
Occupancy Models and the Importance of

Accounting for Imperfect Detection When

Estimating the Probability of Blister Rust

Infection in Whitebark Pine Trees in the

Greater Yellowstone Ecosystem

Rachel Rebecca Wyand

Department of Mathematical Sciences
Montana State University

December 14, 2019

A writing project submitted in partial fulfillment
of the requirements for the degree

Master of Science in Statistics



APPROVAL

of a writing project submitted by

Rachel Rebecca Wyand

This writing project has been read by the writing project advisor and has been
found to be satisfactory regarding content, English usage, format, citations,
bibliographic style, and consistency, and is ready for submission to the Statistics
Faculty.

Date Katharine M. Banner
Writing Project Advisor

Date Mark C. Greenwood
Writing Project Coordinator

Banner, Katharine
12/14/19



CONTENTS 
 
 ABSTRACT  1 
   
 ACKNOWLEDGMENTS  1 
   
 1     INTRODUCTION  2 
   
 2     OCCUPANCY MODELS  4 
         2.1     STUDY DESIGN  4 
         2.2     STATISTICAL MODELS  5 
         2.3     MODEL ASSUMPTIONS  7 
   
 3     IMPERFECT DETECTION SIMULATION STUDY  8 
         3.1     STUDY DESIGN  8 
         3.2     DATA GENERATION & MODEL FITTING  10 
         3.3     DESCRIPTION OF RESULTS  11 
         3.4     DISCUSSION OF RESULTS  12 
   
 4     APPLICATION  14 
         4.1     STUDY DESIGN  14 
         4.2     MODELS  16 
                    4.2.1      FULL OCCUPANCY MODEL  16 
                    4.2.2      NAÏVE OCCUPANCY MODEL  17 
         4.3     RESULTS  17 
   
 5     DISCUSSION  18 
         5.1     IMPLEMENTATION CHALLENGES  18 
         5.2     FUTURE WORK  19 
   
 6     CONCLUSION  20 
   
 7     REFERENCES  21 
   
 APPENDIX A  22 
         SIMULATION STUDY CODE  22 
         APPLICATION DATA CLEANING CODE  29 
         APPLICATION ANALYSIS CODE  32 



 

 

- 1 - 

- 1 - 

ABSTRACT 
 

The motivation for this project involves an ongoing study of monitoring whitebark pine 
trees (Pinus albicaulis) for blister rust infection in in the Greater Yellowstone Ecosystem (GYE). 
Occupancy, whether or not a tree is infected with blister rust, is one indicator that has been used 
to monitor whitebark pine trees. One objective during this study investigated the relationship 
between the probability of infection and elevation for each 4-year time period surveyed (2004 – 
2007, 2008 – 2011, and 2012 – 2015) using occupancy models, which accounted for imperfect 
detection in the form of false negatives (failing to detect blister rust infection when the tree really 
was infected) when estimating the probability of infection. It was found that the probability of 
infection decreased as elevation increased, when all other covariates were at their average values. 
The focus of this project concerns only the data collected for the most recent panel of data (2016 
– 2018) with the aim of investigating whether the relationship between elevation and infection 
probability has changed. The occupancy model used in the previous analysis required the use of 
the Bayesian framework, which is beyond the scope of this paper. Therefore, the results 
presented herein are naïve and represent the beginning of our investigation into the research 
question of interest. Another aim of this project includes explaining and describing occupancy 
models, incorporating information about their study design, assumptions, and the statistical 
model itself. In turn, this gives rise to a simulation study to highlight the importance of 
accounting for imperfect detection, a defining feature of occupancy models. 

 
 
 
ACKNOWLEDGMENTS 

We thank Erin Shanahan and Kathi Irvine for providing the motivating idea for this 
project as well as the data and answering any questions related to the whitebark pine monitoring 
program and data. We also thank the Greater Yellowstone Inventory and Monitoring Network 
field staff who spent numerous hours collecting the data used in the analysis. 

 

 

 

 

 



 

 

- 2 - 

- 2 - 

1 INTRODUCTION 

White pine blister rust is a disease caused by the fungal pathogen Cronartium ribicola, a 

fungus indigenous to Asia that attacks North American white pines. Despite the strict conditions 

required in order for it to successfully propagate, it has been very successful in its introduction to 

the Pacific Northwest and tree species in this region have faced high mortality as a result 

(GYWPMWG, 2011). The fungal spores of 

blister rust establish themselves and then the 

fungus infects a tree either by entering the 

stomata of the pine needles or through a lesion 

of some sort (as shown in Figure 1 to the right; 

Shanahan et al., 2016). From where it has 

established itself in the tree, it continues to 

grow into the branch and damages through the 

cambium layer of the bark causing cankers to form and preventing the flow of nutrients through 

these areas (see Figure 1). Depending on where the infection occurs on the tree, the branch of a 

tree may be the only casualty it suffers. However, if the infection is able to continue to spread 

and a canker forms on the trunk, the most common results are the death of the tree and/or the 

prevention of the tree from producing cones. The time it takes for a blister rust infection to be 

lethal can depend on a multitude of factors that are related to the severity of the infection 

(GYWPMWG, 2011).  

Whitebark pine (Pinus albicaulis) receives particular attention because it is a keystone 

species that is vulnerable to blister rust. Keystone species have the ability to potentially change 

local climate attributes allowing for other species to move in. Whitebark pine thrive in harsh  



 

 

- 3 - 

- 3 - 

environments and bring species diversity to areas where conditions were previously too harsh. 

Moreover, the seeds of whitebark pine trees are valuable to various wildlife species since they 

are a high-fat food source. In the Greater Yellowstone Ecosystem (GYE), it has been shown that 

higher survival and better fitness of grizzly bears (Ursus arctos horribilis) is anticipated when 

the production of whitebark pine cones is more plentiful (GYWPMWG, 2011). It is for these 

reasons that a monitoring program has been put into place to monitor whitebark pine in the GYE. 

Multiple agencies (Greater Yellowstone Coordinating Committee, USDA Forest Service, USDI 

National Park Service – NPS, USDI Geological Survey, and Montana State University) are a part 

of this program but this paper will focus on the goals of the NPS, where the main overarching 

goal is to remain aware of how its infection status and potential drivers of infection are changing 

over time (Wright and Irvine, 2017). 

One of the ecological indicator variables of interest for how whitebark pine will be 

monitored is occupancy, defined in this case as whether or not a tree is infected with blister rust. 

A challenge for estimating occupancy is that the data are detection/non-detection, and not 

presence/absence. In other words, the observation process is not perfect. For instance, if an 

observer classifies a tree as not being infected with blister rust, that does not necessarily mean 

the tree is not infected; it could simply mean that the observer failed to detect the infection. 

Therefore, including the probability of a tree being detected as infected given the tree is infected 

(denoted !) is a crucial component to the modeling process so that reliable estimates of 

occupancy probability (denoted ") are obtained. Wright and Irvine (2017) used occupancy 

models for many objectives, two of which were: 1) They estimated the prevalence of blister rust 

infection in whitebark pine trees in the GYE for 3 different time periods, where a full survey of 

the GYE takes 1 time period of 4 years (2004 – 2007, 2008 – 2011, and 2012 – 2015). 2) They  



 

 

- 4 - 

- 4 - 

investigated the relationship between elevation and probability of infection within each time 

period. They found that the probability of infection decreased as elevation increased for the three 

different time periods analyzed. 

