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Abstract

Generalized linear mixed models (GLMMs) arose from the necessity to analyze non-normal responses
that are correlated or clustered in some way, relying on generalized linear and linear mixed model theory.
These models have wide ranging applications in ecological and evolutionary biology where observations
are often correlated and have non-normal responses. The likelihood functions of these models lack closed
form solutions for parameter estimates and as such, a number of likelihood-based approximation methods
have been developed for inference in GLMMs along with Bayesian approaches which rely on Markov
chain Monte Carlo methods. Previous studies on the performance of these methods have either focused
on specific classes of GLMMs, such as Binomial GLMMs, or on highly structured data seen in situations
like clinical trials. In ecological and evolutionary biological data, small datasets are commonplace and
the properties of these estimation methods in this context are not well explored. Through a simulation
study, the accuracy and precision of four methods (Laplace approximation, adaptive Gaussian-Hermite
Quadrature, Penalized Quasi-likelihood, and a Bayesian hierarchical model) are assessed on simulated
responses generated from a real-world biological dataset at multiple sample sizes. While a large dataset
(n = 599) shows precise and accurate estimation of parameters, smaller datasets (n < 250) show dramatic
bias in estimation of variance components for likelihood-based methods. The exhibited bias indicates
that caution should be exercised when applying these methods to small datasets and that further work
needs to be done to explore the properties of these estimation methods.

1 Introduction

In many ecology and evolutionary biology applications, the response variable is often not continuous or

normally distributed and are comprised of discrete counts or presence-absence type data. Typically, if the

observations are independent, analyses of these non-normal responses can be carried out with generalized

linear models. However, if observations are known to be correlated or clustered, a different class of linear

model known as generalized linear mixed models (GLMMs) must be used to incorporate that dependent

structure of the data. These GLMMs are relatively new in statistics, being formally introduced in 1989 by

McCullagh and Nelder in their book Generalized Linear Models. In the years since, many different methods

of estimation for these complex models have been developed.

Practitioners have a wide range of options for fitting GLMMs, but not all methods are equal in terms of

bias and precision of their estimates. Some methods have known issues in certain situations, but literature

on the performance of GLMM estimation methods is either sparse or for specific classes of GLMMs - like

binomial GLMMs. As such, this project is intended to explore four of the most common methods used

for estimation of GLMMs with a real-world dataset, something not often seen in the study of GLMMs.

Through a simulation study, the bias and precision of the four selected methods (Laplace approximation,

adaptive Gaussian-Hermite quadrature, penalized quasi-likelihood, and Bayesian hierarchical modeling) will

be assessed on the owlet begging dataset from Roulin and Bersier (2007, by way of Zuur et al. 2009) with

simulated responses. Starting with a review of linear models, we will briefly look at the background for

generalized linear mixed models then explore the practical consequences of the selected estimation methods,

finishing with a discussion of the simulation study and some extensions of this project.
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1.1 Background

To motivate the variety of estimation methods for GLMMs, we will first look at a very specific case of a

GLMM, the general linear model. Suppose we have the following linear model:

y = Xβ + ε

where y is an n × 1 vector of responses, X is the n × p design matrix which is assumed to be full column

rank and have fixed values, β is the p× 1 fixed effects vector and ε is an n× 1 vector of random errors. In

this model, the Xβ portion is the deterministic portion of the model while the ε portion is the probabilistic

part of the model. Further, we assume the following:

1. ε∼N(0, σ2I).

2. Xβ is linear in the β’s.

The parameters in β are typically estimated using OLS. Least squares are obtained through minimizing

the sum of squared residuals (Faraway 2014). Provided linearity assumptions hold, the OLS estimators will

be the Best Linear Unbiased Estimators (BLUE) for the β’s (Faraway 2014). The β effects are specific

to the sample and are not random variables. Importantly, the general least squares estimator, β̂OLS =

(XᵀX)−1Xᵀy, is also the maximum likelihood (ML) estimator since it was specified that the errors are

assumed to be normally distributed (Faraway 2014).

In many applications, these assumptions are reasonably satisfied and OLS estimation can be used

without issue; however, there are also situations where the normality or independence assumptions are

violated, which has lead to the development of other models. Currently, the most versatile linear model

available is the generalized linear mixed model (GLMM), which uses theory from linear mixed models to

allow dependent errors (LMM) and generalized linear models (GLM) to allow for non-normally distributed

responses for correlated observations. Building up to GLMMs, we will take a quick look at these two other

classes of models and start with linear mixed models.

1.1.1 Mixed Models

The assumption of independence of errors is a strong assumption that is violated in many study designs with

repeated measurements, clustered observations, or with spatial or temporal elements. Procedures for mixed

effects models were primarily developed by Goldberger, Henderson, and Harville in the 1960’s and 1970’s,

with Henderson’s work in animal genetics providing the earliest solutions to mixed effects model estimation
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(McLean et al. 1991, Robinson 1991). In the decades since, mixed effects models have become common in

usage, ranging from their origin in agriculture to genetics to sales and marketing.

As an example of a linear mixed model, suppose we wish to compare mercury levels in walleye within

lakes across northern Wisconsin. Walleye caught from the same lake would be expected to have similar levels

of mercury compared to walleye from other lakes. The necessary independence assumption in an general

linear model would be violated as the responses (mercury levels in walleye) would be correlated at the

lake level. Ignoring this correlation will result in biased - upwardly or downwardly depending on the exact

correlation structure - variance estimates of slope coefficients, possibly leading to incorrect inference (Liang

and Zeger 1993). Essentially, violating the independence assumption means that general linear models could

be used, but the estimators will no longer be BLUE.

Mixed models are an alternative to general linear models as they account for correlation between

observations. Having correlated observations leads to two major differences in the model. The first is

that we would now have a second set of model components known as random effects. Random effects

are unobservable random variables with a distributional assumption, typically b ∼N(0, G), where G is the

variance-covariance matrix we want to estimate (Hildreth 2016). The second is that the observations are now

allowed to be correlated in some way, whether that is by group membership or spatio-temporal correlation of

observations through the aforementioned variance-covariance matrix. Incorporating random effects changes

our linear model by adding the random effects terms Zb:

y = Xβ +Zb+ ε

where we have q random effects, Z is the n × q random effects design matrix, and b is a q × 1 vector of

random effects. For the walleye testing example, each lake sampled would be represented by an element in

the random effects in the vector b.

Random effects differ from fixed effects in that the random effects are assumed to be a random sample

of all possible levels and values of the variables with the intent to make inferences about the populations

which the variables represent (Hildreth 2016). Random effects are incorporated in a model as either random

intercepts or slopes. Random intercepts allow for observations in the same group to be correlated, with

different group means varying around the overall mean while random slopes allow for a covariate to have a

different slope for each group. For the walleye mercury levels, random effects would allow for each lake to

have its own baseline mean by using random intercepts.

When using OLS under the assumption that errors normally distributed, parameter estimators are not

only BLUE but also are the maximum likelihood (ML) estimators. With mixed models, we can use ML
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estimation for the fixed effects as those will be BLUE as before. Estimation of the variance components

with maximum likelihood is biased, so we need to use restricted maximum likelihood (REML) estimation to

obtain unbiased estimates. With REML, we are modifying the likelihood such that the residuals (y −Xβ)

are conditional on the random effects. It should be noted that with mixed models estimated with REML,

only models with the same mean structure (fixed effects) can be compared (Ga lecki and Burzykowski 2013).

This restriction means that in doing model selection, likelihood-based methods like AIC can only be used

for models with the same fixed effects structure.

1.1.2 Generalized Linear Models

There are times when we would like to model a process but the responses are known to follow a distribution

other than a normal distribution. Examples of such responses could be the number of eggs per nest or the

presence or absence of an invasive species. While we might be able, in certain cases, to approximate some

of these non-normal responses with a normal distribution, we generally need to modify our linear model

framework for other response distributions. In these non-normal cases, we can turn to generalized linear

models.

