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Abstract

The grizzly bear population in the Greater Yellowstone Ecosys-
tem (GYE) has increased in size and range extent over the past sev-
eral decades. As the grizzly bear population continues to expand the
range will also spread further outside the GYE. The goal was to pre-
dict areas that bears will diffuse into as the population increases and
the grizzly population range grows. To make predictions of plausible
range expansion covariate information was extracted from map files of
the GYE. Range expansion predictions were made utilizing the step
selection function (SSF) to construct correlated random walks for sim-
ulated grizzly bears. The correlated random walks are based on how
attractive areas might be to a grizzly bear as they move around, as
well as the movement behavior of bears from the GYE.

1 Introduction

The grizzly bear population in the Greater Yellowstone Ecosystem (GYE)
has increased over the past several decades along with the range extent of the
bears [Peck et al., 2017]. The distribution of the grizzly bear population in
the GYE and the populations range expansion is shown in Figure 1 for 1973-
2016 from the Inter Agency Grizzly Bear Study Team 2018. Understanding
the future expansion of the bear population in the GYE is important for
addressing habitat needs for bears. According to Schwartz 2006, “Under-
standing the current distribution of bears within the GYE is a required part
of the delisting process, but is also useful to the US Forest Service and their
efforts to address habitat needs for the grizzly bear under their new Forest
Management Plans”. Knowing the spatial range of the bear population is
beneficial for managing the bear population as noted by the National Park
Service (N.P.S.) 2017, “while grizzly bears are no longer on the threatened
species list, bear management is an important part of park management in
Yellowstone and helps reduce the number of bear-caused human injuries”.
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Figure 1: Estimated grizzly bear distribution in the GYE from 1973-2016.
Units are in latitude and longitude, where Easting corresponds to Longitude
and Northing corresponds to Latitude
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Studying animal movements from radio tagging has been common among
wildlife biologists for decades, though telemetry data collection has improved
greatly over the past 40 years with the introduction of GPS based movement
data as noted by Millspaugh and Marzluff [2009]. GPS telemetry data for a
single animal records the animals location at certain time intervals, and can
either be stored on the device or sent to a receiver. The telemetry data for
this study comes from the internally stored memory of GPS devices. For this
study, devices were attached to the bears using procedures approved by An-
imal Care and Use Committees (ACUC), usually by trapping the bears and
attaching collars [Peck et al., 2017]. The on-board data must be downloaded
from the device by either re-capturing the bears or retrieving the data after
the GPS has been dislodged from a bear.

There are a variety of models for animal movements based on telemetry
data, one commonly used modeling approach are resource selection func-
tions (RSF) where inferences are focused on choices individuals make given
the type of environment that is available to them. Other models for analyzing
telemetry data include spatio-temporal point process models Hooten et al.
[2017], where intensity is a function of location and time. Random walks
utilize inferences from resource selection function but focus on the physical
process of movement; such models are often referred to as “state-space mod-
els” where the data are modeled conditioned on a latent process [Hooten
et al., 2017].

The goal of this paper is to predict regions bears will explore as the grizzly
bear population of the GYE grows and the distribution of bears expands be-
yond the existing borders of the GYE habitat. Telemetry data of bears in the
GYE and environmental factors biologically relevant for grizzly bears such
as human presence, roads and highways, water availability, as well as other
measurable information are used to simulate grizzly bear range expansion.

The remaining sections of this paper continue with Section 2, an overview
of the data used in this study, section 3 details the methods used for modeling
animal movements, section 4 summarizes a simulation study which explores
the effectiveness of resource selection functions, section 5 is an outline of
the simulation study performed, and section 6 is a summary of the study
conclusions.

4



2 Data

The covariates used for predicting bear movements and the underlying data
on bear locations are described in Peck et al. [2017]. Grizzly bear move-
ments came from GPS telemetry data from 116 male bear in the GYE from
May 2000 to October 20015 in UTM coordinates. The telemetry data for
movements was restricted to data from the on-board memory of the GPS
transmitters as it was more accurate than some of the remotely downloaded
GPS data, the sample time intervals between steps were between 3.5 to 4
hours. Modeling habitat selection based on active movements was the goal
of the analysis so the data was constrained to steps that were 100m apart or
more similarly readings that were consecutively less than 100m apart were
also excluded.

Several raster files of the GYE were included to establish the covariate
values of grids in the GYE. The raster files were constructed as grids such that
each location was a 300m x 300m grid cell. The raster files were measure
on UTM coordinates and ranged from 50179.43 to 814579.4 Easting, and
4602855 to 5439855 Northing from the GYE to the NCDE creating an area
of grid cells by 2790 x 2548 for 7,108,920 grid cells.

Covariates recorded in the raster files included the Euclidean distance
to the nearest forest edge for a grid cell. The distance to roads as well
as the density of a road were also included as grizzly bears generally avoid
roads. The distance to rivers and perennial streams was included as a single
covariate. The log transformed density of housing per square block was
included as to account for human presence. Elevation was included as a linear
and quadratic term as animal movement behavior changes vary depending
on the aspect and slope of areas. A vegetation covariate based on the relative
greenness of areas based on Google earth images was recorded as a normalized
vegetation density index (NVDI), and a measure of natural land cover was
included.