Motivation for this paper comes from researchers wanting to see if this relationship has 

changed due to the changing climatic conditions in recent years. Thus, we set out to investigate 

the relationship between the probability of infection of blister rust and elevation in the most 

recent panel of data (2016 – 2018 as 2019 data are not available yet), with the goal of making 

comparisons to what was found in the previous three panels. For the sake of comparisons, the 

ultimate aim is to use the same models from the initial analysis with the new data to address this 

question. Only naïve estimates were able to be obtained for this paper due to some of the 

methods needed being beyond the scope of this paper. Regardless, addressing the above research 

question required learning about occupancy models. Therefore, an equally important goal of this 

paper is to clearly explain the nuances of occupancy models, which includes highlighting the 

importance of accounting imperfect detection. 

2 OCCUPANCY MODELS 

2.1  STUDY DESIGN 

In order to estimate occupancy, this first requires determining the level at which 

occupancy is to be determined –the sample unit– referred to as a site or patch (MacKenzie et al., 

2002). The probability of occupancy is the probability that a species is present at the #!" site, 

denoted "# (where # = 1, 2, …, $). The true status or latent state variable of occupancy (denoted 

as %#) represents presence (or absence) at site #: %# = 1 if a site is occupied (i.e., infection 

present), and if a site is not occupied, %# = 0 (Royle and Dorazio, 2008). Sites are defined as 

spatial units within a larger area (population) of interest (Mackenzie et al., 2005), where sampled 



 

 

- 5 - 

- 5 - 

sites would ideally be based on a probabilistic sample from a sampling frame that includes all 

sites within the region of interest. This is because this allows for results to be generalized to all 

sites within the region of interest as opposed to just the sites surveyed. 

Sites also need to be defined in such a way that makes sense for the species of interest. 

This requires to first think about whether it is more appropriate to define and survey fixed areas 

(i.e., same size) or to survey areas that occur naturally, meaning sites can differ in size. For 

instance, if an individual tree is defined to represent a site, the researcher has no control over 

what the size of each tree is and so the size of the sampling unit will vary from tree-to-tree, 

which could then be accounted for in the model. The method the researcher decides will logically 

depend on the research objectives of a study, what is most meaningful in terms of the biology of 

the species of interest, and how reasonable model assumptions will be (see Subsection 2.3). It is 

important to consider a balance between specifying the size of each sampling unit so that it could 

be occupied by the species of interest while being small enough that the eventual estimate of "# 

will be meaningful for the research objectives (i.e., that model assumptions are not severely 

violated). In addition, it is important to consider the surveyors and what are practical areas for 

them to survey. Considerations related to model assumptions remain even when a site is 

naturally occurring and will be discussed further in Subsection 2.3. 

2.2 STATISTICAL MODEL 

In order to estimate "#, at least one site is visited multiple times within a sampling 

season. The sampling season is again determined based on the biology of the species such that 

the population can be assumed to remain closed within a season. What this means is that %# (the 

true occupancy status at site #) remains constant within visits to the same site. We assume %# 

follows a Bernoulli distribution with probability of success, "#. Then, "# can be related to site- 



 

 

- 6 - 

- 6 - 

level covariates and, in turn, can be estimated using the logit link (or probit link function), 

)*+#,("#) = /0#, where / is a vector of parameters and 0# is a matrix of site-level covariates 

that relate to "#. If sampling is done probabilistically, these relationships can be used to predict 

site-occupancy probability at unsampled sites. However, occupancy models are not just simple 

logistic regression models. What makes an occupancy model different from logistic regression is 

its incorporation of another source of variation, detectability (Makenzie et al., 2002). Just 

because a site is occupied does not mean that the species will be detected. In fact, imperfect 

detection is incredibly common in ecological studies. Imperfect detection needs to be considered 

to allow for the possibility that a species could be present but missed by the observer (i.e., a 

false-negative detection error) or a species may not be present but the observer recorded the 

species as present (i.e., a false-positive detection error). It is intuitive to think about how those 

errors could impact probability of occupancy estimates. For instance, "# will tend to be 

overestimated with false positives and underestimated with false negatives. It is important to note 

that only false negatives are considered for the remainder of this paper. Although there are plenty 

of scenarios where false positives are an issue, and methods for dealing with them exist (refer to 

Mackenzie et al., 2005 and/or Royle and Dorazio, 2008), it is assumed false positives occur with 

negligible frequency for the motivating application of this paper. 

This idea of imperfect detection is what gives rise to a hierarchical modeling framework. 

To account for imperfect detection means to be aware that the true occupancy state (%#) may not 

agree with the observed occupancy state, denoted by the random variable 1#$ ( 2 represents the 

number of visits where 2 = 1, 2, 3, …, 3). Therefore, this introduces a new parameter, detection 

probability, which is the probability of a detection given the site is occupied (i.e., 4(1#$ = 1|%# =

1)), denoted !#$. At least one (usually many) of the sites must be visited at least twice within a  



 

 

- 7 - 

- 7 - 

season in order for it to be possible to estimate this parameter. Thus, a detection history matrix is 

created for each site, where each row represents a site and there are 3 columns for the 

recorded/observed detection at each. One row of this matrix would look something like 1#$ =

67#%, 7#&, 7#', … , 7#(: where each 7#$ is filled in with a 1 (species was detected), 0 (species was not 

detected), or NA (site was not visited). 

Another way to think about all of this is that there is a state process model for %# 

(described above) and an observation process model for 1#$|%#. That is, the state process model 

has "# as a parameter and the observation process model has !#$ as a parameter. In addition, the 

observation process model incorporates the number of visits to a site (3#) as a fixed piece of the 

study design. This means that !#$ is specifically the probability the species of interest is detected 

during visit 2 to site #, given that it is truly there (%# = 1). Going off of the model described 

above, 1#$|%# follows a Binomial distribution with parameters 3#  and !#$ ∗ %#, where 

4<1#$ = 1=%# = 0> = 0 (i.e., no false positives). Once again, !#$ is modeled and estimated using 

the logit link, )*+#,<!#$> = ?@#$, where ? is a vector of parameters and @#$ is a matrix of site-

level and/or observer-level covariates related to !#$. 

2.3 MODEL ASSUMPTIONS 

The assumptions that go along with occupancy models are directly related to the 

distributional assumptions of %# and 1#$|%#. It is important to note that assumptions are never 

perfectly met, and care needs to be incorporated into the design-phase of the study so that 

violations are minimized and are not severe. The first assumption is that the population is closed, 

meaning that during a sampling period, or season, the occupancy status remains the same. In 

other words, %# remains constant within visits to the same site, as described at the beginning of  



 

 

- 8 - 

- 8 - 

Subsection 2.2 when discussing sampling seasons. It is also assumed that observations are 

independent of one another, which is related to visits within the same site (i.e., 1#$ ⊥ 1#$!, where 

2 ≠ 2′) as well as between sites (i.e., D#$ ⊥ D#!. , where # ≠ #′). This is why it is important that the 

researcher, especially when arbitrarily defining what a site is, makes sure to consider the biology 

of the species they are working with so that sites are reasonably sized and samples do not 

severely violate this assumption. Also, "# and !#$ are both considered constant after accounting 

for any covariates relating to them. Lastly, as discussed earlier, since the whitebark pine study 

has negligible issues with false positives but considerable issues with false negatives, the 

standard occupancy model assumes that the probability of detecting a species given that the site 

is not occupied is 0. 

3 IMPERFECT DETECTION SIMULATION STUDY 

As stated previously, ignoring imperfect detection can result in biased estimates of 

occupancy probability. The purpose of this study was to explore what happens to these estimates 

when using a naïve logistic regression model that ignores imperfect detection versus the standard 

occupancy model, which accounts for false-negative errors only. In this section, we describe the 

details of our simulation study (commented code is provided in Appendix A). 

