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Abstract

In recent times, researchers are increasingly interested in comparing multiple

treatments across multiple groups, often necessitating the performance of multiple

hypothesis tests simultaneously. However, this approach can lead to multiplicity,

resulting in an inflated overall type I error rate.

This project addresses this challenge by examining two non-parametric tests for

comparing two or more survival curves: the logrank test and the Peto-Peto extension

of the Wilcoxon Rank Sum test. The logrank test assigns more weight to later

survival times, while the Peto-Peto extension assigns more weight to earlier survival

times.

Additionally, we investigate five distinct p-value adjustment methods applied to

these two tests to help control the overall type I error rates in multiple hypothesis

testing. These methods include the Bonferroni, Holm, Hochberg, Hommel, and

Benjamini-Hochberg procedures. Each method exhibits varying degrees of

conservatism or liberalism, influencing their respective effectiveness in controlling

type I error rates. Our investigation aims to understand how these adjustment

methods interact with the non-parametric test in controlling the overall type I error

rate while maintaining statistical power.

To this effect, we perform a numerical example to illustrate the application of the

10 distinct combinations control the type I error rates. In the final phase of our study,

we conduct a simulation study generating random survival data from the exponential

distribution to test the power of these combinations. Our goal is to investigate which

methods exhibit significant power in accurately detecting differences in survival

curves, considering different mean combinations and sample sizes.
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1 Introduction

1.1 Background

Survival analysis is a statistical model used to analyze time-to-event data, where the

”event” refers to a specific occurrence of interest Klein and Moeschberger (2003). This

statistical methodology finds applications in various fields and goes by different names,

such as reliability analysis in engineering, duration analysis in economics, and event history

analysis in sociology. A common characteristic of this type of data is that it often involves

censoring Kaplan and Meier (1958). Censoring takes place when we possess partial

information about individuals in the study, but we lack the precise time when the event of

interest occurred Schober and Vetter (2018). There are three fundamental types of

censoring;

• Right censoring occurs when an individual exits the study before its conclusion or has

not yet experienced the event of interest by the end of the study Klein and

Moeschberger (2003). In this case, if an individual departs the study at time t we

anticipate that the event of interest may have occurred at time t or at some point in

the indefinite future Klein and Moeschberger (2003).

• Left Censoring: In this case, individuals have already experienced the event of

interest before the study begins Klein and Moeschberger (2003). The event precedes

the observation period.

• Interval Censoring: Interval censoring is observed when the event of interest happens

within a specific time interval. We know it occurred within this range, but we lack
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precise information about when it occurred Klein and Moeschberger (2003).

In survival analysis, it is preferable for censoring to be non-informative, indicating that

participants leave the study for reasons unrelated to the study itself. Informative censoring

on the other hand takes place when participants are lost to follow-up due to reasons

directly related to the study Klein and Moeschberger (2003). There are also other types of

censoring; Type 1 censoring, which involves individuals dropping out of a study in a

random manner Klein and Moeschberger (2003). In this form of censoring, the duration of

the study is predetermined and fixed by the researcher Klein and Moeschberger (2003). It

is worth noting that, in such studies, the number of uncensored observations is a random

variable. The second type, often referred to as Type 2 censoring, takes place when the

study has no predefined endpoint. In this scenario, the study continues until a specific

number of the events of interest have been observed Klein and Moeschberger (2003).

In survival analysis, the time variable describes the duration in years, months, weeks,

or days from the commencement of follow-up until the occurrence of a specific event Klein

and Moeschberger (2003) or the conclusion of the study. This time variable is referred to as

the survival time (t). The event of interest, which we aim to observe, is usually termed

”failure” Klein and Moeschberger (2003) In the context of modeling survival data using

the semi-parametric approach, we typically do not assume that the data follows a known

distribution. Instead, we employ methods that allow us to model such data. In this project,

we adopt the approach introduced by Kaplan and Meier(1958) Kaplan and Meier (1958).