The information from the raster files was combined into a covariate ma-
trix, observed locations from the telemetry data were associated with grid
cells using the extract function from the “raster” package in R, locations
were determined to be in a grid cell if the UTM coordinates fall within the
boundaries of that cell. The SSF was used to generate a weight matrix for
the GYE grids, where grid cells with higher weights had a higher relative
probability of being visited by a bear. A raster map of the estimated weights
can be seen in figure 2.
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Figure 2: Plot of grid cell weights from the GYE to the NCDE in UTM
coordinates, regions with larger weights are more likely to be chosen by a
bear when making movements

From the estimated weight matrix a conductance matrix was constructed
as a possible alternative method for predicting grizzly bear range expan-
sion. The weight matrix as well as a conductance matrix covered the geo-
graphic region from the GYE to the Northern Continental Divide Ecosys-
tem (NCDE). The conductance matrix was constructed from the estimated
transition weights, and were transformed into a transition object using the
“gdistance” package. The conductance matrix contains information from the
GYE and NCDE as well as the conductance values for moving from one cell
to its potentially 8 nearest neighbors defined using the kings connectivity.
The conductance layer was initially structured as a transition layer and only
contained non symmetric transition probabilities from one grid cell to one of
its neighbors for 31,397,556 transition values.
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3 Methods

To make predictions of grizzly bear range expansion correlated random walks
were used similar to the methods described by Clark et al. [2015]. The
framework for utilizing correlated random walks requires weights for every
grid cell within the study region, as well as the general characteristics of
how bears make movements. Bear movement behavior for the SSF consists
of the step length a bear might take as well as the trajectory a bear will
likely have based on previous movements. The length of a step bears make
and the associated trajectory were found to be uncorrelated based on the
linear-circular correlation coefficient [Peck et al., 2017], so bear movements
consist of a distance and trajectory and are evaluated on what grid cells are
proposed by the algorithm (illustration of step proposal below in Figure 3).

Figure 3: Proposed steps a bear could make from the point of origin (0,0)
based on the parameters of the SSF (trajectories bears are likely to have,
how far bears are likely to step)

To establish the framework for random walks, parameter estimates of bear
movements are estimated using a SSF on the telemetry data and associated
environmental covariates [Fortin et al., 2005]. Coefficients for generating the
weight matrix are then obtained using conditional logistic regression [Clark
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et al., 2015], with the weight matrix and estimates of bear movement behav-
ior, which will be detailed in section 3.2.

3.1 The Step Selection Function

The SSF used as defined by Fortin et al. [2005] analyzes animal telemetry data
by decomposing movements into step lengths and turning angles of steps.
Angles and step lengths can be modeled by two separate distributions so long
as turn angles and step lengths are independent of one another. Step lengths
and turn angles can be extracted from telemetry data by looking at where
an animal was and where they appeared next in the the data set. After the
step length and turning angles are extracted from the data, the parameters of
the step length and turning angle distribution can be estimated in a variety
of different ways. The linear-circular correlation coefficient between step
length and turning angle determines if angles and lengths are reasonably
independent, this determines if available steps can be simulated by sampling
step length independently from turning angle.

For each bear the distribution of step lengths was modeled by a scaled
beta distribution, where the step lengths were standardized to an interval
of [0,1] from the observed range of step lengths (100 - 15,000m). Once all
of the step lengths were extracted for each bear the beta distribution pa-
rameters were estimated using maximum-likelihhod estimation (MLE) [Peck
et al., 2017]. The beta distribution can be written as: Beta(µ|a, b) =
Γ(a+b)

Γ(a)Γ(b)
µa−1(1− µ)b−1, where µ ∈ [0, 1] and α , β > 0

For each bear the distribution of turning angles was approximated by
a von Mises distribution, where turning angles were calculated relative to
the previous step taken by an animal as shown below in Figure 4. The
parameters for the von Mises distribution were estimated using MLE as well
[Peck et al., 2017]. The von Mises distribution can be written as, p(θ|θ0,m) =

1
2πI0(m)

emcos(θ−θ0), where I0 = 1
2π

∫ 2π

0
emcos(θ)dθ, θ0 is the mean direction, and

m is the measure of concentration. Turn angles and step lengths can be
sampled jointly, in Peck et al. [2017] the linear-circulation coefficient between
the two was found to be sufficiently small such that the turn angles and step
lengths could be sampled independently of one another. Bayesian methods
were explored to obtain parameter estimates, however in the simulation study
parameter estimates were nearly identical under both methods so the less
computationally intense MLEs were used.