3.1 STUDY DESIGN 

The study was set-up to explore how the estimator for " from two different models (i.e., 

"E from occupancy and logistic regression models) responds to different values of the true 

occupancy probability (") and true detection probability (!), for a fixed number of sites ($) and 

visits to each site (3). The code allows for the exploration of different values for $ and 3 as well. 

The results that will be discussed below set the simulation to have 3 = 3, since the blister rust  



 

 

- 9 - 

- 9 - 

study had at most 3 visits to each whitebark pine tree, and $ = 50 as a conservative estimate of 

sample size related to the average number of trees in a stand. We investigated a total of 9 

treatment combinations for a range of values of " and ! (low = 0.2, medium = 0.5, and high = 

0.8). 

With this investigation, we assumed that the probability of detecting a species given the 

species is truly not present is 0. In other words, false-positive errors could not occur. It was also 

assumed that the probability of detection is constant within a site (among visits) as well as 

among sites. Lastly, " is constant among sites. Although this last assumption is most likely a 

stretch, as there are usually covariates that influence this parameter in real world applications, it 

is reasonable for the purpose of this simulation study to get a general sense of how estimates of 

" are affected by imperfect detection (specifically, false-negative errors). 

Since the purpose of this study is to show how biased estimates of " can occur when 

imperfect detection is ignored, this requires fitting the generated data to an intercept-only logistic 

regression model (which ignores imperfect detection) and a standard intercept-only occupancy 

model (which accounts for imperfect detection) to compare results. For both models, functions 

were written (described in detail in Appendix A) so that each iteration keeps track of the estimate 

for ", its estimated confidence interval, and whether or not the confidence interval captures the 

true, user-specified value of ". The previous information is also kept track of for ! only when 

fitting the occupancy model since detection is not a component of logistic regression models. 

Finally, a function was written to calculate the average values of	", average lower and upper 

limits of the confidence intervals, and the proportion of confidence intervals that include the true 

value of " over all iterations of the simulation for both of the models separately. Again, this was 

done for ! in the occupancy model only. 

 



 

 

- 10 - 

- 10 - 

3.2 DATA GENERATION & MODEL FITTING 

Data were generated assuming they arose exactly as specified by the occupancy model 

described in Section 2. This involved generating data from a binomial distribution twice since 

both the true occupancy state (%#) and observed occupancy state (1#$) are binomial random 

variables where 1#$ is conditional on %#. In addition, this function included inputs for !, ", $, and 

3 in order to allow one to experiment with inputting different values to see how they affect the 

bias of the parameter estimates. First, a total of $ G# true binary occupancy state values were 

generated from a binomial distribution where %#~IIJ	K#$*L#M)(1, "). The data for the true 

occupancy state were generated first since those values impact what the probability of detection 

is (i.e., ! = 0 if G# = 0 and ! = ! if G# = 1) when generating the matrix of observed occupancy 

data, also referred to as detection histories. The dimensions of this matrix were $ by 3 where 

each of the 3 observations in the #!" row had ! ∗ G# as the probability of detection.  

The next step was to formulate response data for both models. For the occupancy model, 

the unmarked package (Fiske and Chandler, 2011) in R (R Core Team, 2018) was loaded and 

the matrix of observed occupancy data was inputted to the unmarkedFrameOccu function as 

the argument for the response matrix. Since having multiple visits to the same site is unique to 

occupancy models, as that is what allows for being able to account for imperfect detection, the 

response data for the logistic regression model were in a vector as opposed to a matrix. To create 

this vector of responses, the values were summed across the visits and if the sum was greater 

than 0, that observation was assigned a 1. Similarly, if the sum was 0, that observation was 

assigned a 0. 

For each iteration, the model_compare function was written to generate an estimate of 

" with associated confidence interval for both an intercept-only logistic regression model and an 



 

 

- 11 - 

- 11 - 

occupancy model with no site-level or visit-level covariates. The percentage of confidence 

intervals using both models that captured the true value of " (again, specified at the start of the 

data simulation) was also calculated. For the occupancy model, the same process was completed 

for !. Lastly, the compare_sim function was written to compute the average	" value and 

associated average confidence interval over all iterations for each model separately as well as the 

average value of ! and associated average confidence interval over all iterations for the 

occupancy model only (output shown in Figure 2 below). 

3.3 DESCRIPTION OF RESULTS 

After the code for obtaining parameter and confidence interval estimates, the 

plot_compare function was written using ggplot2 (Wickham, 2016) to plot all of that 

information and provide a visual representation that illustrates the purpose of this study. For a 

given plot, the values specified for " and ! during the data-generating process are shown at the 

top of the plot and indicated by black tick marks in the panel. The number of iterations run gives 

the total number of confidence intervals for estimating ! as well as for estimating " for each of 

the models, which all appear on the plot as thin horizontal lines in the color of the capture 

probability discussed below. The teal vertical tick mark and teal text that appears for ! as well as 

for both estimates of " represents the average estimate that was calculated over the total number 

of iterations and the pink horizontal strip represents the estimated average confidence interval 

over the total number of iterations. Also appearing below each set of confidence intervals is 

black text that provides the bias associated with each estimate. Finally, a legend corresponding to 

the capture probability indicates the proportion of confidence intervals that succeeded in 

capturing the true, specified parameter value. To make the correspondence clearer, this capture 

probability was added in text above each set of confidence intervals. 



 

 

- 12 - 

- 12 - 

3.4 DISCUSSION OF RESULTS 
 
 

 
 

 

 

Figure 2. Plots showing results over 2000 iterations* with ! = 50 and % = 3 for combinations of low (top row), 
medium (middle row), and high (bottom row) values of ' with low (left column), medium (middle column), and 
high (right column) values of (. 
 

*plot with low values for both ' and ( (top-left plot) had only 500 iterations. 
 



 

 

- 13 - 

- 13 - 

The 9 plots above show all possible combinations between low (0.2), medium (0.5), and 

high (0.8) values of " with low (0.2), medium (0.5), and high (0.8) values of !. The plot could 

only be generated for 500 iterations when both " and ! were 0.2 since the optimization had 

trouble converging. This is due to there not being enough visits and/or there not being enough 

sites, which also explains why the bias is so large with this particular occupancy model estimate 

of ". The other 8 plots show that the bias for the estimate obtained fitting a naïve logistic 

regression model is consistently worse than the bias when fitting the occupancy model. Overall, 

any bias from fitting the occupancy model is fairly negligible for these other 8 plots as well with 

the exception of when ! = 0.2 and " = 0.5. This bias would also become negligible if 3 were to 

increase, as the optimal number of visits is 9 for this particular combination of parameter values 

(see Figure 3 below). In general, for a given value of " and when ignoring imperfect detection, 

the downward bias that occurs when estimating " gets worse as ! decreases. In addition, for a 

given value of !, the bias gets increasingly worse as " increases. Intuitively, this all makes 

sense. We would expect for the estimate of " to suffer from more bias if the ability to detect a 

species gets worse. Moreover, ignoring imperfect detection is going to be more problematic if a 

species is common (" is larger) than if a species is rare. Although the bias is not terrible with the 

logistic regression model when ! = 0.8, we can see that it still does slightly worse than the 

occupancy model in terms of capture probability. The capture probabilities also show a sharp 

decline as ! decreases when ignoring imperfect detection. When ! = 0.2, the probability of the 

true value of " falling within a confidence interval generated using logistic regression is either 0 

or very close to it. The results from this study clearly illustrate the importance of accounting for 

imperfect detection by using occupancy models in order to obtain reliable estimates of ". 

