, fg])

cat(kt3d_par(datfile, kdbg, kout, nx[ta], ny[ta], xmin[ta], ymin[ta],

window.sizes[ta], params[[type]]$par[1],

params[[type]]$par[2], params[[type]]$par[3], type),

file = kpar)

# Run KT3D to do the kriging

# Note: Value of -999 indicates that the value that was not computed

system2(kt3d_exe, input = kpar, wait = TRUE)

## ANALYSIS

## Read and clean KT3D output

krige.out <- read.geoeas(kout)

krige.out[krige.out$Estimate == -999,] <- rep(NA, 2)

krige.out$EstimationVariance[krige.out$EstimationVariance < 0] <- 0

kest <- im(matrix(krige.out$Estimate, nrow = ny[ta], byrow = TRUE),

seq(xmin[ta], length.out = nx[ta], by = window.sizes[ta]/6),

seq(ymin[ta], length.out = ny[ta], by = window.sizes[ta]/6),

unitname = c('foot', 'feet'))

kvar <- im(matrix(krige.out$EstimationVariance, nrow = ny[ta], byrow = TRUE),

seq(xmin[ta], length.out = nx[ta], by = window.sizes[ta]/6),

seq(ymin[ta], length.out = ny[ta], by = window.sizes[ta]/6),

unitname = c('foot', 'feet'))

# Get the delineated regions, if there are any

highdens <- kest > bg.dens + qnorm(0.95) * sqrt(kvar)

if(sum(highdens) > 0){
identified <- connected(highdens, background = FALSE)

areas2m[[itr, ta, fg]] <- sapply(levels(identified$v), function(x){
return(area(Window(connected(identified==x,

background = FALSE))[sitewindow]))

})

# Ignore regions less than 3 acres

ignore <- which(areas2m[[itr, ta, fg]] < 3*43560)

areas2m[[itr, ta, fg]][ignore] <- NA

results2m$identcount[r+trt] <- sum(!is.na(areas2m[[itr, ta, fg]]))

for(i in ignore){
identified$v[identified$v==i] <- NA

}
}
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if(results2m$identcount[r+trt] > 0){
idboundary <- as.polygonal(Window(identified))[sitewindow]

idpoints <- site

Window(idpoints) <- idboundary

missedpoints <- site

Window(missedpoints) <- complement.owin(idboundary,

frame = dilation(Frame(sitewindow), window.sizes[ta]))

results2m$detect[r+trt] <- sum(marks(idpoints)>2) / sum(marks(site)>2)

results2m$detect1[r+trt] <- sum(marks(idpoints)==1) / sum(marks(site)==1)

results2m$detect3[r+trt] <- sum(marks(idpoints)==3) / sum(marks(site)==3)

results2m$detect4[r+trt] <- sum(marks(idpoints)==4) / sum(marks(site)==4)

results2m$detect5[r+trt] <- sum(marks(idpoints)==5) / sum(marks(site)==5)

results2m$dens[r+trt] <- sum(marks(idpoints)>0) / area(idpoints) * 43560

a <- intersect.owin(Window(idpoints), TAs, fatal = FALSE)

results2m$detectarea[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), roadwindow, fatal = FALSE)

results2m$detectarea1[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), T1, fatal = FALSE)

results2m$detectarea3[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), T2, fatal = FALSE)

results2m$detectarea4[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), A, fatal = FALSE)

results2m$detectarea5[r+trt] <- ifelse(is.null(a), 0, area(a))

results2m$identarea[r+trt] <- area(idpoints)

ndist2m[[itr, ta, fg]] <- nncross(missedpoints[marks(missedpoints)>0],

edges(idboundary), what = 'dist')

}
}

})
setTkProgressBar(pb, nsamp+1, label = 'Done')

invisible(close(pb))

print(timing)

save(results2m, file = 'datasets/medium/results/medium_exp2results.RData')

save(ndist2m, file = 'datasets/medium/results/medium_exp2ndist.RData')

save(areas2m, file = 'datasets/medium/results/medium_exp2areas.RData')