8



Figure 4: Diagram of step turn angle calculations

3.2 Conditional logistic regression

As described by Gillies et al. [2006] weights for grid cells are defined as,
w(x) = exp(β1x1 + · · ·+ βnxn). Estimating coefficients is done using logistic
regression conditioned on an animals current location. For each pair of con-
secutive points in the telemetry data set m− 1, m, a set of k random points
are generated from the SSF starting at m− 1 for a total of m(1 + k) obser-
vations. Each step is given an identifier for the observed animal movement
and the associated k generated points. Logistic regression is then performed
on the m(1 + k) observations with a random intercept included for each set
of m + 1 locations, the model for a bear at location i ∈ 1, . . . ,m with n
covariates is, αi + β1x1 + · · ·+ βn [Gillies et al., 2006].

Each step a bear made in the telemetry data is paired with k steps gen-
erated from the same point of origin the bear was previously at similar to
the methods used in Fortin et al. [2005]. The covariates from the randomly
generated steps would be associated with a location a bear could have moved
to but did not. This procedure is repeated for each grizzly bear such that
every bear will have its own estimated coefficients associated with habitat
selection. To obtain population coefficients the coefficients from all bears are
averaged β̂1 = 1

m

∑m
i=1 β̂i1, where i = 1, . . . ,m represents the observed set of

bears.
Once the coefficient estimates were obtained the weight estimates were

calculated as, ŵ(x) = exp(β̂1x1 + · · · + β̂nxn). To obtain a probabilistic
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interpretation of the weights, the weights are transformed using the inverse
logit function. The weights must be shifted before using the inverse logit
function as all the weights will be positive and the inverse logit function
maps real values from (−∞,∞) to [0, 1]. To transform the weights onto
a reasonable probabilistic scale the median weight is subtracted from all
estimated weights and then transformed using inverse logit function [Peck
et al., 2017].

3.3 Correlated random walks

Bear movements were simulated using correlated random walks similar to
those used by Clark et al. [2015]. Origin points of bears are randomly gener-
ated from a Uniform distribution in of the center region of the GYE where
bears are known to live. Proposal steps are generated for a bears potential
movement based on the parameters found in the SSF, turning angles and
step lengths are generated independently of one another as the two were
found to be uncorrelated. Each proposal step a bear can make is evaluated
by observing the weight of the cell the proposal step is in, of the n propos-
als steps one is sampled randomly from all available proposals weighted by
their respective grid cell probabilities. The accuracy of these methods was
explored in a simulation study.

4 Simulation Study

A simulation study was conducted to evaluate the effectiveness of the SSF
for estimating the true probability matrix for animal movements. To start
terrain was generated with 3 features that would drive animal movement;
elevation, forest density, and the presence/absence of water. A grid was con-
structed being 10,000 x 10,000 units, where grid cells were 100 x 100 units.
Terrain for the grid was constructed such that the left region would be much
more desirable for occupancy than the right region, terrain features are visu-
ally shown in Figure 5 below. Regions with higher forest density were coded
to be more desirable as were grids with available water, higher elevations
were coded to be less desirable. The region boundaries are constructed to be
impassable, that is movements can only take place inside the boundaries of
the generated terrain and have probability 0 ending outside the region.
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Figure 5: Simulated terrain features of forest density, elevation, and the
presence/absence of water for grid cells

Bear movements analogous to the original telemetry data were simulated
using a correlated random walks with movement decisions driven by the
“true” probabilities generated from the terrain. 25 bears in total were simu-
lated with each bear taking 3,000 steps. Bear step lengths were drawn from
a scaled beta distribution were the maximum length of any step could be 400
units. Turn angles of bears were sampled independently from step lengths,
where the true distribution of turn angles were drawn from a von Mises dis-
tribution. For a given given step 10 proposed steps were created using the
population turn angle distribution and step length distribution, a step was
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then selected based on the probability of the grid cell the step ended in. The
first step for each bear is randomly sampled from a uniform distribution from
the center region of the grid within the range of (4500, 5500), each initial step
is given a initial trajectory sampled from a uniform distribution on [0,2π].
Proposed steps that end outside the simulated study region were assigned a
probability of 0, and the algorithm ensured at least 2 steps ended within the
study range. The 3,000 steps of two randomly selected simulated bears took
are displayed below in Figure 6.

Figure 6: 3,000 simulated steps of Bear 1 and Bear2

Once the movement data was generated step lengths and turning angles
were extracted, and parameter estimates for step length and turn angle were
estimated using MLE with a scaled beta distribution for step length and a
von Mises distribution for turn angles of the observed steps. The average
estimates of the von Mises distribution parameters were ¯̂µ = 3.06177833

and
¯̂
k = 0.03026097, compared to the parameters of the underlying distri-

bution µ = 0 and k = 0.3 (as k approaches 0 the von Mises distribution
becomes uniform on [0,2π] so the mean discrepancy is reasonable). The av-
erage estimates of the beta distribution parameters were ¯̂α = 1.144596 and
¯̂
β = 2.690521, compared to the parameters of the underlying distribution
α = 1.2 and β = 3.