 Interestingly enough, different combinations of ! and " indicate whether it is more  

advantageous to increase the total number of sites that are surveyed versus thinking about  



 

 

- 14 - 

- 14 - 

increasing the number of visits to each site (Mackenzie et al., 2005). As " increases for a given 

value of !, the number of visits should be increased, being a larger increase when the given value 

of ! is on the smaller side (see Figure 3 below). Additionally, in general, if " is low, it is going 

to be more important to make sure to survey a greater number of sites. 

 
 

Figure 3. Table of optimum number of visits for different combinations of ( and '. 
 

4 APPLICATION 

Here, we return to the blister rust study and examine how occupancy models will be used 

to estimate the relationship between blister rust and elevation for the final time period (2016 – 

2019). This will involve discussing both work that has been accomplished as well as considering 

future work that goes beyond the scope of this paper but that will inevitably be required in order 

to adequately address this research question. 

4.1 STUDY DESIGN 

 The data collection for this monitoring program has been ongoing since 2004 and focuses 

on a random sample of 150 whitebark pine stands in the GYE (Wright and Irvine, 2017). These 

were sampled from a total of 10,770 whitebark pine stands that exist in the GYE, with a stand 

being at least 2 hectares of contiguous forest in size (Shanahan et al., 2016). Within stands, a  



 

 

- 15 - 

- 15 - 

total of 176 10 meter by 50 meter transects were delineated. There were 26 stands with 2 

transects and the remaining 124 stands contained 1 transect. Any tree exceeding 1.4 meters in 

height within a transect was either visited by one observer, two observers, or at most three 

observers during each time period. In other words, each tree had anywhere between one and 

three observations associated with it. 

To relate this back to occupancy modeling terminology, a tree represents a site and an 

observer represents a visit. All of the stands and transects within stands were surveyed in a 

rotating panel design, spanning 4 time periods; the first time period ran from 2004 – 2007, 

second time period from 2008 – 2011, third time period from 2012 – 2015, and the most recent 

time period spanning from 2016 – 2018 (2019 data are not available yet). There were 4 panels 

defined by a partition of the panels into approximately equal sized groups and each panel is 

sampled every four years. To date, there have been a total of four time periods. Table 1 below 

shows a visual example of how this four-panel sample design works (GYWPMWG, 2011). Since 

the research question is, “has the relationship between elevation and prevalence of blister rust 

changed?”, this paper focuses on what needs to be done to analyze that last time period of data so 

that the results obtained can be compared to the results obtained from those three previous time 

periods. 

Sampling  
Panel 

Number of 
Transects Sampled 

Sampling 
Year 

1 43 2008 
2 45 2009 
3 44 2010 
4 44 2011 
1 43 2012 
2 45 2013 
3 44 2014 
4 44 2015 
1 43 2016 
2 45 2017 
3 44 2018 
4 44 2019 

        Table 1. Rotating-panel sample design where all 176 transects are sampled every 4 years. 

 



 

 

- 16 - 

- 16 - 

4.2 MODELS 

4.2.1 FULL OCCUPANCY MODEL 

 In order to make a fair comparison to address the research question, the eventual models 

to be fitted will be the same as the models described in Wright and Irvine (2017). It will be 

addressed in Subsection 5.2 below what is required in order to be able to fit the following 

occupancy model: 

(1) )*+#,<"!#$> = N)
! + N%

!JKP!#$ + N&
!Q)QR!# + N'

!,*!*!# + N*
!,SQQT!# + U+!,-.#$

!  

(2) )*+#,<!!#$/> = V) + V%JKP!#$ + V&WM,Q!# + V'T)*!Q!# + V*ℎ#YQ!# + V0,SQQT!# +

V1,SQQT!#
& + V2QZ!!#$/ + M34+#$%& 

The superscript/subscript , refers to the time period, which was relevant for them since they dealt 

with three different time periods. However, , will specifically refer only to the most recent time 

period for this analysis so will be omitted. Beyond this, there are transect-level (#), tree-level (2) 

and observer-level (Y) covariates in these models. The only tree-level covariate is the diameter at 

breast height (JKP), which is thought to influence both " and ! based on previous research. At 

the site- or tree-level of the occupancy model (Equation (1)), elevation (Q)QR), topography 

(,*!*), number of trees (,SQQT), and a random effect for stand (T,M$W) were all recorded at the 

transect-level. At the observer- or visit-level of the occupancy model (Equation (2)), survey date 

(WM,Q), slope (T)*!Q), hiking time (ℎ#YQ), and number of trees (,SQQT) were recorded at the 

transect-level. In addition, the two observer-level covariates included a dummy variable for 

whether it was an observer’s first field season or not (QZ!) and a random effect for observer 

(M34+; Equation (2)). The coefficients, the Ns and the Vs, relate the covariates to "!#$ and !!#$/, 

respectively, with the logit-link function after accounting for the other covariates in the model. 

 



 

 

- 17 - 

- 17 - 

4.2.2 NAÏVE OCCUPANCY MODEL 

 Since Bayesian methods (discussed in Subsection 5.2 below) are required in order to 

incorporate random effects, which are beyond the scope of this paper, we fit simplified models as 

a place to begin this investigation. In addition, QZ! was omitted from Equation (2) in Sub-

subsection 4.2.1 at the observer-level of the occupancy model below (Equation (2)) due to 

challenges faced incorporating covariates that were recorded at the observer-level (also discussed 

in Subsection 5.2 below). The following naïve occupancy model was fit using the occu function 

in unmarked and results are reported in Subsection 4.3: 

(1) )*+#,<"#$> = N) + N%JKP#$ + N&Q)QR# + N',*!*# + N*,SQQT# 

(2) )*+#,<!#$> = V) + V%JKP#$ + V&WM,Q# + V'T)*!Q# + V*ℎ#YQ# + V0,SQQT# + V1,SQQT#
& 

Refer to Sub-subsection 4.2.1 above for a reminder as to what each covariate above 

represents. It is important to note that these covariates were standardized. Therefore, covariates 

are at their average values when their corresponding coefficients are set to 0 with standard 

deviation 1. 

4.3 RESULTS 

 
Figure 5. Plot showing the relationship between probability of infection and elevation including 95% confidence 
bands where )*+, ,-'-, and ,.//0 were at their average values. 

-2 -1 0 1 2

0.
14

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

Probability of Infection Versus Elevation

Elevation (m)

P
ro

ba
bi

lit
y 

of
 In

fe
ct

io
n



 

 

- 18 - 

- 18 - 

We observed decreasing probability of infection as elevation increased, after accounting 

for JKP, ,*!*, and ,SQQT being at their average values in Equation (1) from Sub-subsection 

4.2.2 (Figure 5). Although this is consistent with the results from Wright and Irvine (2017), these 

results should really not be trusted as they come from a naïve model that we do not believe is 

realistic. A random effect for stand is needed at the transect-level in order to account for the 

dependency among trees as without it, we would be assuming that trees are independent in terms 

of "#$, which is a severely violated assumption. Moreover, certain challenges arose when trying 

to incorporate a couple of the observer-level covariates that are needed to accurately replicate the 

models from Wright and Irvine (2017). See Subsections 5.1 and 5.2 below for more of a 

discussion about these issues. 

5 DISCUSSION 

5.1 IMPLEMENTATION CHALLENGES 

 Before being able to get into actually using the data, quite a bit of data manipulation and 

cleaning had to be done in order to omit irrelevant information as well as get the data in a usable 

format. Here, we provide a brief description of what was done but refer to Appendix A for 

commented code. The first obstacle encountered was that not all of the data were in one place, so 

4 different data sets had to be merged to combine all of the necessary information. Secondly, lots 

of data were included that were not needed and so sub-setting the data in various ways was 

necessary. Lastly, based on the covariates needed for the eventual models to be fit, some 

variables had to be created as well as manipulated in order to get them into the correct format.  