A.2.4 Prior Information Experiment (Hard Site), experiment2h.r

# North-South Transect sampling from the hard site,

# with twelve different sampling plans.

require(tcltk)

require(spatstat)

source('rfns/data_functions.r')

source('rfns/sampling_functions.r')

source('rfns/spatial_functions.r')

# Paths to command-line versions of GAMV and KT3D

gamv_exe <- 'gamv'

kt3d_exe <- 'kt3d'

# Paths to input/output
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fulldir <- 'datasets/hard/full'

sampdir <- 'datasets/hard/sample'

outdir <- 'datasets/hard/exp2'

## EXPERIMENT PARAMETERS

nreps <- 3000

nsamp <- 100 # Takes about 60 hours

# Site parameters

width <- 6

bg.mu <- 50

bg.kappa <- 2

bg.dens <- bg.mu * bg.kappa

bg.scale <- 75

r.dens <- 100

ra.dens <- 100

t.dens <- 200

a.dens <- 200

# Sampling plan parameters (treatments)

ta.prior <- c('Small', 'T1', 'A', 'Large')

fg.prior <- c(100, 200, 400)

spacings <- matrix(c(30, 70, 175, 320,

65, 135, 400, 780,

130, 315, 785, 1145), ncol = 3)

window.sizes <- 0.9 * c(424, 600, 1500, 2121)

ncells <- length(ta.prior) * length(fg.prior)

nobs <- nsamp * ncells

# True TAs and site

T1 <- ellipse(1000/2, 600/2, c(1558000, 540000), -pi/9)

T2 <- disc(800/2, c(1558300, 537500))

A <- disc(1500/2, c(1561200, 539200))

TAs <- union.owin(T1, T2, A)

sitewindow <- owin(poly = cbind(x = c(1564294, 1564495, 1556870, 1557126),

y = c(535421, 541130, 541085, 535576)))

roadwindow <- intersect.owin(

dilation(psp(x0 = c(1559750, 1560000, 1560250, 1560700,

1560700, 1560000, 1558050),

y0 = c(535421, 536400, 536750, 537000,

537000, 537850, 538500),

x1 = c(1560000, 1560250, 1560700, 1564495,

1560000, 1558050, 1557550),

y1 = c(536400, 536750, 537000, 538000,

537850, 538500, 538900),

window = boundingbox(sitewindow)),

25), sitewindow)

ranchwindow <- owin(c(1561300, 1562100), c(537900, 538700))

# Corners of site and number of discretized rows and columns

corners <- vertices(Frame(sitewindow))

xmin <- min(corners$x) + window.sizes / 12

ymin <- min(corners$y) + window.sizes / 12
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nx <- ceiling(6 * (max(corners$x) - min(corners$x)) / window.sizes)

ny <- ceiling(6 * (max(corners$y) - min(corners$y)) / window.sizes)

# Starting values for numerically estimating semivariogram parameters:

# There should not be a nugget because the simulation has no measurement

# error or microscale variation.

nug.start <- 0

# The number of anomlies in a window follows a Poisson distribution, and

# sites have little area occupied by TAs, so the expected number of

# background anomalies over the area squared (=density over area)

# is a natural starting point for the sill of the local density estimate.

sill.start <- bg.dens / (width*window.sizes/43560)

# The only locations that should be correlated are locations in the same TA,

# so set an initial range on the same order of magnitude as the TA sizes.

range.start <- 1000

# Basic starting point for power model:

slope.start <- 1

power.start <- 0.5

# SELECT THE SAMPLE

set.seed(67623)

seeds <- sample(2^32-1, nreps)-2^31

samp <- sample(nreps, nsamp)