Once the step and turning angle parameters were estimated from the
simulated data the weights of grid cells were calculated using conditional
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logistic regression with the clogit function from the survival package; where
10 randomly generated steps based on the estimated parameters were gen-
erated and grouped with the actual movement a simulated bear made. The
slope coefficients were averaged across all bears in order to get an estimation
for the population as outlined in Peck et al. [2017]. The SSF and methods
for estimating grid cell weights worked well as shown in the estimated prob-
ability plot and actual probability plot shown below in Figure 7, the sum
of absolute errors between the estimated probability for a grid cell and the
true probabilities was 605.8502 (for 10,000 grid cells estimates were off by
0.060585 on average).

Figure 7: Original probability plot (left), estimated probability plot (right)
of bear movements

5 Data Analysis

Correlated random walks were simulated for 5,000 bears each taking 15,000
steps or roughly 5 active seasons. Each bear is started within the estimated
grizzly bear distribution from 1973-1979. Simulating the correlated random
walks was somewhat computationally expensive running approximately 2
hours for 30,000,000 steps on 7 threads of an Intel i7-7700HQ 2.80Ghz proces-
sor. Walks were run in parallel using the foreach function via the doParallel
package. 3,000 steps correspond roughly to one year of movements or active
season for grizzly bears as suggested by conversations with the inter-agency
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grizzly bear study team (IGBST), so 15,000 steps for 5,000 bears roughly
corresponds to to 5,000 bears actively exploring for the study region for 5
years. A sample of points from the first 3,000 steps and from all 15,000 steps
are displayed in Figure 10 .

Figure 8: Empirical distribution of step lengths used in correlated random
walks
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Figure 9: Empirical distribution of turning angles used in correlated random
walks

The correlated random walks were run with varying number of bears,
different starting locations, and varying number of walk lengths. Generally
as the number of bears increased and the length of walks increased the study
region exploration densities became similar to the estimated weights, with
higher densities in the starting regions of the walks. As walk lengths increased
past 9,000 steps the boundaries of the study region became more apparent
as there was an imposed boundary the bears could not cross. Within 5 years
the 5,000 simulated bears moved from the 1970’s grizzly bear distribution
estimate to occupy roughly the same area if not more as the most recent
distribution estimates. The correlated random walks are based on the SSF
of more active bears, so this is result is not unreasonable. To analyze the
relative frequency areas were explored with, the number of steps per grid cell
were calculated using the rasterize function from the “raster” package.

6 Discussion

There is an assumption that bears will constantly explore each season with
behavior and preferences based on the SSF and grid cells estimated by Peck
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et al. [2017]. There is an assumption that no other factors other than the
ones included in the model impact movement decisions in the correlated
random walks, bears are also assumed to explore terrain independently and
identically to one another.

The modeling assumptions are fairly strong and are likely not reasonable
for a typical grizzly bears movements, as the model assumes that bears can
explore terrain without impediments. While 3,000 steps in the correlated
random walks will likely cover more terrain than a bear would in a given
year, it does still provide an insight to the ways that grizzly bear distributions
could expand in the future.

Most of the correlated random walks took place within the GYE and
grizzly bear distributions estimated by the USGS [2018]. Boundary condi-
tions became an issue as walk lengths were allowed to run longer than 6,000
steps (for the Western and Eastern borders), however walks did not reach
the region boundaries for the Northern map borders.

The correlated random walks were run with varying number of bears,
different starting locations, and varying number of walk lengths. Generally
as the number of bears increased and the length of walks increased the study
region exploration densities became similar to the estimated weights, with
higher densities in the starting regions of the walks. As walk lengths increased
past 9,000 steps the boundaries of the study region became more apparent
as there was an imposed boundary the bears could not cross.

Figure 10: Locations simulated bears were in for first 3,000 steps (left),
locations simulated bears were in for 15,000 steps
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Correlated random walks do provide an approximation of how the grizzly
bear population in the GYE will expand in the near future, though there
other methods that could be used to predict future bear range expansion.
More complex behaviors could be incorporated into a data driven model such
as; active and inactive behaviors in bear movements via a Markov switching
model, accounting for the proximity to other bears in a different model-
ing framework or even in the correlated random walks, or trying to model
seasonal effect such as hibernation. Modeling seasonal behavior would also
require step calibrations for each season, as bears would be expected to move
much less in the winter than in the summer. Whatever method may be used
a larger spatial range of covariates should be implemented as well in order
to minimize any potential edge effects in the modeling phase.