Once it came to using the data, a few challenges arose there as well. There were issues 

when trying to incorporate observer-level covariates for modeling detection probability due to 

the fact that trees had a varying number of observers. The occu function for fitting a model in 



 

 

- 19 - 

- 19 - 

unmarked expects the covariates in the state process model to be of dimension $ × \, where \ 

is the total number of covariates at this level of the model and the covariates in the observation 

process model to be of dimension ($ × 3) × S, where S is the total number of covariates at this 

level of the model (refer to Section 2). The issue is that 3 needed to be able to vary (i.e., need 3#) 

since each tree could either have 2 = 1, 2 = 2, or 2 = 3 but when merging the detection history 

matrix with the other covariate data, this did not allow for that without affecting the dimensions 

of covariates at the state process level of the model. In addition, since we did not have the tools 

to incorporate random effects, although skeptical, we attempted to still incorporate the transect-

level stand covariate (T,M$W#) as a fixed effect. As anticipated, the optimization did not converge 

due to the numerous levels that this created. Although results still would not have been 100% 

trustworthy in terms of making a comparison to the previous analysis, they would at least have 

potentially been able to provide some useful and reasonable insight into what we may expect the 

actual relationship to be between elevation and "#$, assuming the other covariates in the model 

are at their average values. This is because there would have been a term in the model that 

accounted for trees belonging to the same transect, which is important when it comes to the 

assumption of independence among trees. 

5.2 FUTURE WORK 

Since we cannot trust the estimates of "#$ in order to make a justifiable comparison to the 

results of what was observed previously, it is necessary to discuss what future work will entail in 

order to adequately address the research question. As mentioned in Subsection 4.3, observer-

level covariates as well as random effects need to be incorporated as the results to compare these 

results to used random effects and observer-level covariates with the 2004 – 2015 data in the 

occupancy model. Work still needs to be done to figure out how to keep the observer-level  



 

 

- 20 - 

- 20 - 

covariates (whether it was an observer’s first field season or not, QZ!#$/, as well as a random 

effect for observer, *UT#$/), which appear in the observer process model from the previous 

analysis (see Equation (2) in Sub-subsection 4.2.1), while making sure the other covariate 

information that corresponds to those trees does not get accounted for more than once. When it 

comes to incorporating random effects into hierarchical models such as occupancy models, this 

requires using a Bayesian framework, which was beyond the scope of this paper but the last 

piece of the puzzle to be able to fully address the research question. 

6 CONCLUSION 

 In conclusion, occupancy models are extremely useful due to their ability to model 

imperfect detection, whether that be the result of human-error (i.e., the species of interest are 

wolves and the observer mistakes a coyote for a wolf) or impossibility (i.e., the species of 

interest is present but incredibly elusive, making detection extremely difficult). The simulation 

study showed that estimates for " tend to be downwardly-biased when imperfect detection is 

ignored in terms of false negatives and demonstrated the necessity that occupancy models play 

when it comes to dealing with that issue through being an unbiased analysis method. Unless 

trusted and valid results are obtained, the purposes they serve are ultimately meaningless. 

Relating this idea to the context of the blister rust study, depending on what the results show, it 

could provide valuable information about where to focus management efforts for this project in 

the future. For instance, if there is evidence that shows the relationship between the probability 

of infection and elevation has changed, which would mean that "#$ is increasing as elevation 

increases, insight into potential drivers of this change will be of upmost importance as well as 

coming up with solutions to help mitigate the consequences at higher elevations. If the results 

came from a logistic regression model, lots of effort and time could be wasted by focusing on the  



 

 

- 21 - 

- 21 - 

wrong things due to misleading results, not to mention more damage being done. Although the 

simulation study in and of itself is eye-opening in terms of what ignoring imperfect detection can 

do, thinking about what was seen there in terms of a real-life application truly puts it into 

perspective. 

7 REFERENCES 
Fiske, I., & Chandler, R. B. (2011). unmarked: An R Package for Fitting Hierarchical Models of  

Wildlife Occurrence and Abundance. Journal of Statistical Software, 43(10), 1-23. URL 
http://www.jstatsoft.org/v43/i10/. 

 
Greater Yellowstone Whitebark Pine Monitoring Working Group (GYWPMWG). (2011).  

Interagency Whitebark Pine Monitoring Protocol for the Greater Yellowstone Ecosystem, 
Version 1.1. Greater Yellowstone Coordinating Committee, Bozeman, MT. 

 
MacKenzie, D. I., Bailey, L. L., Hines, J. E., Nichols, J. D., Pollock, K. H., & Royle, J. A. 

(2005). Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of 
Species Occurrence. Retrieved from https://ebookcentral.proquest.com. 
 

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., & Langtimm, C. A.  
(2002). Estimating Site Occupancy Rates When Detection Probabilities Are Less Than 
One. Ecology, 83(8), 2248-2255. doi:10.2307/3072056. 
 

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation  
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

 
Royle, J. A., & Dorazio, R. M. (2008). Hierarchical Modeling and Inference in Ecology: The  

Analysis of Data from Populations, Metapopulations and Communities (1st ed.). 
Amsterdam; Burlington, MA: Academic. 
 

Shanahan, E., Irvine, K. M., Thoma, D., Wilmoth, S., Ray, A., Legg, K., & Shovic, H. (2016).  
Whitebark Pine Mortality Related to White Pine Blister Rust, Mountain Pine Beetle 
Outbreak, and Water Availability. Ecosphere, 7(12) 
doi:http://dx.doi.org.proxybz.lib.montana.edu/10.1002/ecs2.1610. 

 
Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. 
 
Wickham, H., François, R., Henry, L., & Müller, K. (2019). dplyr: A Grammar of Data  

Manipulation. R package version 0.8.3. URL https://CRAN.R-project.org/package=dplyr. 
 

Wright, W. J., & Irvine, K. M. (2017). Assessment of Imperfect Detection of Blister Rust in  
Whitebark Pine Within the Greater Yellowstone Ecosystem. Natural Resource Report 
NPS/GRYN/NRR—2017/1457. National Park Service, Fort Collins, Colorado. 



APPENDIX A

SIMULATION STUDY CODE

#########################
### PACKAGES REQUIRED ###
#########################

library(dplyr)
library(ggplot2)
library(unmarked)

##############################
### INVERSE LOGIT FUNCTION ###
##############################

exp.it <- function(x){

out <- exp(x)/(1 + exp(x))
# Backtransforms x from logit scale back to probability scale

return(out)

}

#################################
### FUNCTION TO GENERATE DATA ###
#################################

data_sim <- function(p, psi, n_site, n_visit){

z <- rbinom(n = n_site, size = 1, prob = psi)
# Random generation of presence/absence data from Binomial distribution

y_det <- matrix(NA, nrow = n_site, ncol = n_visit)
# Creates matrix of NAs

for(i in 1:n_site){

y_det[i, ] <- rbinom(n = n_visit, size = 1, prob = p*z[i])
# Fills in NA matrix with random generation of multiple visit

} # detection/non-detection data from Binomial distribution

y_occu <- unmarkedFrameOccu(y_det)
# Turns y_det matrix into unmarked data frame for the occupancy fit

sum_y <- matrix(NA, nrow = n_site, ncol = 1)
# Creates single column matrix of NAs