Generalized linear models were first introduced in a seminal work by Nelder and Wedderburn in 1972,

and further expanded on by McCullagh and Nelder’s book Generalized Linear Models. There are three

distinct elements to a GLM: a distributional assumption, the linear predictor, and the link function. All

exponential family distributions have probability density or mass functions that can be expressed in the

form:

f(y|µ, φ) = exp
{y − b(µ)

a(φ)
+ c(y, φ)

}
where µ is the natural or canonical parameter, φ is the dispersion parameter, and b(θ), a(φ), and c(y, φ) are

real-valued functions and b(µ) ≥ 0 (Agresti 2015, Casella and Berger 2002). Generalized linear models allow

for the modeling of responses from any distribution with the above form, with the most common distributions

used in GLMs being the Binomial, Poisson, Negative Binomial, and Gamma distributions. Linear predictors

in GLMs are the same as in general linear models.

The last piece of a GLM is the link function. A link function is a differentiable, monotonic function

that maps between the mean of the data and the linear predictor Xβ and allows us to maintain the linearity

assumption (Agresti 2015, SAS 2008). Link functions maps between the mean and the linear predictor such

that predicted values of the response are in the correct space; the logit link function maps predictions such

that p̂ ∈ (0, 1) as we would expect with a binomial distribution. Commonly, the canonical link is used with
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most GLMs. The canonical link is the function g(·) such that the natural parameter µ is mapped to the

linear predictor Xβ, and the exact relationship is governed by the assumed distribution of the response

(Agresti 2015). With the link function, our GLM can be represented as:

g(µ) = Xβ

such that E(y) = g(µ) = Xβ. Without the link function, we would have a non-linear model and would not

be able to use the theory from linear models for estimation and inference.

Returning to the walleye, suppose that our walleye from before also were checked for viral hemorrhagic

septicemia (VHS), a deadly disease first documented in the Great Lakes region in 2005 which can spread

between a number of game fish species (WIDNR 2015). Researchers wish to predict the odds of a fish being

susceptible to the virus given a set of covariates. Here, we would be dealing with a non-normal response as

the disease will be either present or absent in the fish.

Estimation for GLMs is done with maximum likelihood estimation. With the non-normal response

though, we cannot use OLS to estimate the parameters since the likelihood is nonlinear in the parameters.

Without a closed form solution, iterative methods for solving the nonlinear likelihood for estimates of β like

the Newton-Raphson or Fisher Scoring methods are used (Agresti 2015). Also, while OLS cannot be used,

it can be shown that from Fisher Scoring an iteratively reweighted least squares method can be derived

for maximum likelihood estimation; a good mathematical view of these methods can be found in Agresti’s

Foundations of Linear and Generalized Linear Models (2015).

1.2 Generalized Linear Mixed Models

In situations where responses are both non-normal and correlated, we can use generalized linear mixed models

for inference. The first introduction to this class of models was in McCullagh and Nelder’s Generalized Linear

Models text where they analyzed salamander interbreeding with a GLMM. Since their introduction, the study

of GLMMs has grown from the introduction of penalized quasi-likelihood for approximate inference to more

computationally complex Bayesian methods and non-Bayesian Monte Carlo methods (Breslow and Clayton

1993, Fong et al. 2010, Booth and Hobert 1999).

As the name implies, GLMMs combine elements from both linear mixed models and generalized linear

models. These models add a random effects component to the GLM, yielding the following model:

g(µ) = Xβ +Zb
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where µ is still the mean response through the link function, meaning E(y|b) = g(µ) = Xβ +Zb (Breslow

and Clayton 1993). The random effects, b, are still assumed to be unobserved random variables that follow

some distribution (typically a normal distribution) with unknown variance components.

For one final example using the walleye, we could suppose that walleye in one lake might be different

from walleye in another, so we want to account for that variability when we are estimating the probability

that these fish have VHS. Again, we have a non-normal response, but we have added random effects for the

clustering of fish within lakes meaning we can use a GLMM for estimation and inference.

Before, when the response was normally distributed, there was no issue with estimation because we

could use maximum likelihood to obtain estimates of the fixed effects and use the restricted likelihood for

the the variance components. Similar to GLMs, we cannot derive a closed form solutions for any estimates

in the GLMM as the likelihood function still is nonlinear in the parameters. The addition of the random

effects also complicates matters because with each random effect b, the dimensionality of the integral also

increases, adding to the intractability of the likelihood function:

L(β,D) =
∏
i

∫
f(yij |bi)f(bi)dbi

where f(Yij |bi) is the probability distribution of the jth response in the ith random effect and f(bi) is the

distribution of the ith random effect. No closed form solution means that other methods of obtaining the

likelihood function must be used, and this is where most of the study in GLMMs has been.

Broadly, inference for GLMMs can be conducted either through approximations of the likelihood or

with Bayesian methods. Approximations of the likelihood either focus on approximating the integrand

(the function being integrated) like penalized quasi-likelihood or try to approximate the integral itself as

in Laplace approximation or Gaussian-Hermite quadrature. Bayesian methods rely on approximating the

posterior distribution of the parameters in the GLMM, which is usually accomplished with Markov chain

Monte Carlo (MCMC) methods. Section 2 looks at each of the given methods and how they estimate the

parameters of GLMMs.

2 Methods of Estimating GLMMs

The theory and implementation of generalized linear mixed models are a fairly new compared to others like

ANOVA or general linear regression, with the most development in computational methods for GLMMs

occurring in the past twenty-five years. The first wide spread introduction to these models came from

Mccullagh and Nelder (1989). Since then, a range of methods from both frequentist and Bayesian perspectives
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have been developed for inference on GLMMs.

2.1 Likelihood-based Approaches

Likelihood-based (used interchangeably with frequentist) approaches to GLMMs rely on the likelihood - usu-

ally the log-likelihood for simplicity - for use in estimation. As has been pointed out before, the use of the full

likelihood function with GLMMs is not possible as there are no closed form solutions. To sidestep this issue,

approximations of the likelihood function need to be used. In practice, there are three approximation meth-

ods used: Laplace approximation, adaptive Gaussian-Hermite Quadrature, and Penalized Quasi-Likelihood.

These three likelihood-based methods are based on of Laplace’s method for approximation, but alternatives

such as the hierarchical likelihood introduced by Lee and Nelder (1996) have been proposed. The following

three methods were chosen as they are the most widely used, being implemented in GLMM estimation in a

number of R packages as well as in commercial software such as SAS. As the focus of the project is on the

performance of the methods and not the derivation of them, please see (Tuerlinckx et al. 2006) and (Breslow

and Clayton 1993) for mathematical treatments of the methods.

2.1.1 Laplace Approximation

The Laplace approximation is a quadrature method developed by Laplace and published in 1774 as a method

for approximating integrals of the form,

∫ b

a

f(t)eλg(t)dt

where we assume that g(t) is a twice-differentiable function on (a, b) with a maximum in the interval (a, b),

both g(t) and f(t) are continuous smooth functions, and f(t) is nonzero at t0 (Tuerlinckx et al. 2006). The

idea behind Laplace’s method is that for large λ, the contribution of the integral from near some specified

point, t0, will be the bulk of the integral (Tuerlinckx et al. 2006). Using a second-order Taylor series

expansions for g(t) and f(t), the resulting integral can be shown to be the kernel of a normal distribution,

which can then be integrated. Looking at the form above we can see that the integrand in the function is

similar in nature to the likelihood of a GLMM, which contain exponential functions from the exponential

family of probabilty distributions. This process of approximation through expansion forms the mathematical

basis for the other two likelihood-based methods as well.