To set the stage for their methods, we begin by defining some key variables. Let T

represent the time until an event of interest occurs. Additionally, we define a variable d to
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represent the number of individuals who experience the event of interest at a particular

time point. Lastly, we introduce a variable n to represent the number of individuals at risk

of experiencing the event of interest at a specific time point. In this context, two

important functions come into play. First, there’s the survival function, denoted as s(t),

which describes the probability that an individual will survive beyond a certain time t

Klein and Moeschberger (2003). Mathematically given as S(t) = Pr(T > t). This function

is characterized as a probability function that equals one at time zero and approaches zero

as time extends to infinity. It is a monotone, non-decreasing function, from the beginning

of the study to its conclusion Klein and Moeschberger (2003).

The hazard function, denoted as h(x), is also a crucial function. It represents the

probability of the event of interest occurring in the next instant, given that the event has

not already occurred before that time Klein and Moeschberger (2003). The hazard function

is a non-negative, monotone, non-decreasing function, and its mathematical expression is

given as:h(x) = P (t≤T<t+δ|t≤T )
δ

. In this formula, t represents the current time, and δ is a

small increment in time.

In medical research among other fields, researchers are mostly interested in comparing

the effectiveness of an intervention across multiple groups Gamel and Vogel (1997). They

want to know if there are significant differences between any pairs of survival distributions.

Several tests have been proposed in literature to aid in achieving this comparison. The

most popular among them is the log-rank test which assigns equal weights to survival times

in its computation Schober and Vetter (2021). This project compares the results from the

log-rank test to another test known as the Peto-Peto test which assigns higher weights to

early survival times Peto and Peto (1972). These two tests help us to better understand
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survival curves as the Kaplan Meier curves just gives us a rough visual comparison of two

survival distributions without telling us if they are significantly different or not Kaplan and

Meier (1958). These tests help us to compare multiple survival distributions to know which

pairs are significantly different. This allow us to conduct multiple hypothesis testing for

multiple survival curves simultaneously. However, when conducting multiple hypothesis

tests simultaneously, the likelihood of committing a Type I error increases as the number of

comparisons increases Lydersen (2021). The family-wise error rate and the false discovery

rate approaches 1 as the number of hypothesis increases but ideally we want to bound the

probability of committing any type 1 error by a pre-defined significance level Bretz,

Hothorn, and Westfall (2016).

Multiple testing procedures provides means of overcoming this issue of multiplicity by

adjusting p-values for effects estimates Lydersen (2021). For this project, we will consider

the Bonferroni method Bretz et al. (2016), Holm procedure Holm (1979), Hochberg

procedure Hochberg (1988), Hommel procedure and, the Benjamini and Hochberg

procedure Benjamini and Hochberg (1995) in mitigating issues associated with multiplicity

in multiple hypothesis testing.

Statistical power which is the probability of correctly rejecting all false null

hypotheses, and is significantly influenced by the use of multiple testing procedures in

multiple hypothesis testing Estimating Statistical Power When Using Multiple Testing

Procedures (2017). This factor directly affects the probability of detecting an effect when it

exists. There exists a trade-off between reducing the likelihood of detecting a true effect

through adjustment and increasing the risk of a false positive when adjustments are not

made Maxwell, Kelley, and Rausch (2008)Zhang and Gou (2016).
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1.2 Estimators Of The Survival and Cumulative Hazard

Functions

A graphical representation of the probability of survival over a designated time period

known as survival curves, are constructed based on observed survival times and censored

data. The utilization of survival analysis techniques, such as the Kaplan-Meier method,

facilitates the comparison of survival curves, offering statistical measures to understand the

significance of observed differences.

1.2.1 The Kaplan Meier Method (KM)-Product-Limit Estimator

The KM method is a very popular method used to model survival data Rich et al. (2010).

It is used in calculating survival probabilities. The KM method calculates the probability

that an event will occur beyond a certain time given the data observed Machin, Cheung,

and Parmar (2006). This probability can be represented graphically as a survival curve,

showing the proportion of individuals surviving at each time point Machin et al.

(2006).The curve begins at 1 and declines over time. The size of each step is determined by

both the number of events and the number of individuals at risk D’Arrigo et al. (2021).