Figure 11: Correlated random walks of first 10 simulated bears

17



Figure 12: Step locations of correlated random walks compared to the esti-
mated grizzly bear distribution of 2002-2016
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7 Appendix-1: R Code

# Load packages

library(sf)

library(raster)

library(gdistance)

library(fields)

library(circular)

library(ff)

library(doParallel)

library(boot)

library(rgdal)

library(MASS)

library(parallel)

library(snowfall)

# Construct weight matrix

setwd("C:/Users/jacob/Documents/Statistics/Writing project/Grizzly data/

tif and coeffs")

d2ForestEdge300_m <- raster(paste0(getwd(),"/d2ForestEdge300_m.tif"))

d2Hwy300_m <- raster(paste0(getwd(),"/d2Hwy300_m.tif"))

RoadHwyDen300_mw1500 <- raster(paste0(getwd(),"/RoadHwyDen300_mw1500.tif"))

d2River300_m <- raster(paste0(getwd(),"/d2River300_m.tif"))

d2Stream300_m <- raster(paste0(getwd(),"/d2Stream300_m.tif"))

HomeDen300 <- raster(paste0(getwd(),"/HomeDen300.tif"))

Elev300_m <- raster(paste0(getwd(),"/Elev300_m.tif"))

Nat300_contag10k <- raster(paste0(getwd(),"/Nat300_contag10k.tif"))

VRM300m_9pixelmw <- raster(paste0(getwd(),"/VRM300m_9pixelmw.tif"))

ndvi300 <- raster(paste0(getwd(),"/ndvi300.tif"))

load("gye_avg_coef.Rdata")

crw_stack_gye <- stack(x = c(d2ForestEdge300_m,

d2Hwy300_m, RoadHwyDen300_mw1500,

d2River300_m, d2Stream300_m, HomeDen300, Elev300_m,

Nat300_contag10k, VRM300m_9pixelmw, ndvi300))

mat_gye <- ff(vmode = "double", dim = c(ncell(crw_stack_gye),

nlayers(crw_stack_gye)),
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filename = paste0(getwd(),"/mat_gye.ffdata"))

for(i in 1:nlayers(crw_stack_gye)){

mat_gye[,i] <- crw_stack_gye[[i]][]

}

mat_gye[][,6] <- log10(mat_gye[][,6] + 0.000001) ## create log_HomeDen column

mat_gye <- cbind(mat_gye[], (mat_gye[][,7])^2)

id_raster <- raster(crw_stack_gye[[1]])

id_raster[] <- 1:ncell(crw_stack_gye[[1]])

weights <- inv.logit((mat_gye %*% gye_avg_coef) - 13.32842)

# Correlated walks function

bearmoves <- function(){

steps.proposed <- 10

num.steps <- 15000

step.max <- 15000

location <- matrix(ncol = 2, nrow = num.steps)

# Used boundaries of 1973-1979 GB distribution

location[1, 1] <- runif(1, 464241.9, 625253.3)

location[1, 2] <- runif(1, 4829879, 5003267)

turn.angle.prev <- runif(1, 0, 2 * pi)

for(i in 2:num.steps){

# Generate step lengths and turning angles

rep_num <- 1

repeat{

proposed <- matrix(ncol = 2, nrow = steps.proposed)

step.length <- (rbeta(steps.proposed, 0.7077255, 9.0272418) *

(step.max - 100)) + 100 # MLE values from Chris paper

turn.angle <- rvonmises(steps.proposed, (circular(0.02) - turn.angle.prev),

0.607)

# Generate proposed movements

proposed[, 1] <- step.length * cos(turn.angle) + location[i-1, 1]

proposed[, 2] <- step.length * sin(turn.angle) + location[i-1, 2]

# Find probabilities of proposed movements

mw <- c()

proposed_id <- extract(id_raster, proposed)

mw <- weights[proposed_id, ]
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proposed <- proposed[!is.na(mw), ]

correct_steps <- sum(!is.na(mw))

if(correct_steps > 1){

mw <- mw[!is.na(mw)]

mw <- mw / sum(mw)

index <- sample(1:correct_steps, 1, prob = mw)

location[i, ] <- proposed[index, ]

turn.angle.prev <- turn.angle[index]

break

}

if(rep_num > 10){

location[i, 1] <- runif(1, 464241.9, 625253.3)

location[i, 2] <- runif(1, 4829879, 5003267)

turn.angle.prev <- runif(1, 0, 2 * pi)

break

}

rep_num <- rep_num + 1

}

}

return(location)

}

# Run random walks

start_time <- Sys.time()

num_cores <- parallel::detectCores() - 1

cl <- parallel::makeCluster(num_cores)

doParallel::registerDoParallel(cl)

ogbears <- foreach(i = 1:5000 , .combine = rbind,

.export = c("weights", "id_raster"),

.packages = c("circular", "gdistance", "raster"))

%dopar% bearmoves()

parallel::stopCluster(cl)

end_time <- Sys.time()

start_time - end_time
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Appendix-2: Simulation Study
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Appendix-2: Simulation Study
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Library packages
library(ggplot2)
library(mnormt)
library(survival)
library(circular)

## 
## Attaching package: 'circular'

## The following objects are masked from 'package:stats':
## 
##     sd, var

library(MASS)
library(fitdistrplus)
library(glmm)

## Loading required package: trust

## Loading required package: mvtnorm

## Loading required package: Matrix

## Loading required package: digest

library(boot)

## 
## Attaching package: 'boot'

## The following object is masked from 'package:survival':
## 
##     aml

library(parallel)
library(doParallel)Loading [MathJax]/jax/output/HTML-CSS/jax.js
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## Loading required package: foreach