One restriction of Laplace approximation, and Gaussian-Hermite quadrature, is that these approxima-

tions are only considered for normally distributed random effects, meaning other approaches such as Bayesian

methods or Monte Carlo approximations need to be used for non-normal random effects. A variation on the
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Laplace approximation which uses a sixth-order Taylor series expansion has been shown to improve the ac-

curacy of the approximation, being equivalent to adaptive Gaussian-Hermite quadrature and outperforming

penalized quasi-likelihood, but there seem to be no software packages that utilize this approach (Raudenbush

et al. 2000, Tuerlinckx et al. 2006). Implementation of the Laplace approximation for GLMM estimation

in R can be carried in a few different packages, namely lme4, glmmML, and repeated, but we will focus on

using the glmer function in the lme4 package (Bolker 2013b).

2.1.2 Adaptive Gauss-Hermite Quadrature

Gaussian-Hermite quadrature (GHQ) is, at its heart, a generalization of Laplace approximation. Instead of

evaluating the approximation at just t0, a number of points can be taken to approximate an integral (Tuer-

linckx et al. 2006). In general, Gaussian-Hermite quadrature methods can yield near exact approximations

if the points where the approximation is evaluated, known as nodes, are optimally spaced. The number of

nodes to use for the approximation varies depending on the literature source, but the locations of nodes are

determined algorithmically.

Regular GHQ is susceptible to bias if the cluster sizes or variances are large, which is why a variation

on GHQ called adaptive GHQ (AGHQ) is often implemented (Tuerlinckx et al. 2006). In adaptive GHQ,

the positions of the nodes are chosen conditional on the best estimates of the random effects and the

estimates of the fixed effects and variance-covariance matrix (Tuerlinckx et al. 2006). Adaptively picking

node positions allows for integrals to be evaluated in the regions that contribute the most to the integral,

instead of standard node locations which rely on normal distribution kernels. The result is that less nodes

are needed to approximate an integral, leading to increases in accuracy and computational efficiency. Using

adaptive GHQ for GLMM estimation in R can be done with the same packages that implement Laplace

approximation. In glmer, this is accomplished by setting the number of quadrature nodes to be greater than

one.

It might seem that adaptive GHQ should always be used to obtain a more accurate approximation of

the likelihood integral than Laplace approximation, but there are limitations to its usage. Both non-adaptive

and adaptive GHQ become computationally intense as the number of random effects grows, which is not

an issue with Laplace approximations (SAS 2008). With enough random effects, the likelihood is a high

dimensional enough that they cannot be approximated with GHQ or AGHQ. The structure of the random

effects is also a limiting factor, with glmer only being able to fit a single scalar random effect where the

covariance structure is assumed to be G = σ2
GI (constant variance) with quadrature (Bates et al. 2015).

This excludes covariance structures such as crossed random effects, models without subjects, or non-nested

subjects (SAS 2008). Laplace approximation and its cousin penalized quasi-likelihood then are more flexible
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and slightly more computationally than adaptive GHQ, but for suitablely structured data, adaptive GHQ

should yield more accurate estimates.

2.1.3 Penalized Quasi-Likelihood

Penalized quasi-likelihood (PQL) was the first widely used method of estimating parameters for a GLMM,

which works through approximating the likelihood integrand. Penalized quasi-likelihood was introduced by

Breslow and Clayton (1993) as a modified Laplace approximation of the marginal quasi-likelihood, yielding

a normally distributed approximate likelihood. The “penalized” in PQL refers to the random effects being

biased towards zero in the approximation. To fit the model from the approximated likelihood, linear mixed

models using REML are iteratively fit to the approximate likelihood until convergence is met.

Compared to the previous methods, PQL is the fastest and most flexible approach for estimating

GLMMs. The number of random effects and their structure are not as restricted as in AGHQ and should

have asymptotic properties as the sample size increase (Breslow and Clayton 1993). Though the fastest, it

is the least accurate of the common likelihood-based methods, especially with small datasets (Bolker 2013a).

Breslow and Clayton noted that PQL estimation can yield inconsistent estimates of the fixed effects when

cluster sizes are small for binomial GLMMs and confirmed the inconsistency in a simulation study (Breslow

and Clayton 1993, Tuerlinckx et al. 2006). Since penalized quasi-likelihood is based on the quasi-likelihood,

standard likelihood-based tests such as likelihood ratio tests cannot be performed (Tuerlinckx et al. 2006,

Zhang et al. 2011).

As a side note, penalized quasi-likelihood and pseudo-likelihood often appear in the literature as in-

terchangeable terms without any delineation between the two with regards to GLMMs. Both methods are

different, but they will yield identical parameter estimates as they rely on different expansions with the only

difference being an additional constant in pseudo-likelihood (Capanu et al. 2013).

2.2 Bayesian Approach

The Bayesian approach to GLMMs differs from frequentist methods in a few ways and are commonly called

hierarchical models. First, Bayesians assume that parameters are random variables and have probability

distributions, in contrast to how frequentists treat parameters as fixed constants. In Bayesian methods,

inference is conducted through the posterior distribution, which combines information from the probability of

the data given the parameters - essentially the likelihood - and the prior distributions of the parameters. Prior

distributions incorporate believed information about the parameters and can either be informative, meaning

the prior has more weight than the data in the posterior, weakly-informative, where there is some information,
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or non-informative. For simple cases where the components of the model are normally distributed or we

can use conjugacy of the distributions of the data and the prior, the posterior distribution can be found

exactly. In the case of GLMMs though, Bayesian approaches have an issue similar to the likelihood methods

in that there is no closed form for the posterior distribution. The Bayesian solution to this problem lies in

using Monte Carlo Markov Chain methods to approximate the posterior distribution with the conditional

distributions that comprise the posterior.

Markov chain Monte Carlo (MCMC) methods are a large group of stochastic approaches whose goal

in Bayesian methods is to numerically integrate the posterior distribution. Markov chains are stochastic

processes for which the current state depends solely on the previous state (Hoegh 2017). Monte Carlo

methods use random sampling from distributions to produce numerical approximations of mathematical

quantities (Hoegh 2017). For each iteration of a MCMC procedure for GLMMs, Monte Carlo samples

are drawn from conditional distributions which have parameters dependent upon the previous iterations

estimations, making the dependence the Markov chain component.

In building a Bayesian GLMM, we are essentially combining a within-group model (equivalent to the

random effects components) and a between-groups model (equivalent to fixed effects). To approximate the

posterior distributions, we draw MCMC samples from the full conditionals in the posterior distribution, but

we have to employ two separate algorithms to do so: a Gibbs sampler for the within-group model and the

Metropolis algorithm for the between-group model. Together, these two algorithms make the Metropolis-

Hastings algorithm.

Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm is a two-part algorithm, combining a Gibbs sampling step for the

normally distributed within-group and variance components and a Metropolis step for the between

group slope coefficients. Given full conditional distributions, prior distributions, and current values

at step s for the GLMM, the Metropolis-Hastings algorithm is as follows from Hoff (2009):

1. Sample the within-group means, θ(s+1), from its full conditional distribution.

2. Sample the variance-covariance matrix, Σ(s+1), from it’s full conditional distribution.

3. Sample the between group slope coefficients, β∗
k , conditional on θ(s+1) and Σ(s+1). Then, for

each βk, determine whether to accept the new β∗
k (set β

(s+1)
k = β∗

k) or keep β
(
ks) depending on

the acceptance ratio.

With Bayesian methods, inference about parameters is not limited to point estimates and associated

11



measures of variability. Credible intervals, the Bayesian analogue to confidence intervals, give the probability

a given parameter is within the interval. The posterior predictive distribution gives the predicted distribution

of responses conditioned on the already observed data (Hoegh 2017). The posterior predictive distribution

can also be extended for checking if the priors or assumed distribution of the data are appropriate for the

model. For this project though, we only consider the point estimates for comparison with the frequentist

estimation methods.