The method involves calculating probabilities based on the observed survival times,

considering the event occurrence or censoring at each time interval Altman (1992). These

probabilities are then multiplied to get the overall survival probability. The KM method

assumes that censoring is non-informative, meaning the probability of being censored is

independent of the probability of experiencing the event of interest D’Arrigo et al. (2021).

This is an important assumption for accurate estimation.
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Mathematically, the Kaplan-Meier estimator is given as:

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)

Where;

Ŝ(t) is the estimated survival probability at time t.

t represents a specific time point.

ti are the distinct observed event times.

di is the number of events of interes that occurred at time ti.

ni is the number of individuals ”at risk” at time ti

Kaplan-Meier curves serve as valuable tools to assess differences between two or more

groups in survival analysis. These curves illustrate how survival probabilities evolve over

time; the farther away the curve is from the vertical axis, the higher the survival

probability of that group. When comparing curves, the greater the deviation from the

vertical axis relative to other curves, the higher the probability of survival. However, it is

essential to perform statistical tests as an additional measure to ensure that observed

differences are not merely due to chance.

Several non-parametric tests are commonly employed for this purpose, including the

logrank test Schober and Vetter (2021), Gehan Wilcoxon test Hazra and Gogtay (2017),

Tarone-Ware test Tarone (1981), Peto-Peto test Peto and Peto (1972), and the

Fleming-Harrington test Fleming and Harrington (1991), among others. For this project,

we focus on two tests: the logrank test and the Peto-Peto test. This tests are commonly
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used and have different approaches to determining significant difference between survival

probabilities.

Figure 1: Kaplan-Meier curve for three treatment groups in a bladder cancer
treatment.Utkarshx27 (2022)

By employing these tests, we can better understand the significance of observed

differences between survival curves. This enhances the reliability of our findings and

ensures appropriate conclusions in survival analysis studies.

1.3 Objectives

• To investigate two non-parametric tests for comparing multiple survival curves.

• Investigate the performance of different p-value adjustment methods.

• Run a simulation study to compare the impact of five p-value adjustment techniques

on type 1 error rates and statistical power when analyzing survival data with

multiple comparisons.
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2 Methodology

2.1 Non-Parametric

2.1.1 Logrank Test

The logrank test is a statistical method used to assess whether significant differences exist

between the survival curves of different groups Peto and Peto (1972)Schober and Vetter

(2018). It is widely regarded as one of the most commonly employed tests for comparing

survival curves Schober and Vetter (2021). In this test, the null hypothesis assumes that

there are no differences in survival distributions of between the groups being compared. It

operates under the assumption of proportional hazards, where weights are equally

distributed for different survival times. It is important to note that the logrank test

evaluates the entire curve rather than focusing on the survival probability at a specific time

point Schober and Vetter (2021). While the test determines statistical significance, it does

not estimate an effect size. For estimating effect sizes, other tests such as the Cox

proportional hazards model are typically used. The logrank test statistic is approximately

distributed as a Chi-square test statistic with degrees of freedom equal to the number of

groups being compared minus one Schober and Vetter (2021).

2.1.2 Peto and Peto Test

The Peto-Peto test is an extension of the Wilcoxon sum rankPeto and Peto (1972). This

test enables the Wilcoxon rank sum test to adapt and handle the uncertainty associated

with censored data. The test suggests a scoring system that accounts for the uncertainty

introduced by censoring. It assigns higher scores or weights to early survival times.
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Weights decrease as the survival time increases. The Peto-Peto test statistic is also

approximately distributed as a Chi-squared test statistic with degrees of freedom equal to

the number of groups being compared minus onePeto and Peto (1972).

Let χ2
(n−1) be the Chi-squared test statistic with k − 1 degrees of freedom;

χ2
(n−1) =

k∑
j=1

n∑
i=1

wi
(Oij − Eij)

2

V arj

j = 1, ..., k groups where

• Oij is the observed number of events in Group j at time i.

• Eij is the expected number of events in Group j at time i.