## RESULT STORAGE

# Matrix to store all responses that are not vectors

results2h <- data.frame(expand.grid('Target' = ta.prior,

'fg' = fg.prior,

'Realization' = samp),

'length' = numeric(ncells),

'detect' = numeric(ncells),

'detect1' = numeric(ncells),

'detect2' = numeric(ncells),

'detect3' = numeric(ncells),

'detect4' = numeric(ncells),

'detect5' = numeric(ncells),

'dens' = numeric(ncells),

'detectarea' = numeric(ncells),

'detectarea1' = numeric(ncells),

'detectarea2' = numeric(ncells),

'detectarea3' = numeric(ncells),

'detectarea4' = numeric(ncells),

'detectarea5' = numeric(ncells),

'identarea' = numeric(ncells),

'identcount' = numeric(ncells))

# List of lists to store vectors of distances of false negatives to nearest

85



# delineated regions

ndist2h <- array(list(), dim = c(nsamp, length(ta.prior), length(fg.prior)),

dimnames = list('Realization' = paste0('r', samp),

'Target' = paste0('Target', ta.prior),

'fg' = paste0('fg', fg.prior)))

# List of lists to store vectors of areas of disjoint regions

areas2h <- array(list(), dim = c(nsamp, length(ta.prior), length(fg.prior)),

dimnames = list('Realization' = paste0('r', samp),

'Target' = paste0('Target', ta.prior),

'fg' = paste0('fg', fg.prior)))

# Loop for each realization

pb <- TkProgressBar(max = nsamp+1, min = 1, initial = 1,

title = 'Sampling and Kriging',

label = 'Sampling and Kriging')

timing <- system.time(for(itr in seq_along(samp)){
r <- (itr-1) * ncells

repl <- results2h$Realization[r+1]

set.seed(seeds[repl])

setTkProgressBar(pb, r, label = paste0('Iteration ', itr,

': Loading rep ', repl))

# Read the ground truth file

load(file = sprintf('%s/hard_full_k%02d_s%03d_m%03d_ro%03d_ra%03d_t%03d_a%03d_rep%04d.RData',

fulldir, bg.kappa, bg.scale, bg.mu, r.dens, ra.dens, t.dens, a.dens, repl))

# Loop for each treatment combination

for(trt in seq_len(ncells)){
ta <- which(ta.prior==results2h$Target[r+trt])

fg <- which(fg.prior==results2h$fg[r+trt])

setTkProgressBar(pb, itr+trt/ncells,

label = paste0('Iteration ', itr,

': Analyzing rep ', repl,

' with spacing ', spacings[ta, fg]))

## SAMPLING

# Sample along the transects, starting at a random horzontal coordinate

sample <- sample.transects.NS(site, width, spacings[ta, fg],

offset = runif(1, 0, spacings[ta, fg] + width/2))

# Save the sample

filepath <- sprintf('%s/hard_sample_t%s_p%03d_rep%04d',

sampdir, ta.prior[ta], fg.prior[fg], repl)

write.anomaly(sample$anomaly, paste0(filepath, '.anomaly'))

write.cog(sample$cog, paste0(filepath, '.cog'))

results2h$length[r+trt] <- sample$length

## KRIGING

# Evaluate local density in each window
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datfile <- sprintf('%s/rep%04d_s%04d.dat', outdir, repl, spacings[ta, fg])

ldens <- windowed.density.NS(sample, window.sizes[ta])

write.geoeas(ldens, datfile, title = 'Data exported from R')

# Create GAMV parameter file

gpar <- sprintf('%s/rep%04d_s%04d_g.par', outdir, repl, spacings[ta, fg])

gout <- sprintf('%s/rep%04d_s%04d_g.out', outdir, repl, spacings[ta, fg])

cat(gamv_par(datfile, gout, window.sizes[ta]), file = gpar)

# Run GAMV to compute empirical semivariogram

system2(gamv_exe, input = gpar, wait = TRUE)

# Read semivariogram and discard lags that were not estimated

svario <- read.table(gout, row.names = 1,

col.names = c('l', 'lag.dist', 'semivariogram',

'n', 'tail.mean', 'head.mean'),

header = FALSE, skip = 3)

svario <- svario[svario$n>0,]