A major downside to Bayesian methods tend to have a much steeper learning curve than the likelihood-

based methods. It generally takes more advanced knowledge to write the MCMC samplers for complex

models like a GLMM, so many often opt to use software packages instead. Packages in R are available to

implement Bayesian GLMMs, with options ranging from focusing on estimation of GLMMs (MCMCglmm) to

being interfaces between other programs that are used for general Bayesian inference (rjags, glmmBUGS)

(Bolker 2013b).

2.3 Other Monte Carlo Based Methods

Monte Carlo based methods are a necessity of Bayesian statistics, but have also been incorporated in

likelihood-based estimation methods for GLMMs. Most Monte Carlo approaches either use Monte Carlo

methods to approximate the full GLMM likelihood function or use Monte Carlo integration coupled with an

Expectation-Maximization (EM) algorithm to estimate a model (Booth and Hobert 1999). The motivation

behind these methods, introduced in the 1990’s, was to avoid the pitfalls of approximation methods such as

inconsistent estimates, the ability to model higher order random effects, and to model non-normal random

effects.

Packages in R are available to implement these methods, with the glmm package using Monte Carlo

likelihood approximation and MCEMglmm using an Monte Carlo EM approach. Initially, one of these two

packages were intended to be used in the simulation, but the lack of documentation made implementation

difficult and resulted in Monte Carlo estimation methods being excluded.

3 Simulation Study of Performance of Estimation Methods

Assessing the accuracy and precision of the discussed estimation methods was conducted through a simulation

study. Data were taken from a study on owlet begging (Roulin and Bersier 2007), by way of the book Mixed

Effects Models and Extensions in Ecology in R (Zuur et al. 2009). Since model selection was not of interest,

the model used in the simulations was also from Zuur et al.’s analysis of the owlet data (Zuur et al. 2009).

Empirical sampling distributions of fixed effects estimates and the random effects variance estimates are
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used to assess the bias and precision. All R code follows in an appendix.

3.1 Data Description

A number of simulation studies exploring the properties of GLMM estimation methods have been performed

(Zhang et al. 2011, Nelson and Leroux 2008, Capanu et al. 2013) are good examples), but few use actual data

for simulated the data structure. With simulated data, all aspects of the data structure can be controlled

and specific characteristics of estimation methods such as downwardly biased variance estimates from PQL

on binary data can be explored; however, data from studies often contain data structures like heterogeneous

cluster sizes and overdispersion that effect estimation. Studying the performance of estimation methods

with messier data structures is necessary as these complex structures are likely to be seen in ecology and

evolutionary biology data analyses.

The goal of the original study, Nestling barn owls beg more intensely in the presence of their mother

than in the presence of their father, was to study exactly what the title says- if barn owl nestlings exhibit

different begging behavior depending on which parent feeds the nestlings. For the study, twenty-seven barn

owl nests in western Switzerland during the summer of 1997 (Roulin and Bersier 2007). The experimental

set up was fairly involved, with the study design described below.

1. Twenty-seven nests were each equipped with audio and video recorders to record parental arrival time

and nestling calls.

2. Parents were differentiated with leg bands (females on their left leg, males on the right) for parental

recognition and feeding rates.

3. During the morning, around 0900 hours, nestlings were either fed by the experimenters (food satiated)

or had food in the nest removed (food-deprived).

4. At night from 2130 hours to 0530 hours, parental feedings were observed with the parental arrival time

and duration of stay recorded along with the number of calls from the owlets.

5. In the 30 seconds prior to parent arrival, the number of calls per nestling (called sibling negotiation)

was recorded. This is the dependent variable for this analysis.

In total, there are 599 observations in the dataset, with the number of observations ranging from four

to fifty-two observations per nest. The number of calls by arrival time and nest are plotted below.
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Figure 1. Plot of number of barn owl nestling calls in a 30 second interval before parent arrival by arrival time, grouped by

nest.

It is important to note that we are not expecting observations at each nest to be independent. Owlets

within a nest could have any number of reasons why they exhibit the same calling patterns, from learned

behavior to inherited traits. Because of the dependence within each nest, nests are being treated as random

effects using random intercepts to modify the mean structure. Also, we would expect the response, the

discrete number of calls within an interval, to follow a Poisson distribution.

3.1.1 Basis Model

The model used in the simulation study comes from an analysis by Zuur et al. (2009) and models the mean

number of calls (µij) as a function of the parent arrival time, the log of the brood size, whether the owlets

were food deprived, and the effect of nest, employing the log link function:

log(µij) =β0 + β1 × log(BroodSizeij) + β2 × FoodTreatmentij

+ β3 ×ArrivalTimeij + Nesti

where j denotes the jth observation from the ith nest, and Nesti
iid∼ N(0, σ2

nest). Section 13.2.2 from Zuur

(2009) details the model selection process to get to this model, although the offset term is removed and the

log of brood size and an intercept term are fit instead. The figure below shows there are strong signals for

the fixed effects and that the assumption of a Poisson distributed response seems reasonable, noting that

the plot aggregates across nests.
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Figure 2. Effects plots of the three fixed effects in the owlet GLMM and the distribution of the response, number of calls.

In the random effects plot below, it seems that including random effects is a good modeling choice as

there is a fair amount of variation in the estimates of nest effects. Note the standard errors of the estimates;

the nests with the most variability are nests with a relatively small (< 10) number of observations.

Figure 3. Plot of the random intercept estimates by nest with standard errors.

The estimates from this model (fit using 25 adaptive GHQ nodes with glmer) were used in the generation

of simulated responses for the first simulation, with a table of the relevant estimates below.
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Effect Estimate Standard Error
Intercept 4.432 0.384
log(Brood Size) 0.538 0.220
Food Treatment -0.589 0.036
Arrival Time -0.129 0.009
σ̂Nest 0.4206

3.2 Data Generation

For the simulation study, new responses based off of estimates from a single glmer model fit were generated

with the simr package and then models were fit using the original covariates. Using this package, new

responses can be simulated from an lme4 model object, where the estimates from the model object are

treated as the parameters for the simulation distributions. One caveat of this method is that random effects

are not simulated using the estimates from the model object, rather they seem to be simulated from a

N(0, σ̂RE) distribution, where σ̂RE is the estimated random effect standard deviation from the input model

and I is a 27× 27 identity matrix. Three different scenarios were simulated for the study, with the intent to

explore the effect of sample size:

1. Full owlet dataset, with all 27 nests.

2. Half owlet dataset, with 14 nests randomly selected to make a reduced dataset.

3. Quarter owlet dataset, with 7 nests randomly selected for a reduced dataset.

The datasets remained the same for all three scenarios with the exception of arrival time; with the

half and quarter datasets, arrival time was centered in hopes of preventing convergence issues when fitting

the model that produced the simulation parameters. For all three scenarios, 250 simulations were created.

At each iteration of the simulation, a new response vector was simulated and coupled with the rest of the

explanatory variables.

3.3 Model Estimation

With each new set of simulated responses, four identical models were fit, each employing one of the four

models discussed in Section 2. For each model fit, estimates of the fixed effects and the random effects

variance are stored for later use. Descriptions of how each method was implemented follows:

1. PQL: The glmmPQL function in the MASS package was used for PQL estimation. The default number

of iterations (10) was used (Venables and Ripley 2002).
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2. Laplace Approximation: The glmer function in the lme4 package was used for Laplace approxima-

tion estimation. The number of quadrature points was set to 1 (nAGQ = 1) to ensure LA was used and

the default Nelder-Mead optimizer was used (Bates et al. 2015).

3. Adaptive Gaussian-Hermite Quadrature: The glmer function in the lme4 package was used for

adaptive GHQ estimation. The number of quadrature points was set to 25 and the default Nelder-Mead

optimizer was used (Bates et al. 2015).