• V arj is the variance of difference between the observed and expected number of

events for group i

Oij = mij and Eij =
ni1

ni1+ni2
× (mi1 +mi2)

For comparing two groups;

V ari =
2∑

i=1

ni1ni2(mi1 +mi2)(ni1 + ni2 −mi1 −mi2)

(ni1 + ni2)2(ni1 + ni2 − 1)

Where;

• mi1 is the number of failures in group 1 at time i

• mi2 is the number of failures in group 2 at time i

• ni1 is the number at risk in group 1 at time i
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• ni2 is the number at risk in group 2 at time i

To calculate the test statistic for the two methods, The log-rank test assign a weight

wi = 1 and the Peto-Peto test assigns a weight wi =
∏
(1− di

ni+1
).

2.2 Type of errors

There are two common error rates associated with any hypothesis test problem. We have

the type 1 error rate and the type 2 error rates. While the former represents false positives,

the latter represent false negatives. Assume there are m null hypothesis to be tested. The

table below summarizes the type 1 and type 2 errors associated with any test.

summary of the type 1 and type 2 errors associated with any hypothesis test
Hypothesis Not

Rejected
Rejected Total

True U V mo

False T S m−mo

Total W R m

Table 1: A tables summarizing the type 1 and type 2 errors in multiple hypothesis testing.

• R denotes the number of rejected hypothesis

• V denotes the number of type 1 errors.

• R,W and m are observable random variable while S, T, U and V are unobservable

random variables.

In univariate hypothesis testing (m = 1), a test is chosen such that the type 1 error

rate is maintained at a pre-defined significance level. Extension of this idea into multiple

hypothesis problems are possible. Some of there error rates are defined therein;
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2.2.1 Family-wise Error Rates(FWER)

This is the probability of committing at least one type one error Bretz et al. (2016).

Mathematically, it is defined as;

FWER = P (V > 0)

Where V is defined as in Table 1.

As the number of hypotheses increases, we can extend the FWER to allow for the

probability of committing at least k type 1 errors. This is called the generalized

Family-Wise error rate, and given as;

gFWER = P (V > k)

.

2.2.2 False Discovery Rate(FDR)

The FDR is the expected proportion of falsely rejected hypotheses among the rejected

hypotheses Bretz et al. (2016). Mathematically, it is given as:

FDR = E(Q)

where Q = V
R
for R > 0 and 0 otherwise.

where V and R are as defined in Table 1.
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2.2.3 Per-Comparison Error Rate(PCER)

The PCER is the expected proportion of type 1 errors among m decisions Bretz et al.

(2016). Mathematically, it is defined as:

PCER =
E(V )

m

where V and m are defined as in Table 1.

In general, a multiple comparison procedure that controls the FWER also controls the

FDR and the PCER but not vice versa Bretz et al. (2016). That is;

PCER ≤ FDR ≤ FWER

In contrast, FWER controlling procedures are more conservative as compared to FDR

controlling procedures in the sense that they lead to smaller number of rejected hypotheses.

2.3 P-value Adjustment Methods

When conducting multiple hypothesis tests simultaneously, the likelihood of committing a

Type I error increases. The family-wise error rate approaches 1 as the number of

hypotheses increases. The family-wise error rate is the probability of committing at least

one type 1 error P (V > 0), where V is the number of type 1 errors. Therefore, various

techniques exist to manage and control the occurrence of such errors. Ideally we want to

bound the probability of committing any type 1 error by some α. Several post-hoc tests

procedures for pairwise comparison exist. These test includes; Bonferroni, Holm (1979),
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Figure 2: The family-wise error rate against the number of tests across different significance
levels. From this plot we can see that, the family-wise error rate increases with increasing
number of hypotheses and increasing significance level.

Hochberg (1988), Hommel (1988), and Benjamini and Hochberg (1995).

2.3.1 The Bonferroni Method

The Bonferroni correction is a method used to adjust the significance level α of individual

hypothesis tests when multiple tests are conducted simultaneously. It helps control the

overall Type I error rate. When we wish to perform all possible pairs of comparisons, there

are
(
k
2

)
such comparisons, where k is the number of groups to be compared. The

Bonferroni correction assumes the null hypothesis is true for all tests in comparison.