22



for(i in 1:n_site){

sum_y[i, ] <- sum(y_det[i, ])
# Fills in each row of single column NA matrix with

} # sum of values from each row of y_det matrix

y_log <- ifelse(sum_y > 0, 1, 0)
# Makes sum_y values binary to create response data for the logistic regression fit

out <- list(y_occu = y_occu, y_logistic = y_log, psi = psi, p = p)

return(out)

}

#############################################################################
### FUNCTION TO OBTAIN/COMPARE MODEL ESTIMATES FROM INDIVIDUAL ITERATIONS ###
#############################################################################

model_compare <- function(data){

y_occu <- data$y_occu

y_log <- data$y_logistic

psi <- data$psi

p <- data$p

fit_occu <- try(occu(~ 1 ~ 1, data = y_occu))
# Tries to fit an intercept-only occupancy model using y_occu data frame

if(class(fit_occu) == "try-error"){

est_psi <- est_det <- cap_psi <- cap_det <- NA
# If get "try-error," assigns NA to psi/p estimates and whether psi/p are within CIs

ci_psi <- ci_det <- matrix(c(NA, NA), nrow = 1, ncol = 2)
# If get "try-error," assigns NA to lower and upper values of CIs for psi and p

}

else{

est_psi <- backTransform(fit_occu, type = "state")@estimate
# If no error, backTransform function generates estimate of psi on probability scale

ci_psi <- exp.it(confint(fit_occu, type = "state"))
# If no error, inverse logit function generates CI for psi on probability scale

cap_psi <- as.numeric(ci_psi[, 1] <= psi & psi <= ci_psi[, 2])
# If no error, generates a 1 if psi is within CI and a 0 if psi is not within CI

23



est_det <- backTransform(fit_occu, type = "det")@estimate
# If no error, backTransform function generates estimate of p on probability scale

ci_det <- exp.it(confint(fit_occu, type = "det"))
# If no error, inverse logit function generates CI for p on probability scale

cap_det <- as.numeric(ci_det[, 1] <= p & p <= ci_det[, 2])
# If no error, generates a 1 if p is within CI and a 0 if p is not within CI

}

out_psi <- data.frame(par = paste(expression(�\u03A8�), "\n(occupancy\nmodel)"),
lower = ci_psi[, 1], upper = ci_psi[, 2],
est = est_psi, truth = psi, cap = cap_psi)

out_det <- data.frame(par = "p\n(occupancy\nmodel)",
lower = ci_det[, 1], upper = ci_det[, 2],
est = est_det, truth = p, cap = cap_det)

fit_logi <- try(glm(y_log ~ 1))
# Tries to fit an intercept-only logistic regression model

if(class(fit_logi)[1] == "try-error"){

est_psil <- cap_logi <- NA
# If get "try-error," assigns NA to psi estimate and whether psi is within CI

ci_psil <- c(NA, NA)
# If get "try-error," assigns NA to lower and upper values of CI for psi

}

else{

est_psil <- fit_logi$coefficients
# If no error, generates estimate of psi on probability scale

ci_psil <- confint(fit_logi)
# If no error, generates CI for psi on probability scale

cap_logi <- as.numeric(ci_psil[1] <= psi & psi <= ci_psil[2])
# If no error, generates a 1 if psi is within CI and a 0 if psi is not within CI

}

out_logi <- data.frame(par = paste(expression(�\u03A8�), "\n(logistic\nregression)"),
lower = ci_psil[1], upper = ci_psil[2],
est = est_psil, truth = psi, cap = cap_logi)

out_psi <- rbind(out_psi, out_logi)

out <- list(ydata = data, psi_compare = out_psi, detection = out_det)

return(out)

}

24



########################################################################################
### FUNCTION TO OBTAIN/COMPARE AVG. MODEL ESTIMATES ALONG WITH INDIVIDUAL ITERATIONS ###
########################################################################################

compare_sim <- function(nsim, p, psi, n_visit, n_site){

psi_compare <- data.frame()

p_compare <- data.frame()

for(i in 1:nsim){

y_data <- data_sim(p = p, psi = psi, n_visit = n_visit, n_site = n_site)

sim_list <- model_compare(y_data)

psi_compare <- rbind(psi_compare, sim_list$psi_compare)

p_compare <- rbind(p_compare, sim_list$detection)

}

psi_comp_avg <- psi_compare %>% group_by(par) %>%
summarise(est_avg = mean(est, na.rm = T), l_avg = mean(lower, na.rm = T),

u_avg = mean(upper, na.rm = T), truth = mean(truth, na.rm = T),
cap = mean(cap, na.rm = T), num_na = sum(is.na(lower) & is.na(upper)),
converge_error = sum(is.na(cap)))

# Computes average estimate of psi, average CI for psi, and average capture value for
# psi over all iterations for both the occupancy model and logistic regression model
# as well as displays the true value of psi and computes the total number of all the
# iterations that generated NAs for CI endpoint values/capture values for each model

p_comp_avg <- p_compare %>% group_by(par) %>%
summarise(est_avg = mean(est, na.rm = T), l_avg = mean(lower, na.rm = T),

u_avg = mean(upper, na.rm = T), truth = mean(truth, na.rm = T),
cap = mean(cap, na.rm = T), num_na = sum(is.na(lower) & is.na(upper)),
converge_error = sum(is.na(cap)))

# Computes average estimate of p, average CI for p, and average capture
# value for p over all iterations for the occupancy model only as well
# as displays the true value of p and computes the total number of all
# iterations that generated NAs for CI endpoint values/capture values

df_avg <- rbind(psi_comp_avg, p_comp_avg)
# Data frame binding the average psi information from all iterations for
# both the occupancy and logistic regression models separately with the
# average p information from all iterations for the occupancy model only

df_psi <- left_join(psi_compare, psi_comp_avg, by = c("par", "truth"))
# Data frame adding the average psi information from all iterations
# to every individual iteration of the psi information for both
# the occupancy model and the logistic regression model separately

25



df_p <- left_join(p_compare, p_comp_avg, by = c("par", "truth"))
# Data frame adding the average p information from all iterations to every
# individual iteration of the p information for the occupancy model only

df_all <- rbind(df_psi, df_p)
# Data frame binding all individual and average information regarding psi for
# the occupancy model and the logistic regression model separately with all
# individual and average information regarding p for the occupancy model only

out <- list(df_avg = df_avg, df_all = df_all)

return(out)

}

################################################################################
### FUNCTION TO GENERATE PLOT AND SUMMARY OUTPUT OF AVERAGE PARAMETER VALUES ###
################################################################################

plot_compare <- function(df_avg, df_all){

low_cap <- max(0, min(df_avg$cap) - 0.04)
# Lowest value for capture probability legend

high_cap <- min(1, max(df_avg$cap) + 0.04)
# Highest value for capture probability legend

mp <- (low_cap + high_cap)/2
# Middle value for capture probability legend

df_all$lower <- ifelse(df_all$lower < 0, 0, df_all$lower)
# Makes it so lower value can�t go below 0 on probability scale

df_all$upper <- ifelse(df_all$upper > 1, 1, df_all$upper)
# Makes it so upper value can�t go above 1 on probability scale

plot_titlea <- paste(expression(�\u03A8�), "=", df_avg$truth[1])
# Creates plot title of true value of psi

plot_titleb <- paste("p =", df_avg$truth[3])
# Creates plot title of true value of p

title <- paste(plot_titlea, plot_titleb, sep = "; ")
# Combines true values of psi and p into one plot title

bias <- df_avg$est_avg - df_avg$truth
# Computes difference between parameter estimate and true parameter value

p <- suppressWarnings(ggplot(df_all) +
# Plot code

geom_point(aes(x = est_avg, y = par),
pch = "|", size = 0, col = "darkturquoise", data = df_avg) +