4. Bayesian MCMC: The rjags packages (with JAGS 4.3) was used for Bayesian estimation. JAGS

code was adapted from Zuur (2013), with preliminary model fitting showing that with four chains,

130000 MCMC iterations of burn-in was sufficient for adaptation and another 50000 iterations for

drawing samples, trimming to 10000 samples overall, resulted in well mixed chains. For the quarter

dataset models, 150000 iterations were used for burn-in. For all Bayesian models, non-informative

priors were used for β and Σ, with the Half-Cauchy prior distribution of σnest being a recommended

weakly-informative prior distribution for the random effects variance (Gelman et al. 2006). The specific

priors are:

a) p(β)∼N(0, 10000I)

b) p(b)∼N(0, σ2
nestI)

c) p(σnest)∼Half-Cauchy(2) and one simulation configuration used the prior p(σnest)∼HC(0.5)

All models were tested on the original datasets prior to the simulations, but due to the variability that

can arise in simulating data, warnings such as “insufficient adaptation” for the JAGS models or “failing to

reach convergence” with the frequentist models did occur. Future work would include creating an adaptive

function for this study to try and avoid these convergence issues.

3.4 Results

As would be expected because of the large sample size, the full dataset had estimates that were the mostly

unbiased and precise, as can be seen in Figure 4. The red horizontal lines note the true parameter value

used for simulating the responses.
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Figure 4. Plot of all fixed effect estimates for full owlet dataset.

The empirical sampling distributions of the fixed effects estimates showed the least amount of bias for

all sections of the study, with the Bayesian models exhibiting the most bias and variability of the four as

seen in the plot of log(Brood Size) estimates in Figure 5 below. Bias is being assessed by comparing the

central tendency of the sampling distributions (thick black lines in the centers of the distributions) to the

true parameter values.

Figure 5. Plot of log(Brood Size) effect estimates.
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Looking further at the estimates of the random effects variance component in Figure 6, we can see that

the Bayesian method is strongly upwardly biased in comparison to the other methods. The distribution of

Bayesian σ̂re also has a much larger variance than the frequentist methods with the full owlet dataset. There

are a few estimates throughout all the simulations that are zeros across methods for σ̂re and it’s likely that

those simulations are simply unusual simulations.

Figure 6. Plot of σ̂nest variance estimates.

As the overall sample size decreases, we do see a few changes across methods. In the half dataset, the

Bayesian fixed effects estimates are more consistent in variability with the likelihood-based methods. The

distributions for the intercept and log(Brood Size) effect estimates are similar to those in the full dataset.

The slight bias present in the Bayesian estimates for those two effects are also diminished with the half

dataset.
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Figure 7. Plot of all fixed effect estimates for a random subset by nest (fourteen nests) of the owlet dataset.

Much like the fixed effects, the estimates of σ̂nest are much more consistent with the half dataset, which

is interesting as the priors used for the Bayesian models did not change. The large degree of bias seen in

the full dataset with the Bayesian estimates is now much smaller; however, there is a systematic bias that is

showing with the likelihood-based methods that was not present in the estimates from the full dataset, to

the point where the Bayesian method seems to edge out those methods in terms of bias.

Figure 8. Plot of σ̂nest variance estimates for a random subset by nest (fourteen nests) of the owlet dataset.

A similar story is found in the estimates for the smallest subset of the data, the quarter dataset with
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just seven nests. Fixed effects estimates are nearly identical in distribution across the four methods, with

similar small amounts of upward or downward bias depending on the effect being estimated. While not

directly comparable between datasets, the direction of the bias for the quarter and half datasets are similar

for the four fixed effects and the random effect variance component.

Figure 9. Plot of all fixed effect estimates for a random subset by nest (seven nests) of the owlet dataset.

The sampling distributions of the estimated variance component in the quarter dataset again demon-

strate the biases seen in the half dataset, with the likelihood methods downwardly biased about twice as

much as the Bayesian method is upwardly biased.

Figure 10. Plot of σ̂nest variance estimates for a random subset by nest (seven nests) of the owlet dataset.
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To see the effect of a different prior on the Bayesian estimates, the same datasets were again fit with

a Half-Cauchy(0.5) prior, and plots of those results are in the appendix in figures 1a and 2a. Overall, there

was no noticeable difference in the bias or precision of the Bayesian methods across the estimates other than

a slight decrease in bias for the variance component estimates.

4 Discussion

In most of the literature, the properties of estimators for GLMMs have either not been explored or focus

on just one type of model, typically binomial GLMMs (Zhang et al. 2011). With this simulation study,

there were a few expected results, such as the consistency and precision of estimates for fixed effects. The

downward bias seen in the variance components by all the likelihood-based methods was not expected and

is one of the main areas of discussion.

Estimates of the fixed effects were not strongly biased or imprecise, with the exception of slight bias in

a few of the Bayesian estimates. Even with decreased sample size, the empirical sampling distributions of

estimates of the fixed effects showed minimal bias and reasonable precision. It does seem intuitive that as

sample size increases, there should be some asymptotic properties for the likelihood-like estimators. There has

been work on asymptotic properties of GLMMs (Pinheiro 1994), but most usually confined to subdisciplines

(Jiang 2017). Based off of the results of the simulation study, it seems reasonable in this case to assume that

inference relying on asymptotics would be sound for the fixed effects.

It is in the distributions of the variance components where the simulation study is most interesting.

While it is known that PQL can yield downwardly biased variance estimates for binomial GLMMs, the

consistent downward bias for all three likelihood based methods as the sample size decreased is interesting.

Most research on GLMM estimation methods and potential bias is related to binomial GLMMs and there

is not much in the literature suggesting that bias like this would be present for the other methods with a

Poisson GLMM. Since all three of the likelihood-based methods all stem from Laplace approximation, there

might be an issue with the compatibility of the data with the estimation methods. While these estimators

are precise, a cautious practitioner might search for more information on estimation of variance components

before fitting a GLMM using one of the three likelihood-based methods if they have a small sample size.

Related to the likelihood bias, the consistent upward bias in the Bayesian variance estimates is an

intriguing result. In the first run of the simulation study, a misunderstanding of the Half-Cauchy distribution

resulted in a large bias compared to the likelihood methods. Changing to a more reasonable prior distribution

for the variance component improved the bias of the estimates, but also increased the precision of estimates

of the fixed effects. With the fixed effects being computed conditional on the draws from the distributions of
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the within group random effects, it is likely that the variability due to the misspecified prior distribution had

a cascading effect that carried through to the between group, fixed effects. Still, the upward bias exhibited

in the estimates could be indicative of the Bayesian estimators incorporating information differently and

estimating more variance. Also, this hopefully demonstrated the important of properly researching a suitable

prior distribution and that misspecification in one area of a model can impact other parts.

Also interesting with the Bayesian methods is that the bias seen in the variance component is the

opposite of that of the likelihood-based methods. Initially, the bias seen could be attributed to the prior

distribution, as the median of a Half-Cauchy(2) distribution is 2. In changing the prior distribution to a

Half-Cauchy(0.5) and refitting the same models, the apparent bias only decreases by a small amount if at

all. It is possible then that the difference is either in how the Bayesian model is incorporating the data into

the model or just the moderating effect of the prior. Either way, Bayesian methods for GLMMs then might

be seen as an alternative to likelihood-based methods for small sample sizes.

5 Conclusions

Overall, it seems that with a large enough sample size, the common methods for fitting GLMMs are robust

enough to yield accurate and relatively precise estimates. Bayesian methods need some additional attention

as improper prior specification or inadequate MCMC sampling can drastically impact results, but they also

might be better suited to small sample problems. The likelihood-based methods are easier to implement

and much quicker, but the apparent bias in estimates of variance components is concerning and worth more

investigation.