# Fit parametric semivariograms

params <- list('sphere' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.sphere, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'expon' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.expon, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'gauss' = optim(c(nug.start, sill.start[ta], range.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.gauss, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, Inf),

method = 'L-BFGS-B'),

'power' = optim(c(nug.start, slope.start, power.start),

sv.wss, lags = svario$lag.dist,

n = svario$n, ghat = svario$semivariogram,

model = sv.power, lower = c(0, 0.0001, 0),

upper = c(Inf, Inf, 2),

method = 'L-BFGS-B'))

# Find the model with the smallest sum of squares

# The indices match GSLIB's model type numbers

type <- order(sapply(params, function(x){return(x$value)}))[1]

# Create KT3D parameter file

kpar <- sprintf('%s/rep%04d_s%04d_k.par', outdir, repl, spacings[ta, fg])

kout <- sprintf('%s/rep%04d_s%04d_k.out', outdir, repl, spacings[ta, fg])

kdbg <- sprintf('%s/rep%04d_s%04d.dbg', outdir, repl, spacings[ta, fg])

cat(kt3d_par(datfile, kdbg, kout, nx[ta], ny[ta], xmin[ta], ymin[ta],

window.sizes[ta], params[[type]]$par[1],
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params[[type]]$par[2], params[[type]]$par[3], type),

file = kpar)

# Run KT3D to do the kriging

# Note: Value of -999 indicates that the value that was not computed

system2(kt3d_exe, input = kpar, wait = TRUE)

## ANALYSIS

## Read and clean KT3D output

krige.out <- read.geoeas(kout)

krige.out[krige.out$Estimate == -999,] <- rep(NA, 2)

krige.out$EstimationVariance[krige.out$EstimationVariance < 0] <- 0

kest <- im(matrix(krige.out$Estimate, nrow = ny[ta], byrow = TRUE),

seq(xmin[ta], length.out = nx[ta], by = window.sizes[ta]/6),

seq(ymin[ta], length.out = ny[ta], by = window.sizes[ta]/6),

unitname = c('foot', 'feet'))

kvar <- im(matrix(krige.out$EstimationVariance, nrow = ny[ta], byrow = TRUE),

seq(xmin[ta], length.out = nx[ta], by = window.sizes[ta]/6),

seq(ymin[ta], length.out = ny[ta], by = window.sizes[ta]/6),

unitname = c('foot', 'feet'))

# Get the delineated regions, if there are any

highdens <- kest > bg.dens + qnorm(0.95) * sqrt(kvar)

if(sum(highdens) > 0){
identified <- connected(highdens, background = FALSE)

areas2h[[itr, ta, fg]] <- sapply(levels(identified$v), function(x){
return(area(Window(connected(identified==x,

background = FALSE))[sitewindow]))

})

# Ignore regions less than 3 acres

ignore <- which(areas2h[[itr, ta, fg]] < 3*43560)

areas2h[[itr, ta, fg]][ignore] <- NA

results2h$identcount[r+trt] <- sum(!is.na(areas2h[[itr, ta, fg]]))

for(i in ignore){
identified$v[identified$v==i] <- NA

}
}
if(results2h$identcount[r+trt] > 0){

idboundary <- as.polygonal(Window(identified))[sitewindow]

idpoints <- site

Window(idpoints) <- idboundary

missedpoints <- site

Window(missedpoints) <- complement.owin(idboundary,

frame = dilation(Frame(sitewindow), window.sizes[ta]))

results2h$detect[r+trt] <- sum(marks(idpoints)>2) / sum(marks(site)>2)

results2h$detect1[r+trt] <- sum(marks(idpoints)==1) / sum(marks(site)==1)

results2h$detect2[r+trt] <- sum(marks(idpoints)==2) / sum(marks(site)==2)

results2h$detect3[r+trt] <- sum(marks(idpoints)==3) / sum(marks(site)==3)

results2h$detect4[r+trt] <- sum(marks(idpoints)==4) / sum(marks(site)==4)

results2h$detect5[r+trt] <- sum(marks(idpoints)==5) / sum(marks(site)==5)