26



geom_errorbarh(aes(x = est, y = jitter(as.numeric(par)),
xmin = lower, xmax = upper, col = cap.y),

alpha = 0.25, height = 0, lwd = 0.25) +

geom_segment(aes(x = 0, y = par, xend = 1, yend = par),
size = 2.5, col = "white", data = df_avg) +

geom_segment(aes(x = l_avg, y = par, xend = u_avg, yend = par),
size = 1.5, col = "#FF33FF", data = df_avg) +

geom_point(aes(x = truth, y = par),
pch = "|", size = 11, hjust = 0.5, col = "black", data = df_avg) +

geom_point(aes(x = est_avg, y = par),
pch = "|", size = 8.5, hjust = 0.5,
col = "darkturquoise", data = df_avg) +

geom_text(aes(x = (l_avg + u_avg)/2, y = par,
label = paste("Capture Prob. =", round(cap, 3)), col = cap),

hjust = 0.5, vjust = -4, data = df_avg) +

geom_text(aes(x = est_avg, y = par, label = paste("Estimate =", round(est_avg, 5))),
hjust = 0.5, vjust = 5, col = "darkturquoise", data = df_avg) +

geom_text(aes(x = (est_avg[1] + truth[1])/2, y = par[1],
label = paste("Estimate -", expression(�\u03A8�),

"=", round(bias[1], 5))),
hjust = 0.5, vjust = 6.5, col = "black", data = df_avg) +

geom_text(aes(x = (est_avg[2] + truth[2])/2, y = par[2],
label = paste("Estimate -", expression(�\u03A8�),

"=", round(bias[2], 5))),
hjust = 0.5, vjust = 6.5, col = "black", data = df_avg) +

geom_text(aes(x = (est_avg[3] + truth[3])/2, y = par[3],
label = paste("Estimate - p =", round(bias[3], 5))),

hjust = 0.5, vjust = 6.5, col = "black", data = df_avg) +

scale_colour_gradient2(limits = c(low_cap, high_cap), midpoint = mp,
low = "#FF0000", high = "#0000FF", mid = "#7171FF",
guide = guide_colourbar(title = "Capture\nProbability")) +

xlab("Parameter Probability") +

ylab(" ") +

geom_hline(yintercept = 2.45, lty = 2) +

theme_bw(base_size = 14) +

ggtitle(title))

out <- list(summary = df_avg)

27



print(p)

return(out)

}

HL <- compare_sim(nsim = 2000, p = 0.8, psi = 0.2, n_site = 50, n_visit = 3)
HL.plot <- plot_compare(HL$df_avg, HL$df_all)
# High p, low psi

HM <- compare_sim(nsim = 2000, p = 0.8, psi = 0.5, n_site = 50, n_visit = 3)
HM.plot <- plot_compare(HM$df_avg, HM$df_all)
# High p, medium psi

HH <- compare_sim(nsim = 2000, p = 0.8, psi = 0.8, n_site = 50, n_visit = 3)
HH.plot <- plot_compare(HH$df_avg, HH$df_all)
# High p, high psi

ML <- compare_sim(nsim = 2000, p = 0.5, psi = 0.2, n_site = 50, n_visit = 3)
ML.plot <- plot_compare(ML$df_avg, ML$df_all)
# Medium p, low psi

MM <- compare_sim(nsim = 2000, p = 0.5, psi = 0.5, n_site = 50, n_visit = 3)
MM.plot <- plot_compare(MM$df_avg, MM$df_all)
# Medium p, medium psi

MH <- compare_sim(nsim = 2000, p = 0.5, psi = 0.8, n_site = 50, n_visit = 3)
MH.plot <- plot_compare(MH$df_avg, MH$df_all)
# Medium p, high psi

LL <- compare_sim(nsim = 2000, p = 0.2, psi = 0.2, n_site = 50, n_visit = 3)
LL.plot <- plot_compare(LL$df_avg, LL$df_all)
# Low p, low psi

LM <- compare_sim(nsim = 2000, p = 0.2, psi = 0.5, n_site = 50, n_visit = 3)
LM.plot <- plot_compare(LM$df_avg, LM$df_all)
# Low p, medium psi

LH <- compare_sim(nsim = 2000, p = 0.2, psi = 0.8, n_site = 50, n_visit = 3)
LH.plot <- plot_compare(LH$df_avg, LH$df_all)
# Low p, high psi

28



APPLICATION DATA CLEANING CODE

#########################
### PACKAGES REQUIRED ###
#########################

library(unmarked)
library(dplyr)

####################################
### IMPORTING ORIGINAL DATA SETS ###
####################################

SO <- read.csv("/Users/rachel.wyand/Downloads/SingleObs.csv")
# Single observer data

MO <- read.csv("/Users/rachel.wyand/Downloads/MultiObs.csv")
# Multi-observer data

FD <- read.csv("/Users/rachel.wyand/Downloads/FirstData.csv")
# First data with important covariate data

HD <- read.csv("/Users/rachel.wyand/Downloads/hikingdist.csv")
# Hiking time/distance data

################################################
### CREATING VARIABLES IN ORIGINAL DATA SETS ###
################################################

FD$Slope_Rad <- (FD$slope_degrees)*(pi/180)
# Variable for slope in radians

FD$Aspect_Rad <- (FD$aspect_degrees)*(pi/180)
# Variable for aspect in radians

FD$topo <- sin(FD[, 105])*cos(FD[, 106])
# Variable for topography using slope_rad and aspect_rad to calculate

#################################################
### SUBSETTING FOR RELEVANT ROWS OF DATA SETS ###
#################################################

MO.new <- subset(MO, SurveyYear %in% c(2016, 2017))
# Years 2016 and 2017 only (no multi-observer data for 2018)

FD.new <- subset(FD, SurveyYear %in% c(2016, 2017, 2018))
# Years 2016, 2017, and 2018 only

SO.new <- subset(SO, SurveyYear %in% c(2016, 2017, 2018))
# Years 2016, 2017, and 2018 only

SO.L <- subset(SO.new, Status %in% c("L"))
# Live trees only

29



FD.WBP <- subset(FD.new, TreeSpecies %in% c("PIAL"))
# Whitebark pine trees only

FD.WBP.L <- subset(FD.WBP, TreeStatus %in% c("L"))
# Live trees only

#################################################
### CREATING VARIABLES IN SUBSETTED DATA SETS ###
#################################################

FD.WBP.L$SiteID <- paste(as.character(FD.WBP.L$Stand_ID),
as.character(FD.WBP.L$Transect_ID), sep = ".")