The practical implications for the project are two-fold. First, with a large enough sample size, there

probably are no restrictions on which methods one can use for estimating GLMMs. Even though PQL has

been maligned in the past, it appears to be serviceable by these results and in some applications where more

complex random effects structures are needed it could be an alternative to a far more complicated Bayesian

model. Second, the results show that there might be unstudied issues with the likelihood-based methods that

cause bias in estimates. The bias present in estimates of the variance components could impact inference

and should be a cause for concern and subject to further study.

5.1 Future Work

Throughout this project, a number of potential improvements or extensions of have arisen. The first of which

would be to vary the true parameters used for simulating to test the estimation methods performance in

situations such as having a larger variance component or having larger effect sizes. The simr package has
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a great deal of flexibility in simulating data structured for analysis with GLMMs, specifically in changing

characteristics such as random effects variance or slopes of the fixed effects. Doing more simulations with

altered parameters would be of interest as this would help investigate issues with approximation based

methods and large random effects variances.

Related to changing individual components, incorrect assumptions about the distribution of the response

or random effects structure could reveal more about the robustness of the methods. Additionally, the dataset

used here had a wide range of observations per cluster, ranging from 4 to 52. Simulating datasets that vary

in cluster sizes to different degrees might be useful in diagnosing the bias seen in the frequentist methods

variance estimates.

As previously mentioned, rewriting the simulation function to be more flexible to prevent convergence

issues and allow the JAGS algorithm to fully adapt the Metropolis-Hastings algorithm will be a future goal.

Doing so would help ensure that any effects seen in the simulation results would not be from computational

issues.

6 References

Alan Agresti. Foundations of linear and generalized linear models. John Wiley & Sons, 2015.
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7 Appendix

Figure 1A. Plot of β̂ estimates for a random subset by nest (seven nests) of the owlet dataset with a Half-Cauchy(0.5) prior

distribution on σ̂nest.

Figure 2A. Plot of σ̂nest variance estimates for a random subset by nest (seven nests) of the owlet dataset with a

Half-Cauchy(0.5) prior distribution on σ̂nest.
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8 R Code Appendix

An R file with all code can be found at the GitHub repository: https://github.com/jakelrich/MSU_

WritingProject.

###################################

#Jake Rich

#Writing Project Code

#Spring 2018

#No guarantees on first compile success.

###################################

###Setting Up R Environment

#Installing necessary packages if not already installed.

######

#NOTE: You must have JAGS installed before using any of the Bayesian analyses

#in this script.

######

list_of_packages <- c("lme4","MCMCglmm","coda","glmm","ggplot2","RCurl", "simr","devtools

",

"rjags","mcemGLM","MASS","glmmML","GLMMmisc","nlme","yarrr")

new.packages <- list_of_packages[!(list_of_packages %in% installed.packages()[,"Package"

])]

#Installing GLMMmisc from Github. GLMMmisc is a package of GLMM diagnostic tools

#and other functions that are useful with GLMMs.

if (!require("GLMMmisc")) devtools::install_github("pcdjohnson/GLMMmisc")

if(length(new.packages)) install.packages(new.packages)

lapply(list_of_packages, library, character.only = TRUE)

##Loading in dataset(s) and cleaning

owl_dat <-read.table(text=getURL("https://raw.githubusercontent.com/jakelrich/MSU_

WritingProject/master/Owls.txt"), header=T)

#Renaming variable to something shorter

owl_dat$Calls <- owl_dat$SiblingNegotiation
#Saving a copy of the dataset for simulation

sim_dat <- owl_dat

owl_dat$lBroodSize <- log(owl_dat$BroodSize)
###Subsetting Data for multiple simulations

nests <- unique(owl_dat$Nest)
halfnests <- sample(nests, 14)

quarternests <- sample(nests, 7)

owl_dat_14 <- owl_dat[owl_dat$Nest %in% halfnests,]

owl_dat_7 <- owl_dat[owl_dat$Nest %in% quarternests,]

#Releveling to avoid any possible conflicts.

rlev14 <- unique(owl_dat_14$Nest)
rlev7 <- unique(owl_dat_7$Nest)
owl_dat_14$Nest <- factor(owl_dat_14$Nest, levels = rlev14)

owl_dat_7$Nest <- factor(owl_dat_7$Nest, levels = rlev7)

#Centering the reduced datasets to avoid convergence issues.

owl_dat_14$cArrivalTime <- owl_dat_14$ArrivalTime-mean(owl_dat_14$ArrivalTime)
owl_dat_7$cArrivalTime <- owl_dat_7$ArrivalTime-mean(owl_dat_7$ArrivalTime)
###################################

###Exploratory Data Analysis
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qplot(ArrivalTime, Calls, data=owl_dat, facets=~Nest, colour=Nest,

geom=c("line", "point"),xlab="Arrival Time",ylab="Number of Calls")

###################################

###Writing Simulation Function

##Overview:

#glmm.sim - a wrapper function to simulate data from a given glmm model object

#for a specified number of iterations and return a iter x mod matrix of model

#scores, where iter is the number of iterations and mod is the number of model fitting

#methods used.

##Inputs:

#model - a previously defined glmer object used to simulate data (this will hopefully

#become a user defined function eventually.)

#iter - the number of simulation iterations to run. For each iteration, a new dataset is

generated.

##Outputs:

#sim_results - a list of estimates for each model.

###########

#Notes: simulate.merMod (lme4) will simulate from a glmer object.

###########

glmm.sim <- function(model_object, dat, iter, seed, file_name){

###Initializing storage matrices

beta_ests <- matrix(0, iter, 16)

colnames(beta_ests) <- c("PQL_INT", "PQL_B1", "PQL_B2", "PQL_B3", "LA_INT", "LA_B1", "

LA_B2", "LA_B3",

"AGHQ_INT", "AGHQ_B1", "AGHQ_B2", "AGHQ_B3", "JAGS_INT", "JAGS_B1

", "JAGS_B2", "JAGS_B3")

sigma_re_ests <- matrix(0, iter, 4)

colnames(sigma_re_ests) <- c("PQL", "LA", "AGHQ", "JAGS")

###Writing JAGS Model Code

sink("GLMM.txt")

cat("

model {

#1. Diffuse priors for regression parameters.

beta ~ dmnorm(b0[], B0[,])

#Diffuse priors for randoms effect hive

a ~ dmnorm(a0, tau.re*A0[,])

#Changing the variance in the next line determines

#the prior for the random effects - currently half-cauchy(2)

#CHANGE PRIOR BELOW

num ~ dnorm(0, 0.5)

denom ~ dnorm(0,1)

sigma.re <- abs(num/(denom*denom))

tau.re <- 1 / (sigma.re*sigma.re)

#2. Likelihood

for (i in 1:N){

Y[i] ~ dpois(mu[i])

log(mu[i]) <- eta[i]

eta[i] <- inprod(beta[], X[i,]) + a[re[i]]

#3. Discrepancy Measures

YNew[i] ~ dpois(mu[i]) #New Data
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ExpY[i] <- mu[i]

VarY[i] <- mu[i]

PRes[i] <- (Y[i] - ExpY[i])/ sqrt(VarY[i])

PResNew[i] <- (YNew[i] - ExpY[i]) / sqrt(VarY[i])

D[i] <- pow(PRes[i], 2)

DNew[i] <- pow(PResNew[i], 2)

}

Fit <- sum(D[1:N])

FitNew <- sum(DNew[1:N])

}", fill = TRUE)

sink()

inits1 <- function() {

list(beta = rnorm(K, 0, 1), a = rnorm(Nre, 0, 2), num = runif(1, 0, 25), denom =

runif(1, 0, 1))

}

params1 <- c('beta', 'a', 'sigma.re', 'Fit', 'FitNew')

###Saving input data as temporary data

tmp_dat <- dat

###Running simulations

for(i in 1:iter){

timer <- proc.time()