results2h$dens[r+trt] <- sum(marks(idpoints)>0) / area(idpoints) * 43560
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a <- intersect.owin(Window(idpoints), TAs, fatal = FALSE)

results2h$detectarea[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), roadwindow, fatal = FALSE)

results2h$detectarea1[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), ranchwindow, fatal = FALSE)

results2h$detectarea2[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), T1, fatal = FALSE)

results2h$detectarea3[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), T2, fatal = FALSE)

results2h$detectarea4[r+trt] <- ifelse(is.null(a), 0, area(a))

a <- intersect.owin(Window(idpoints), A, fatal = FALSE)

results2h$detectarea5[r+trt] <- ifelse(is.null(a), 0, area(a))

results2h$identarea[r+trt] <- area(idpoints)

ndist2h[[itr, ta, fg]] <- nncross(missedpoints[marks(missedpoints)>0],

edges(idboundary), what = 'dist')

}
}

})
setTkProgressBar(pb, nsamp+1, label = 'Done')

invisible(close(pb))

print(timing)

save(results2h, file = 'datasets/hard/results/hard_exp2results.RData')

save(ndist2h, file = 'datasets/hard/results/hard_exp2ndist.RData')

save(areas2h, file = 'datasets/hard/results/hard_exp2areas.RData')

A.3 Miscellanea

A.3.1 Detection Probability Curves, spacings.r

# Create several detection probability curves for the small TA at the easy site

require(RDCOMClient)

nreps <- 10

window.sizes <- c(80, 160, 400, 640, 720, 1000, 1500)

min.spacing <- 1

max.spacing <- 600

probs <- data.frame('spacing' = min.spacing:max.spacing,

matrix(numeric(),

nrow = length(min.spacing:max.spacing),

ncol = length(window.sizes) * nreps))

colnames(probs)[-1] <- paste0('w', rep(window.sizes,

rep(nreps, length(window.sizes))),

'.', rep(1:nreps, length(window.sizes)))

major.diam <- 1200

minor.diam <- 800

fg.dens <- 200

bg.dens <- 100

width <- 6

# Start VSP

vsp <- COMCreate('VSample.Document')
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pb <- winProgressBar(title = 'Computing Detection Probabilities',

label = 'Computing Detection Probabilities',

min = 1, max = length(window.sizes)+1, initial = 1)

for(w in window.sizes){
for(i in 1:nreps){
setWinProgressBar(pb, which(window.sizes==w)+(i-1)/nreps,

label = paste0(w, ' foot window, rep ', i))

# If this function returns a positive integer, that number is the index of

# the argument that it didn't like

vsp$Plan()$UXOPowerCurveS(width, # xsect width

0, # map units (feet = 0)

0, # xsect pattern (parallel = 0)

fg.dens, # fg density

3, # density units (per acre = 3?)

2, # density at (center = 2?)

3, # swath ratio

major.diam/2, # target radius

minor.diam/major.diam, # target shape

TRUE, # random angle

0, # angle

bg.dens, # bg density

1, # 1-false negative rate

0.05, # alpha

w, # window length

0.03, # min precision

0.01, # max error

min.spacing, # min spacing

max.spacing, # max spacing

TRUE) # bivariate normal?

probs[,paste0('w', w, '.', i)] <- sapply(probs$spacing, function(x){
vsp$Plan()$UXOPowerCurveY(x)

})
}

}
setWinProgressBar(pb, length(window.sizes)+1, label = 'Done')

close(pb)

# Close VSP

vsp$Window()$Close('VSampl1')

save(probs, file = 'datasets/plan/detectionprobs.RData')

A.3.2 Functions for Reading and Writing Data Files, data functions.r

# Write VSP anomaly files

write.anomaly <- function(data, file, col.names = TRUE, row.names = FALSE){
return(write.table(data, file, row.names = row.names, col.names = col.names,

quote = FALSE, sep = ','))

}

# Read VSP anomaly files
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read.anomaly <- function(file, header = TRUE, sep = ',', ...){
return(read.table(file = file, header = header, sep = sep, ...))