# Variable for SiteID

##########################################
### SUBSETTING FOR RELEVANT COVARIATES ###
##########################################

MO.names <- which(names(MO.new) %in%c("SiteID", "TreeID", "SurveyYear",
"SurveyDate", "ObserverName",
"InfectionPresent", "DBH_cm_MostRecent"))

MO.new <- MO.new[, MO.names]

FD.names <- which(names(FD.WBP.L) %in% c("SiteID", "MultiObserver", "LatestDBH",
"SurveyDate", "TreeID", "SurveyYear",
"elev_meters", "Slope_Rad", "topo"))

FD.WBP.L <- FD.WBP.L[, FD.names]

SO.names <- which(names(SO.L) %in% c("SiteID", "TreeID", "SurveyYear", "SurveyDate",
"Observer", "InfectionPresent", "DBH_cm_MostRecent"))

SO.L <- SO.L[ , SO.names]

HD.names <- which(names(HD) %in% c("Site", "Time"))

HD.new <- HD[, HD.names]

##################################
### RENAMING COVARIATE HEADERS ###
##################################

names(MO.new) <- c("SiteID", "TreeID", "SurveyYear2", "SurveyDate2",
"Observer", "LatestDBH2", "InfectionPresent")

names(SO.L) <- c("SiteID", "TreeID", "SurveyYear2","SurveyDate2",
"Observer", "LatestDBH2", "InfectionPresent")

names(HD.new) <- c("SiteID", "Time")

###################################
### COMBINING/MERGING DATA SETS ###
###################################

MO.SO <- rbind(MO.new, SO.L)
# Adding rows from subsetted single observer data set to subsetted multi-observer data set

30



MO.SO_FD.WBP.L <- merge(MO.SO, FD.WBP.L)
# Merging combined subsetted single/multi-observer data set with subsetted FD data set

MOST.DATA <- merge(MO.SO_FD.WBP.L, HD.new)
# Merging combined subsetted single/multi-observer/FD data set with subsetted HD data set

#########################################################
### CREATING/MODIFYING VARIABLES IN COMBINED DATA SET ###
#########################################################

Experience <- MOST.DATA %>% group_by(Observer) %>% summarise(FirstYear = min(SurveyYear))
MOST.DATA2 <- right_join(MOST.DATA, Experience)
MOST.DATA2 <- MOST.DATA2 %>% mutate(Experience=ifelse(SurveyYear==FirstYear, 1, 0))
MOST.DATA2$Experience <- ifelse(MOST.DATA2$Observer %in% c("Roth", "Shanahan", "Bockino"),

0, MOST.DATA2$Experience)
# Indicator variable for whether it�s the first field season or not for an observer
# Didn�t end up using but would need to fit observer-level covariate

MOST.DATA2$SiteID <- as.factor(MOST.DATA2$SiteID)
# Modifying SiteID to be a categorical variable instead of quantitative

Tree.Number <- MOST.DATA2 %>%
group_by(SurveyYear, SiteID) %>%
summarise(Trees=length(unique(TreeID)))

# Variable for number of trees on a transect

MOST.DATA2$jul.date <- as.Date(MOST.DATA2$SurveyDate2, "%m/%d/%y")
MOST.DATA2$jul.date <- julian(MOST.DATA2$jul.date,

origin = as.Date("2016-01-01"))-
365*(MOST.DATA2$SurveyYear-2016)

# Variable for julian date

##############################
### CREATING FULL DATA SET ###
##############################

FULL.DATA <- right_join(MOST.DATA2, Tree.Number)
# Joining number of trees information to combined
# data set to create one full and complete data set

#############################################
### REPLACING DATA ENTRY ERRORS WITH NA�S ###
#############################################

FULL.DATA$DBH <- ifelse(FULL.DATA$LatestDBH==-999, NA, FULL.DATA$LatestDBH)

################################################
### CREATING FILE DIRECTORY OF FULL DATA SET ###
################################################

write.csv(FULL.DATA, file = "/Users/rachel.wyand/Downloads/clean_wbp_data.csv",
row.names = F)

31



APPLICATION ANALYSIS CODE

###############################
### READING IN CLEANED DATA ###
###############################

FULL.DATA <- read.csv("/Users/rachel.wyand/Downloads/clean_wbp_data.csv")

#########################
### PACKAGES REQUIRED ###
#########################

library(unmarked)
library(dplyr)

####################################
### CREATING DETECTION HISTORIES ###
####################################

FULL.DATA$Infection <- ifelse(FULL.DATA$InfectionPresent=="yes", 1, 0)
# Creating indicator variable for infection status

first.fun <- function(x){ifelse(length(x) > 0, x[1], NA)}
# First visit information, otherwise inputs NA
second.fun <- function(x){ifelse(length(x) > 1, x[2], NA)}
# Second visit information, otherwise inputs NA
third.fun <- function(x){ifelse(length(x) > 2, x[3], NA)}
# Third visit information, otherwise inputs NA

FULL.DATA$SiteID <- as.factor(FULL.DATA$SiteID)
# Modifying SiteID to be a categorical variable instead of quantitative

detection <- FULL.DATA %>% group_by(SurveyYear, SiteID, TreeID, MultiObserver) %>%
summarise(Obs1_Inf = first.fun(Infection), Obs2_Inf = second.fun(Infection),

Obs3_Inf = third.fun(Infection))
# Putting observed infection status for each visit to a tree

##################################
### OBTAINING DETECTION MATRIX ###
##################################

FULL.DET.DATA <- left_join(detection, FULL.DATA)
# Adding detection data to the full data set

det.matrix <- FULL.DET.DATA[, c(2, 3, 5, 6, 7)]
# Subsetting specific columns from full data set for detection matrix

idx <- which(duplicated(FULL.DET.DATA[, c(2, 3, 5, 6, 7)])=="TRUE")
# Identifying duplicate rows in detection matrix

no.duplicates <- det.matrix[-idx, ]
# Omitting duplicate rows from detection matrix

32



#######################################
### RESPONSE AND COVARIATE MATRICES ###
#######################################

y.matrix <- as.matrix(no.duplicates[, c("Obs1_Inf", "Obs2_Inf", "Obs3_Inf")])
# Creating detection response data matrix

siteCovs <- FULL.DET.DATA[, c("SiteID", "TreeID", "LatestDBH2", "elev_meters",
"topo", "Slope_Rad", "Trees", "jul.date", "Time")]

# Data set of site covariates

idx.site <- which(duplicated(siteCovs)=="TRUE")
# Identifying duplicate rows in siteCovs data set

siteCovs <- siteCovs[-idx.site, ]
# Omitting duplicate rows from siteCovs data set

siteCovs[ , c("LatestDBH2", "elev_meters", "topo",
"Trees", "Time", "Slope_Rad", "jul.date")] <-

scale(siteCovs[ , c("LatestDBH2", "elev_meters", "topo",
"Trees", "Time", "Slope_Rad", "jul.date")])

# Standardizing site covariates

siteCovs.scaled.DF <- data.frame(siteCovs)
# Creating site covariate data frame

################################################################
### MODEL FITTING WITH UNMARKED PACKAGE AND PLOTTING RESULTS ###
################################################################

umf <- unmarkedFrameOccu(y = y.matrix, siteCovs = siteCovs.scaled.DF)
# Creating unmarked data frame with detection response
# data matrix and standardizedsite covariates

fm1 <- occu(~ LatestDBH2 + Time + poly(Trees, 2) + Slope_Rad + jul.date
~ LatestDBH2 + elev_meters + topo + Trees, umf)

# Fitting occupancy model with site-level covariates calling unmarked data frame

elev.data <- data.frame(LatestDBH2 = rep(0, 100),
elev_meters = seq(from = -2.5, to = 2.25, length = 100),
topo = rep(0, 100), Trees = rep(0, 100), jul.date = rep(0, 100))

# Generating data frame so that other covariates are at their
# average values and elevation can range between -2.5 and 2.25

predictions <- predict(fm1, type = �state�, newdata = elev.data, appendData = TRUE)
# Predicts value of psi across range of elevation values

plot(Predicted~elev_meters, data = predictions, type = "l", xlab = "Elevation (m)",
ylab = "Probability of Infection", main = "Probability of Infection vs. Elevation")

lines(predictions$lower ~ predictions$elev_meters, lty = 2)
lines(predictions$upper ~ predictions$elev_meters, lty = 2)
# Plot of psi versus elevation where other covariates
# are at their average values with 95% confidence bands

33