###Setting simulation seed

set.seed(seed+i)

###Generating new responses

#use simr

tmp_dat$Calls <- doSim(model_object)

###Fitting Classical Models

#Penalized Quasi-likelihood

owl_glmmPQL <- glmmPQL(Calls ~ lBroodSize + FoodTreatment + ArrivalTime, random = ~

1|Nest,

data = tmp_dat, family = poisson, verbose=FALSE)

#Laplace Approximation

owl_glmer_LA <- glmer(Calls ~ lBroodSize + FoodTreatment + ArrivalTime + (1|Nest),

data = tmp_dat, family = poisson, nAGQ = 1)

#Adaptive Gaussian-Hermite Quadrature

owl_glmer_AGHQ <- glmer(Calls ~ lBroodSize + FoodTreatment + ArrivalTime + (1|Nest),

data = tmp_dat, family = poisson, nAGQ = 25)

#Storing summaries for later use

PQL <- summary(owl_glmmPQL)

LA <- summary(owl_glmer_LA)

AGHQ <- summary(owl_glmer_AGHQ)

###Fitting Bayesian Model with JAGS

X <- model.matrix(model_object)

K <- ncol(X)

Nre <- length(unique(tmp_dat$Nest))
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win.data1 <- list(Y = tmp_dat$Calls, X = X, N = nrow(tmp_dat), re = tmp_dat$Nest,
b0 = rep(0, K), B0 = diag(0.0001, K), a0 = rep(0, Nre), A0 = diag(Nre

))

J0 <- jags.model(file = "GLMM.txt", data = win.data1, inits = inits1,

n.chains = 4, n.adapt = 135000)

mcmc.samples <- coda.samples(J0, params1, n.iter = 50000, thin = 5)

bayes_stats <- summary(mcmc.samples)$statistics

###Storing beta estimates

beta_ests[i,1:4] <- PQL$coefficients$fixed
beta_ests[i,5:8] <- LA$coefficients[,1]
beta_ests[i,9:12] <- AGHQ$coefficients[,1]
beta_ests[i,13:16] <- bayes_stats[30:33, 1]

###Storing random effects variance estimates

sigma_re_ests[i,1] <- sqrt(c(getVarCov(owl_glmmPQL)))

sigma_re_ests[i,2] <- sqrt(c(LA$varcor$Nest))
sigma_re_ests[i,3] <- sqrt(c(AGHQ$varcor$Nest))
sigma_re_ests[i,4] <- bayes_stats[34,1]

###Saving as a list for returning

sim_results <- list(beta = beta_ests, sigma = sigma_re_ests, model = model_object,

data = dat, seed = seed)

###Saving simulations as RData file every 25 iterations (just in case).

if(i==1 | i %% 25){

saveRDS(sim_results, file = file_name)

}

###Print the iteration of simulation, time the iteration took,

###and an estimation to ensure seed is changing.

sim_time <- proc.time() - timer

diagnos <- list("iter" = i, "time" = sim_time, "sigma_re" = sigma_re_ests[i,1])

print(diagnos)

}

return(sim_results)

}

###Implementing Simulation on Full Data Set

##Getting parameter estimates from the full dataset

full_ests <- glmer(Calls ~ lBroodSize + FoodTreatment + ArrivalTime + (1|Nest),

data = owl_dat, family = poisson, nAGQ = 25)

#Passing file name to save simulations as:

file_name <- "D:/Google Drive/GLMMsim_fulldata.RData"

#Remember: glmm.sim <- function(model_object, dat, iter, seed, file_name)

system.time(simulations <- glmm.sim(param_ests, owl_dat, 250, 54177, file_name))

###Saving simulations as RData file (just in case) as an example.

saveRDS(simulations, file = "D:/Google Drive/GLMMsim_fulldata_spare.RData")
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###Implementing Simulation on Half Data Set

##Getting parameter estimates from the half dataset

half_ests <- glmer(Calls ~ lBroodSize + FoodTreatment + ArrivalTime + (1|Nest),

data = owl_dat_14, family = poisson, nAGQ = 25)

#Passing file name to save simulations as:

file_name <- "D:/Google Drive/GLMMsim_halfdata.RData"

#Remember: glmm.sim <- function(model_object, dat, iter, seed, file_name)

system.time(simulations <- glmm.sim(half_ests, owl_dat_14, 250, 715, file_name))

###Implementing Simulation on Quarter Data Set

##Getting parameter estimates from the quarter dataset

quart_ests <- glmer(Calls ~ lBroodSize + FoodTreatment + ArrivalTime + (1|Nest),

data = owl_dat_7, family = poisson, nAGQ = 25)

#Passing file name to save simulations as:

file_name <- "D:/Google Drive/GLMMsim_quart2data.RData"

#Remember: glmm.sim <- function(model_object, dat, iter, seed, file_name)

system.time(simulations <- glmm.sim(quart_ests, owl_dat_7, 26, 1848, file_name))

###Implementing Simulation on Quarter Data Set with HC(0.5) prior

###NOTE: Change the glmm.txt in glmm.sims to change prior - it's noted.

###not printing the function again to save space

#Passing file name to save simulations as:

file_name <- "D:/Google Drive/GLMMsim_quartdata.RData"

#Remember: glmm.sim <- function(model_object, dat, iter, seed, file_name)

#Using same parameters from quarter dataset

system.time(simulations <- glmm.sim(quart2_ests, owl_dat_7, 250, 1848, file_name))

###################################

###Exploring the Simulation Results

full <- readRDS("D:/Google Drive/GLMMsims_fulldata.RData")

half <- readRDS("D:/Google Drive/GLMMsims_halfdata.RData")

quart <- readRDS("D:/Google Drive/GLMMsims_quartdata.RData")

quart2 <- readRDS("D:/Google Drive/GLMMsims_quart2data.RData")

######Full Data

###Beanplots for Estimated Fixed Effects

fbeta_mat <- full$beta
met <- c(replicate(250, "PQL"), replicate(250, "LA"),replicate(250, "AGHQ"),replicate

(250, "JAGS"))

fintercept <- data.frame(c(fbeta_mat[,c(1,5,9,13)]), met)

colnames(fintercept) <- c("Intercept", "Method")

fbeta_1 <- data.frame(c(fbeta_mat[,c(2,6,10,14)]), met)

colnames(fbeta_1) <- c("Beta_1", "Method")

fbeta_2 <- data.frame(c(fbeta_mat[,c(3,7,11,15)]), met)

colnames(fbeta_2) <- c("Beta_2", "Method")

fbeta_3 <- data.frame(c(fbeta_mat[,c(4,8,12,16)]), met)

colnames(fbeta_3) <- c("Beta_3", "Method")

par(mfrow=c(2,2))
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pirateplot(formula = Intercept ~ Method,

data = fintercept,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[0], " estimates for Full Dataset")) )

abline(h = 4.432716, col = "red", lwd = 2)

pirateplot(formula = Beta_1 ~ Method,

data = fbeta_1,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[1], " estimates for Full Dataset")) )

abline(h = 0.537663, col = "red", lwd = 2)

pirateplot(formula = Beta_2 ~ Method,

data = fbeta_2,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[2], " estimates for Full Dataset")) )

abline(h = -0.589283, col = "red", lwd = 2)

pirateplot(formula = Beta_3 ~ Method,

data = fbeta_3,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[3], " estimates for Full Dataset")) )

abline(h = -0.129025, col = "red", lwd = 2)

##Beanplots of variance components

fsigma_mat <- full$sigma
fsigma_re <- data.frame(c(fsigma_mat[,c(1,2,3,4)]), met)

colnames(fsigma_re) <- c("Sigma_re", "Method")

par(mfrow=c(1,1))

pirateplot(formula = Sigma_re ~ Method,

data = fsigma_re,

pal = "google",

theme = 3,

main = expression(paste(hat(sigma)[re], " estimates for Full Dataset")) )

abline(h = sqrt(c(summary(full_params)$varcor$Nest)), col = "red", lwd = 2)