}

# Write VSP cog files

write.cog <- function(data, file, col.names = TRUE, row.names = FALSE){
return(write.table(data, file, row.names = row.names, col.names = col.names,

quote = FALSE, sep = ','))

}

# Read and write GeoEAS files such as used by GAM/GAMV and KT3D

read.geoeas <- function(file){
header <- readLines(file, n = 2)

headstr <- strsplit(header[2], ' ')[[1]]

headstr <- headstr[headstr!='']

ncol <- as.numeric(headstr[1])

header2 <- readLines(file, n = 2 + ncol)

cnames <- make.names(header2[2+(1:ncol)])

return(read.table(file = file, col.names = cnames, skip = 2 + ncol))

}
write.geoeas <- function(data, file, title = file){

cat(c(title, length(colnames(data)), colnames(data)), sep = '\n', file = file)

return(write.table(data, file = file,

row.names = FALSE, col.names = FALSE, append = TRUE))

}

A.3.3 Functions for Spatial Models, spatial functions.r

# Bivariate Normal kernel

# a is horizontal axis, b is vertical axis, r is rotation angle

gauss.elliptic <- function(x, y, mu.x = 0, mu.y = 0, s.a = 1, s.b = 1,

r = 0, maxrate = 1){
rot <- zapsmall(matrix(c(cos(r), sin(r), -sin(r), cos(r)), nrow = 2))

ab <- diag(c(s.a^2, s.b^2))

sigma <- rot %*% ab %*% t(rot)

siginv <- solve(sigma)

mu <- matrix(c(mu.x, mu.y), nrow = 2)

mat <- matrix(rbind(x, y), nrow = 2)

return(maxrate * apply(mat, 2, function(vec){
exp(-t(vec - mu) %*% siginv %*% (vec - mu) / 2)

}))
}

# Parametric semivariograms

# h is the lag distance, theta = c(nugget, sill, range)

# ghat is empirical semivariogram, lags is a vector of lag distances

# Spherical

sv.sphere <- function(h, theta){
return(theta[2] * ifelse(h<theta[3], (1.5*h/theta[3]-0.5*(h/theta[3])^3), 1))

}
# Exponential
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sv.expon <- function(h, theta){
return(theta[2] * (1 - exp(-3*h/theta[3])))

}
# Gaussian

sv.gauss <- function(h, theta){
return(theta[2] * (1 - exp(-(3*h/theta[3])^2)))

}

# Power

# theta[2] is slope, theta[3] is exponent

sv.power <- function(h, theta){
return(theta[2] * h^theta[3])

}

# OLS objective function

sv.ss <- function(theta, lags, ghat, model){
theta <- ifelse(theta>0, theta, 0)

return(sum((ghat-theta[1]-sapply(lags, model, theta = theta))^2))

}

# WLS objective function

sv.wss <- function(theta, lags, n, ghat, model){
theta <- ifelse(theta>0, theta, 0)

return(sum(n/2*(ghat/(theta[1]+sapply(lags, model, theta = theta))-1)^2))

}

A.3.4 Functions Used in Sampling and Analysis, sampling functions.r

# Take a sample along evenly-spaced transects going north-south

sample.transects.NS <- function(data, width, spacing, offset = 0){
first <- min(vertices(Frame(data))$x) + width/2 + offset

last <- max(vertices(Frame(data))$x) - width/2

bottom <- min(vertices(Frame(data))$y)

top <- max(vertices(Frame(data))$y)

x <- seq(first, last, spacing+width)

xsect <- do.call(union.owin, lapply(x, function(i){
owin(c(i-width/2, i+width/2), c(bottom, top))

}))
sample.cog <- data.frame('x' = sort(rep(x, 2)),

'y' = rep(c(bottom-width, top+width,

top+width, bottom-width),

ceiling(length(x)/2))[1:(2*length(x))])

sample.data <- data

Window(sample.data) <- intersect.owin(xsect, Window(data))

ybd <- sapply(x, function(i){
return(range(crossing.psp(

edges(sample.data),

psp(x0 = i, x1 = i, y0 = min(sample.cog$y), y1 = max(sample.cog$y),

window = owin(c(i-1, i+1), range(sample.cog$y))))$y))