## Loading required package: iterators

Simulating Range
Three covariates were included to simulate the landscape; the elevation of a grid cell, whether there is a water source in
the grid cell, and what the forest density of the grid cell is.

x <- seq(0, 10000, 100)
y <- seq(0, 10000, 100)

# Create grid
Grid_xlim <- c()
Grid_ylim <- c()
index <- 0
for (i in 1:101) {
    for (j in 1:101) {
        Grid_xlim[index + j] <- x[i]
        Grid_ylim[index + j] <- y[j]
    }
    index <- index + 101
}
Grids <- data.frame(Xlim = Grid_xlim, Ylim = Grid_ylim)
Grids <- Grids[Grids[, 1] != 0, ]
Grids <- Grids[Grids[, 2] != 0, ]
Grids$XLlim <- Grids$Xlim - 100
Grids$YLlim <- Grids$Ylim - 100
l <- dim(Grids)[1]

# Randomly generate forest densities
forest <- rep(0, l)
for (i in 1:l) {
    forest[i] <- round(rgamma(1, 150, 2))
}
forestry <- function(x) {
    50 * dbeta(x/10001, 1, 2)
}

Grids$Forest <- forest + forestry(Grids$Xlim)
ggplot(Grids, aes(Xlim, Ylim, color = Forest)) + geom_point() + labs(title = "Forest density")
  # Forest is random throughout the grids
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# Generate elevations
elev <- function(x, y) {
    4700 + 700 * dbeta(x/10001, 2, 1) + 500 * dnorm(y, 2000, 300)
}
Grids$Elevation <- elev(Grids$Xlim, Grids$Ylim)
ggplot(Grids, aes(Xlim, Ylim, color = Elevation)) + geom_point() + labs(title = "Elevation")  
# Elevation is set up to be highest at the centroid
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# Generate water locations, make lower left region more likely to have water
# and upper right least likely
water_prob <- function(x, y) {
    dbeta(y/10001, 1, 3) + dbeta(x/10001, 1, 3)
}
p <- water_prob(Grids$Xlim, Grids$Ylim)
p <- p/(max(p) + 4)
water <- rbinom(10000, 1, p)
Grids$Water <- water
ggplot(Grids, aes(Xlim, Ylim, color = Water)) + geom_point() + labs(title = "Water availabilit
y")  # Lake area towards left boundary
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Assign true movement probabilities
# Set up grid for true probability attraction
w <- exp(cbind(Grids$Forest, Grids$Elevation, Grids$Water) %*% c(0.01, -5e-05, 
    0.4))
# Higher elevation less desireable, water more desireable, and higher
# density more desireable
w <- inv.logit(w - median(w))
Grids$Weights <- w
ggplot(Grids, aes(Xlim, Ylim, color = Weights)) + geom_point() + labs(title = "Weights")
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Bear movement data generation function
# bearmoves is a function of the number of steps a bear could make each
# movement, the number of steps a bear will eventually take in the
# simulation, and the maximum step length a bear can make.
bearmoves <- function(steps.proposed, num.steps, step.max) {
    
    # Initialize location matrix
    location <- matrix(ncol = 2, nrow = num.steps)
    # Pick starting location
    location[1, ] <- runif(2, 4500, 5500)
    # Generate proposed movement matrix
    proposed <- matrix(ncol = 2, nrow = steps.proposed)
    # Set first turn angle
    turn.angle.prev <- runif(1, 0, 2 * pi)  # Start bears headed in a random direction
    
    # Generate remaining number of steps
    for (i in 2:num.steps) {
        # Set weight vector of proposed movements
        mw <- c()
        # Ensure there are at least 2 proposed steps in bounds for each set of steps
        repeat {
            # Generate step lengths and turning angles
            step.length <- step.max * rbeta(steps.proposed, 1.2, 3)  # arbitrary beta distribu
tion parameters
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            turn.angle <- rvonmises(steps.proposed, (circular(0) - turn.angle.prev), 
                0.3)  # bears prefer to move in the same direction slightly
            # Generate proposed movements
            proposed[, 1] <- step.length * cos(turn.angle) + location[i - 1, 
                1]
            proposed[, 2] <- step.length * sin(turn.angle) + location[i - 1, 
                2]
            # Set boundary conditions
            bound <- (proposed[, 1] < 0) | (proposed[, 2] < 0) | (proposed[, 
                1] > 10000) | (proposed[, 2] > 10000)
            proposed_inbounds <- proposed[!bound, ]
            proposed_outbounds <- proposed[bound, ]
            turn_in <- turn.angle[!bound]
            turn_out <- turn.angle[bound]
            if (sum(!bound) > 1) {
                break
            }
        }
        # Find probabilities of proposed movements
        for (j in 1:dim(proposed_inbounds)[1]) {
            idl <- (proposed_inbounds[j, 1] < Grids$Xlim) & (proposed_inbounds[j, 
                1] > Grids$XLlim) & (proposed_inbounds[j, 2] < Grids$Ylim) & 
                (proposed_inbounds[j, 2] > Grids$YLlim)
            mw[j] <- Grids$Weights[idl]
        }
        mw_out <- rep(0, sum(bound))
        mw <- c(mw, mw_out)
        if (length(mw) != steps.proposed) {
            stop(print(proposed))
        }
        proposed <- rbind(proposed_inbounds, proposed_outbounds)
        turn.angle <- c(turn_in, turn_out)
        # Save current location
        index <- sample(steps.proposed, 1, prob = mw/sum(mw))
        location[i, ] <- proposed[index, ]
        # Set previous turn angle
        turn.angle.prev <- turn.angle[index]
    }
    return(location)
}