######Half Data

###Beanplots for Estimated Fixed Effects

half_coefs <- summary(half$model)$coefficients
hbeta_mat <- half$beta
met <- c(replicate(250, "PQL"), replicate(250, "LA"),replicate(250, "AGHQ"),replicate

(250, "JAGS"))

hintercept <- data.frame(c(hbeta_mat[,c(1,5,9,13)]), met)

colnames(hintercept) <- c("Intercept", "Method")

hbeta_1 <- data.frame(c(hbeta_mat[,c(2,6,10,14)]), met)

colnames(hbeta_1) <- c("Beta_1", "Method")

hbeta_2 <- data.frame(c(hbeta_mat[,c(3,7,11,15)]), met)

colnames(hbeta_2) <- c("Beta_2", "Method")

hbeta_3 <- data.frame(c(hbeta_mat[,c(4,8,12,16)]), met)

colnames(hbeta_3) <- c("Beta_3", "Method")
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par(mfrow=c(2,2))

pirateplot(formula = Intercept ~ Method,

data = hintercept,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[0], " estimates for Half Dataset")) )

abline(h = half_coefs[1,1], col = "red", lwd = 2)

pirateplot(formula = Beta_1 ~ Method,

data = hbeta_1,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[1], " estimates for Half Dataset")) )

abline(h = half_coefs[2,1], col = "red", lwd = 2)

pirateplot(formula = Beta_2 ~ Method,

data = hbeta_2,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[2], " estimates for Half Dataset")) )

abline(h = half_coefs[3,1], col = "red", lwd = 2)

pirateplot(formula = Beta_3 ~ Method,

data = hbeta_3,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[3], " estimates for Half Dataset")) )

abline(h = half_coefs[4,1], col = "red", lwd = 2)

##Beanplots of variance components

hsigma_mat <- half$sigma
hsigma_re <- data.frame(c(hsigma_mat[,c(1,2,3,4)]), met)

colnames(hsigma_re) <- c("Sigma_re", "Method")

par(mfrow=c(1,1))

pirateplot(formula = Sigma_re ~ Method,

data = hsigma_re,

pal = "google",

theme = 3,

main = expression(paste(hat(sigma)[re], " estimates for Half Dataset")) )

abline(h = sqrt(c(summary(half$model)$varcor$Nest)), col = "red", lwd = 2)

######Quarter Data

###Beanplots for Estimated Fixed Effects

quart_coefs <- summary(quart$model)$coefficients
qbeta_mat <- quart$beta
met <- c(replicate(250, "PQL"), replicate(250, "LA"),replicate(250, "AGHQ"),replicate

(250, "JAGS"))

qintercept <- data.frame(c(qbeta_mat[,c(1,5,9,13)]), met)

colnames(qintercept) <- c("Intercept", "Method")

qbeta_1 <- data.frame(c(qbeta_mat[,c(2,6,10,14)]), met)

colnames(qbeta_1) <- c("Beta_1", "Method")

qbeta_2 <- data.frame(c(qbeta_mat[,c(3,7,11,15)]), met)

colnames(qbeta_2) <- c("Beta_2", "Method")

qbeta_3 <- data.frame(c(qbeta_mat[,c(4,8,12,16)]), met)
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colnames(qbeta_3) <- c("Beta_3", "Method")

par(mfrow=c(2,2))

pirateplot(formula = Intercept ~ Method,

data = qintercept,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[0], " estimates for Quarter Dataset")) )

abline(h = quart_coefs[1,1], col = "red", lwd = 2)

pirateplot(formula = Beta_1 ~ Method,

data = qbeta_1,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[1], " estimates for Quarter Dataset")) )

abline(h = quart_coefs[2,1], col = "red", lwd = 2)

pirateplot(formula = Beta_2 ~ Method,

data = qbeta_2,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[2], " estimates for Quarter Dataset")) )

abline(h = quart_coefs[3,1], col = "red", lwd = 2)

pirateplot(formula = Beta_3 ~ Method,

data = qbeta_3,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[3], " estimates for Quarter Dataset")) )

abline(h = quart_coefs[4,1], col = "red", lwd = 2)

##Beanplots of variance components

qsigma_mat <- quart$sigma
qsigma_re <- data.frame(c(qsigma_mat[,c(1,2,3,4)]), met)

colnames(qsigma_re) <- c("Sigma_re", "Method")

par(mfrow=c(1,1))

pirateplot(formula = Sigma_re ~ Method,

data = qsigma_re,

pal = "google",

theme = 3,

main = expression(paste(hat(sigma)[re], " estimates for Quarter Dataset")) )

abline(h = sqrt(c(summary(quart$model)$varcor$Nest)), col = "red", lwd = 2)

######Quarter Data (HC(0.5) Prior)

###Beanplots for Estimated Fixed Effects

quart2_coefs <- summary(quart2$model)$coefficients
q2beta_mat <- quart2$beta
met <- c(replicate(250, "PQL"), replicate(250, "LA"),replicate(250, "AGHQ"),replicate

(250, "JAGS"))

q2intercept <- data.frame(c(q2beta_mat[,c(1,5,9,13)]), met)

colnames(q2intercept) <- c("Intercept", "Method")

q2beta_1 <- data.frame(c(q2beta_mat[,c(2,6,10,14)]), met)

colnames(q2beta_1) <- c("Beta_1", "Method")

q2beta_2 <- data.frame(c(q2beta_mat[,c(3,7,11,15)]), met)
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colnames(q2beta_2) <- c("Beta_2", "Method")

q2beta_3 <- data.frame(c(q2beta_mat[,c(4,8,12,16)]), met)

colnames(q2beta_3) <- c("Beta_3", "Method")

par(mfrow=c(2,2))

pirateplot(formula = Intercept ~ Method,

data = q2intercept,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[0], " estimates for Quarter Dataset (Half-

Cauchy(0.5) Prior for ", hat(sigma)[re],")")) )

abline(h = quart2_coefs[1,1], col = "red", lwd = 2)

pirateplot(formula = Beta_1 ~ Method,

data = q2beta_1,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[1], " estimates for Quarter Dataset (Half-

Cauchy(0.5) Prior for ", hat(sigma)[re],")")) )

abline(h = quart2_coefs[2,1], col = "red", lwd = 2)

pirateplot(formula = Beta_2 ~ Method,

data = q2beta_2,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[2], " estimates for Quarter Dataset (Half-

Cauchy(0.5) Prior for ", hat(sigma)[re],")")) )

abline(h = quart2_coefs[3,1], col = "red", lwd = 2)

pirateplot(formula = Beta_3 ~ Method,

data = q2beta_3,

pal = "google",

theme = 3,

ylab = "",

main = expression(paste(hat(beta)[3], " estimates for Quarter Dataset (Half-

Cauchy(0.5) Prior for ", hat(sigma)[re],")")) )

abline(h = quart2_coefs[4,1], col = "red", lwd = 2)

##Beanplots of variance components

q2sigma_mat <- quart2$sigma
q2sigma_re <- data.frame(c(q2sigma_mat[,c(1,2,3,4)]), met)

colnames(q2sigma_re) <- c("Sigma_re", "Method")

par(mfrow=c(1,1))

pirateplot(formula = Sigma_re ~ Method,

data = q2sigma_re,

pal = "google",

theme = 3,

main = expression(paste(hat(sigma)[re], " estimates for Quarter Dataset (Half-

Cauchy(0.5) Prior for ", hat(sigma)[re],")")) )

abline(h = sqrt(c(summary(quart2$model)$varcor$Nest)), col = "red", lwd = 2)
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