})
sample.length <- sum(ybd[2,]-ybd[1,])

return(list('anomaly' = sample.data,

'cog' = sample.cog,
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'length' = sample.length))

}

# Compute the density in one window

local.density <- function(center, data, winsize){
new.win <- intersect.owin(Window(data),

disc(radius = winsize/2, centre = center))

Window(data) <- new.win

return(npoints(data)/area(new.win))

}

# Compute the density in evenly-spaced windows centered along transects

windowed.density.NS <- function(data, winsize){
x <- unique(data$cog$x)

ybd <- sapply(x, function(i){
return(range(crossing.psp(

edges(data$anomaly),

psp(x0 = i, x1 = i, y0 = min(data$cog$y), y1 = max(data$cog$y),

window = owin(c(i-1, i+1), range(data$cog$y))))$y))

})
y <- lapply(seq_len(ncol(ybd)), function(i){

return(seq(min(ybd[,i]), max(ybd[,i]), winsize/6))

})
centers <- cbind('X' = rep(x, sapply(y, length)), 'Y' = unlist(y))

return(data.frame(centers, 'Z' = 0,

'density' = 43560 * apply(centers, 1, local.density,

data = data$anomaly, winsize = winsize)))

}

# Par file templates

gamv_par <- function(dat, out, win){
return(paste0(' Parameters for GAMV

*******************

START OF PARAMETERS:

', dat, ' \\file with data

1 2 0 \\ columns for X, Y, Z coordinates

1 4 \\ number of variables,col numbers

-1.0e+21 1.0e+21 \\ trimming limits

', out, ' \\file for variogram output

36 \\number of lags

', win/6, ' \\lag separation distance

', win/12, ' \\lag tolerance

1 \\number of directions

0.00 90.00 7625.00 0.00 90.00 50.00 \\azm,atol,bandh,dip,dtol,bandv
0 \\standardize sills? (0=no, 1=yes)

1 \\number of variograms

1 1 1 \\tail var., head var., variogram type

')

)

}
kt3d_par <- function(dat, dbg, out, nx, ny, xmin, ymin, win,

nug, sill, range, type){
return(paste0(' Parameters for KT3D

*******************
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START OF PARAMETERS:

', dat, ' \\file with data

0 1 2 0 4 0 \\ columns for DH,X,Y,Z,var,sec var

-1.0e21 1.0e21 \\ trimming limits

0 \\option: 0=grid, 1=cross, 2=jackknife

nodata \\file with jackknife data

1 2 0 4 0 \\ columns for X,Y,Z,vr and sec var

1 \\debugging level: 0,1,2,3

', dbg, ' \\file for debugging output

', out, ' \\file for kriged output

', nx, ' ', xmin, ' ', win/6, ' \\nx,xmn,xsiz
', ny, ' ', ymin, ' ', win/6, ' \\ny,ymn,ysiz
1 0.5 1.0 \\nz,zmn,zsiz
1 1 1 \\x,y and z block discretization

2 50 \\min, max data for kriging

8 \\max per octant (0-> not used)

', win*2, ' ', win*2, ' 0.0 \\maximum search radii

0.0 0.0 0.0 \\angles for search ellipsoid

1 0 \\0=SK,1=OK,2=non-st SK,3=exdrift

0 0 0 0 0 0 0 0 0 \\drift: x,y,z,xx,yy,zz,xy,xz,zy

0 \\0, variable; 1, estimate trend

nodata \\gridded file with drift/mean

4 \\ column number in gridded file

1 ', nug,' \\nst, nugget effect

', type, ' ', sill, ' 0.0 0.0 0.0 \\it,cc,ang1,ang2,ang3
', range, ' ', range, ' 0.0 \\a_hmax, a_hmin, a_vert

')

)

}
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