Let α be the family-wise alpha level (overall level of significance). The Bonferroni

correction rejects the null hypothesis for the ith pairwise comparison if;

npi ≤ α
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for all i,

where pi is the p-value of ith pairwise comparison and n is the total number of

comparisons.

2.3.2 Holm Procedure

The Holm procedure is a more powerful improvement of the Bonferroni approach. It

basically consists of repeatedly applying the Bonferroni inequality while testing the

hypotheses in a data-dependent order Holm (1979). Let P(1) ≤ ... ≤ P(m) denote the

ordered unadjusted p-values associated with null hypotheses H(1), ..., H(m). Then, the H(i)

is rejected if P(i) ≤ α
m−j−1

. That is, H(i) is rejected if P(i) ≤ α
m−i+1

and all hypotheses H(j)

preceding H(i) are also rejected.

The Holm’s procedure can be described by the following sequentially rejective test

procedure.

The method: Start testing the null hypothesis associated with the smallest p-value,

and if p(1) >
α
m
, then the procedure stops, and no hypothesis is rejected. Otherwise, H(1) is

rejected, and the procedure continues testing H(2) at a larger significance level α
m−1

. These

steps are repeated until either the first non-rejection occurs or all null hypotheses are

rejected.

2.3.3 Hochberg Procedure

The Hochberg procedure can be seen as a reversed Holm procedure. It uses the same

critical values but in a reversed test sequence Hochberg (1988). H(i) is rejected if there is a
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j = 1, ...,m such that

P(i) ≤
α

m− j + 1
.

Alternatively, the Hochberg procedure can be described by the following sequentially

rejective test procedure. Start testing the null hypothesis H(m) associated with the largest

p-value p(m). If p(m) ≤ α, the procedure stops and all hypothesis H(1), ..., H(m) are rejected.

Otherwise, H(m) is retained and the procedure continues testing H(m−1) at a smaller

significance level α
2
. If p(m−1) ≤ α

2
, the procedure stops and all hypothesis H(1), ..., H(m−1)

are rejected. This iterative step continues until either the first rejection occurs or all null

hypothesis H(1), ..., H(m) are retained. By construction, the Hochberg procedure is more

powerful than the Holm procedure.

2.3.4 Hommel Procedure

The Hommel procedure, introduced by Hommel (1988), is an advanced method for

controlling the family-wise error rate in multiple hypothesis testing scenarios. It applies the

Simes test to each intersection hypothesis of a closed testing procedure (reject H0 if

p(k) ≤ kα
n

for at least one k) Hommel (1988). The Hommel procedure adjusts p-values using

the Simes test, considering the joint distribution of all p-values to determine the

appropriate significance thresholds. It evaluates the entire set of p-values jointly and

determines rejection based on the relationships among them.The procedure rejects the null

hypothesis if any of the following events occur: p3 ≤ α or p2 ≤ 2α
3

and p1 ≤ α
2
or p1

α
3
is

true. Thus if α
2
< p2 <

2α
3

and p1 ≤ α
2
, the Hommel procedure rejects the null hypothesis.

The decision for the individual hypothesis can be performed a simpler way; compute

18



j =maxi ∈ 1, ..., n : pn−1+k >
kα
i
for k = 1, ..., i. If the maximum does not exist, reject all

Hi(i=1,...,n), otherwise reject all Hi with pi ≤ α
j
.

2.3.5 Benjamini and Hochberg (BH) Procedure

The BH procedure is a method for controlling the false discovery rate (FDR), which is the

expected proportion of false rejections among all rejected hypotheses Bretz et al. (2016). It

is not strictly a step-down process like the Bonferroni correction, which controls the

family-wise error rate (FWER). In the BH procedure, H(i) (the i-th hypothesis sorted by

its p-value) is rejected if P(i) ≤ iα
m

. This means that if the i-th p-value is less than or equal

to a critical value based on its rank (i) and the FDR threshold (α), then H(i) is rejected.