Simulating bear movements
25 bears were run for this simulation to demonstrate the model utility. Each bear takes 3,000 steps with a maximum step
length of 400 units. Simulation takes about 1.3 minutes to run on 4 cores/threads for 25 bears with 3,000 steps each.

start_time <- Sys.time()
num_cores <- parallel::detectCores() - 4  # Detects number of cores/threads on PC and uses 4 l
ess to run simulations in parallel
# Note if there are 4 or less cores on the PC this method will need to be
# adjusted
cl <- parallel::makeCluster(num_cores)
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doParallel::registerDoParallel(cl)
bear_sim <- foreach(i = 1:25, .combine = rbind, .export = c("Grids"), .packages = c("circular"
)) %dopar% 
    bearmoves(10, 3000, 400)

## Warning in e$fun(obj, substitute(ex), parent.frame(), e$data): already
## exporting variable(s): Grids

parallel::stopCluster(cl)
end_time <- Sys.time()
start_time - end_time

## Time difference of -1.272688 mins

Plot bear movements
ogbears <- list()
for(i in 1:25){
  s <- 3000 * (i-1) + 1
  e <- 3000 * i
  ogbears[[i]] <- bear_sim[c(s:e), ]
}
thebears <- c()
for(i in 1:25){thebears <- c(thebears, rep(i, 3000))}
bear.dat <- cbind(bear_sim, thebears)
colnames(bear.dat) <- c("X", "Y", "Bear")
bear.dat <- as.data.frame(bear.dat)
bear.dat$Bear <- as.factor(bear.dat$Bear)
ggplot(bear.dat, aes(X, Y, color = Bear)) + geom_path()
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par(mfrow = c(1, 2))
for(i in 1:2){plot(ogbears[[i]], xlim = c(0, 10000), ylim = c(0, 10000), main = paste('Bear', 
i, ''), type = 'l')}
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par(mfrow = c(1, 1))

Von Mises distribution
Bayesian methods were explored for estimating the parameters of the turning angles and step lengths, however the MLE
approach was taken as there was little difference between the estimates from the two methods. The choice of using MLE
was consistent with the original literature so to best mimic it this approach was taken.

Metropolis Hastings algorithms
The Metropolis Hastings algorithm was used for estimating parameters of step length distribution (Beta) and turn angle
distribution (Von Mises). The von Mises distribution converges to a uniform distribution as the variance parameter
approaches 0, and converges to a normal distribution as the variance parameter approaches ∞.

Extract step lengths and turning angles functions
Extract step lengths and turning angles (both conditional on trajectory and not) from data. Data must be of the form n x 2
matrix for [X, Y] coordinates.

Steps_Angles <- function(dat) {
    n <- dim(dat)[1]
    theta <- rep(0, n - 1)  # cardinal turning angles
    theta.c <- rep(0, n - 2)  # conditional turning angles
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    steplength <- rep(0, n - 1)  # set up vector to store step lengths
    for (i in 2:n) {
        # Compute distance of steps
        x.dist <- dat[i, 1] - dat[i - 1, 1]
        y.dist <- dat[i, 2] - dat[i - 1, 2]
        dist <- sqrt(x.dist^2 + y.dist^2)
        # Classify what trig function to use based on step
        if ((y.dist > 0) & (x.dist > 0)) {
            theta[i - 1] <- acos(x.dist/dist)
        } else if ((y.dist > 0) & (x.dist < 0)) {
            theta[i - 1] <- acos(x.dist/dist)
        } else if ((y.dist < 0) & (x.dist < 0)) {
            theta[i - 1] <- pi/2 + acos(x.dist/dist)
        } else theta[i - 1] <- 3 * pi/2 + acos(x.dist/dist)
        steplength[i - 1] <- dist
    }
    # If there are any NAs, turn angle is set to 0
    theta[is.na(theta)] <- 0
    n2 <- n - 1
    # Calcualte trajectories
    for (i in 2:n2) {
        theta.c[i - 1] <- theta[i] - theta[i - 1]
        if (theta.c[i - 1] < 0) {
            theta.c[i - 1] <- theta.c[i - 1] + 2 * pi
        }
    }
    results <- list(Lengths = steplength, Theta = theta, RTheta = theta.c)
}

# Function to rotate matrices, redundant in current build
rotate <- function(dat, r) {
    R <- matrix(c(cos(r), sin(r), -sin(r), cos(r)), ncol = 2, nrow = 2)
    dat %*% R
}