The procedure begins by sorting the p-values in ascending order, denoted as

p(1), p(2), ..., p(m). Then, the largest p-value, p(m), is compared with α. If p(m) ≤ α, all

hypotheses are rejected. If p(m) > α, the procedure proceeds to the next smallest p-value,

p(m−1). This continues until a p-value, say p(k), is encountered such that p(k) ≤ kα
m
, at which

point all hypotheses H(1), H(2), ..., H(k) are rejected, while hypotheses

H(k+1), H(k+2), ..., H(m) are not rejected. The BH procedure is indeed a sequentially

rejective test procedure in the sense that it goes through the sorted p-values sequentially

until it finds the cutoff point where the condition for rejection is no longer met. The BH

procedure is an improvement over the Hochberg method, offering more power under certain

conditions while controlling the FDR Benjamini and Hochberg (1995).
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3 Numerical Example and Simulation Study

3.1 Numerical Example

In this section, we demonstrate how the two non-parametric tests discussed above are used

to make comparisons between the survival distributions across different treatment groups.

The example used to demonstrate how these two tests work is on a data from a study which

involved determining the time until recurrence of bladder cancer after receiving one of three

treatmentsUtkarshx27 (2022). The data set is briefly described below and the number of

censored and non censored observations are described in Table 2. Variable description:

• treatment: treatment received (placebo, pyridoxine or thiotepa)

• status: 0=censored , 1=recurrence.

• time: censoring or recurrence time (in months).

Number of events censored or non-censored in each treatment group
Treatment Censored NonCensored
Placebo 15 11
Pyridoxine 12 16
Thiotepa 15 17
Total 42 44

Table 2: The number of bladder cancer participants censored for each treatment group .

To begin, we state our hypotheses:

H0 : Sp(t) = Spy(t) = Sth(t) vs Ha : Si(t) ̸= Sj(t) for atleast one i ̸= j

Where Sp(t), Spy(t), Sth(t) are the time until bladder cancer recurrence after receiving

one of the three treatments (Placebo, Pyridoxine and Thiotepa, respectively)
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Next, we run the two tests (Log-rank and Peto-Peto) on the data with treatment as

the only predictor. The p-values of the pairwise comparisons are adjusted for multiplicity

to control the overall type one error rate. The adjusted p-values based on the different

adjustment methods and the type of non-parametric test applied is summarized in Tables 3

and 4.

Log-rank Test
Adjustment
Methods

Pyridoxine vrs
Placebo

Pyridoxine vrs
Thiotepa

Placebo vrs
Thiotepa

None 0.0003 0.1346 0.0860
Bonferroni 0.001 0.4037 0.2558
Holm 0.001 0.1346 0.1720
Hochberg 0.001 0.1346 0.1720
Hommel 0.001 0.1346 0.1720
BH 0.001 0.1346 0.1290

Table 3: The adjusted pvalues for the different pairwise group comparisons using the log-
rank test across the different adjustment methods.

Peto-Peto Test
Adjustment
Methods

Pyridoxine vrs
Placebo

Pyridoxine vrs
Thiotepa

Placebo vrs
Thiotepa

None 0.0003 0.0559 0.0627
Bonferroni 0.0008 0.1676 0.1881
Holm 0.0008 0.1118 0.0627
Hochberg 0.0008 0.0627 0.0627
Hommel 0.0008 0.0627 0.0627
BH 0.0008 0.0838 0.0627

Table 4: The adjusted pvalues for the different pairwise group comparisons using the Peto-
Peto test across the different adjustment methods

The results after the p-value adjustments show that the survival distributions of

Pyridoxine group is significantly different from the placebo group across all adjustment

methods and tests. When we look at the Pyridoxine and Thiotepa pair, we can observe
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Figure 3: The adjusted p-values for the pairwise comparison for the different adjustment
methods across the two tests.