Extract step information
# Extract step information
dat.subset <- list()
angles_lengths <- list()
for (i in 1:25) {
    dat.subset[[i]] <- subset(bear.dat, bear.dat$Bear == i)
}
for (i in 1:25) {
    angles_lengths[[i]] <- Steps_Angles(dat.subset[[i]])
}

Get parameter estimates
Obtain parameter estimates of underlying Beta distribution and Von Mises distribution for step lengths and turning angles.
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MLE is used for parameter estimates in this build.

params <- list()
for (i in 1:25) {
    max_step <- max(angles_lengths[[i]]$Lengths + 0.02)
    beta <- fitdist((angles_lengths[[i]]$Lengths + 0.01)/max_step, distr = "beta", 
        method = "mle")
    vonm <- mle.vonmises(angles_lengths[[i]]$RTheta)
    params[[i]] <- list(MaxStep = max_step, Beta = beta, VonMises = vonm)
}

Simulating data from learned parameters and estimating
grid weights
CLRdat <- function(dat, steps.proposed) {
    l <- dim(dat)[1]
    dat_matrix <- c()
    sm.est <- max(angles_lengths[[m]]$Lengths)
    for (i in 2:l) {
        # Ensure at least 8 proposals to compare movement with
        repeat {
            # Proposed movements based on individual parameter estimates
            proposed <- matrix(ncol = 2, nrow = steps.proposed)
            location <- Grids[(dat[i - 1, 1] < Grids$Xlim) & (dat[i - 1, 1] > 
                Grids$XLlim) & (dat[i - 1, 2] < Grids$Ylim) & (dat[i - 1, 2] > 
                Grids$YLlim), ]
            step_lengths <- rbeta(steps.proposed, params[[m]]$Beta$estimate[1], 
                params[[m]]$Beta$estimate[2]) * params[[m]]$MaxStep
            turn_angles <- rvonmises(steps.proposed, mu = params[[m]]$VonMises$mu, 
                kappa = params[[m]]$VonMises$kappa)
            turn_angles <- as.numeric(turn_angles)
            
            # Generate proposed movements
            proposed[, 1] <- step_lengths * cos(turn_angles) + dat[i - 1, 1]
            proposed[, 2] <- step_lengths * sin(turn_angles) + dat[i - 1, 2]
            
            # Clean proposed movements
            clean <- (proposed[, 1] < 0) | (proposed[, 2] < 0) | (proposed[, 
                1] > 10000) | (proposed[, 2] > 10000)
            proposed <- proposed[!clean, ]
            s <- sum(!clean)
            if (s > 7) {
                break
            }
        }
        # Set up response values
        response <- c(1, rep(0, dim(proposed)[1]))
        
        # Get covariates of proposed locations
        ids <- c()
        for (j in 1:dim(proposed)[1]) {
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            ids[j] <- which((proposed[j, 1] < Grids$Xlim) & (proposed[j, 1] > 
                Grids$XLlim) & (proposed[j, 2] < Grids$Ylim) & (proposed[j, 
                2] > Grids$YLlim))
        }
        covariates <- Grids[ids, 5:7]
        
        # Consturct the conditional movements with step as Strata
        group <- rep(i - 1, dim(proposed)[1] + 1)
        cov_matrix <- rbind(location[5:7], covariates)
        group_matrix <- cbind(response, cov_matrix, group)
        
        # Append current step set to full matrix
        dat_matrix <- rbind(dat_matrix, group_matrix)
    }
    return(dat_matrix)
}

Conditional logistic regression to estimate grid weights
Probability estimates were more drastic in the estimated weights than in the original, however the overall trend is well
approximated

# Conditional logistic regression on all bears
clbear.est <- list()
cbinom <- list()

# Run conditional logistic regression for each bear
for (m in 1:25) {
    dat <- ogbears[[m]]
    # Estimate slope coefficients
    cbinom[[m]] <- CLRdat(dat, 10)
    c0 <- cbinom[[m]][, 1]
    c1 <- cbinom[[m]][, 2]
    c2 <- cbinom[[m]][, 3]
    c3 <- cbinom[[m]][, 4]
    c4 <- cbinom[[m]][, 5]
    clbear.est[[m]] <- clogit(c0 ~ c1 + c2 + c3 + strata(c4))
}

# Estimate weights
clcoeffs <- matrix(ncol = 3, nrow = 25)
for (i in 1:25) {
    clcoeffs[i, ] <- clbear.est[[i]]$coefficients
}
clcoeffs <- apply(clcoeffs, 2, mean)
expb <- exp(cbind(Grids$Forest, Grids$Elevation, Grids$Water) %*% clcoeffs)
expb <- expb - median(expb)
# Subtract out median as per methods in Chris's paper
nweights <- inv.logit(expb)
Grids$WeightsEst <- nweights

# Plot estimated weight map
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ggplot(Grids, aes(Xlim, Ylim, color = WeightsEst)) + geom_point() + labs(title = "Estimated we
ights")
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