that these two curves are not significantly different across all the adjustment methods for

the two tests. We can see that the Log-rank test shows higher p-values than the Peto-Peto

tests which may be as a result of how each test assigns scores. The last pairwise

comparison is between the Placebo and Thiotepa groups. We can see from the tables that,

the p-values provide weak to no evidence against the null hypothesis of no difference in

survival distributions. Again, the p-values after adjustment from the Peto-Peto test are

relatively smaller as compared to those from the Log-rank. This again maybe be due to

how these tests assign weights. In general, the Log-rank test and the Peto-Peto test yielded

similar results in terms of detecting significant or non-significant differences between the

curves being compared, suggesting that either test can be used for comparing survival

curves in this context. In general, the p-value adjustment methods help to control the

overflow of type one errors in multiple hypothesis and it is evident from the tables that the

adjusted p-values are higher than the unadjusted p-values and hence the probability of
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false positives are reduced. The Kaplan Meier curves in Figure 1 also help to visualize the

relationships between the survival distributions of the groups.

3.2 Simulation Studies

In this section of the project, we conducted a comprehensive simulation study to compare

the power of five different p-value adjustment methods across two commonly used survival

tests: the log-rank test and the Peto-Peto test. The aim was to evaluate the performance

of these methods under various scenarios, considering different effect sizes and sample sizes.

For each group in the simulation, we modeled the survival distribution using random

samples the Exponential distribution with a rate parameter λ. The survival distribution for

the ith group was represented as;

Si(t) =
1

λi

exp

(
− t

λi

)

where λ represents the rate parameter. We considered multiple scenarios by varying

the rate parameters as follows: λ = (1, 1, 1), (1, 2, 3), (1, 3, 5), (1, 4, 8) .These scenarios

reflected different effect sizes in the survival functions of the respective groups. The

simulations were performed for a range of sample sizes per group: n=10, 25, 50, 100, and

200 with equal allocation across groups. Additionally, we randomly assigned event

occurrences, where approximately 80 percent of observations experienced the event, while

the remaining 20 percent were censored. For each combination of rate parameters and

sample sizes, test statistics were generated based on the respective survival tests under the

alternative hypothesis. The empirical significance level was 0.05 . P-values were extracted
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from each test and subsequently adjusted for multiplicity using the specified adjustment

methods discussed earlier in the project. The power of each adjustment method was

estimated as the proportion rejecting null under the alternative hypothesis for the two

tests. This process was iterated 200 times for each scenario, and the average proportions of

rejected nulls were reported as the estimated power. The simulated power under various

scenarios is summarized in the subsequent tables, providing insights into the comparative

performance of the p-value adjustment methods across different effect sizes,sample sizes

and test.
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4 Results

The provided tables contain estimated power values for both the Log-rank test and the

Peto-Peto test using different adjustment methods across various sample sizes and mean

combinations. A comparison of power values across all sample sizes, mean combinations,

and adjustment methods reveals that the Log-rank test consistently exhibits higher power

than the Peto-Peto test in all instances. These power values allow us to assess how

effectively the two tests detect differences between survival distributions of groups, if such

differences exist.

In general, we expect an increase in statistical power as sample sizes grow larger. This

suggests that larger sample sizes are associated with higher statistical power of tests.

Additionally, when examining individual adjustment methods, there is a continuous trend

of increasing power as sample sizes increase.

Observing the power values in the provided tables, a significant increase is evident as

the distance between the means of the groups increases. Notably, when all group means are

set at 1, the null hypothesis is true in this instance and statistical power is minimal and

represents the probability of a type 1 error. However, as the mean differences between

groups increase, so does the power of the tests. A difference of 3 or more between group

means consistently results in an expected power close to 1 across all tests and adjustment

methods. This observation is an indication that, the two tests considered in this project

efficiently detect differences in survival distributions if they exist. However, it is also

evident that some methods may prove more efficient when differences in means are not

substantial.
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As expected, the Benjamini-Hochberg (BH) adjustment method demonstrates the

highest power values across all tests and sample sizes, followed closely by the Hommel

procedure, with the Hochberg and Holm procedures producing similar power values in

most cases. This similarity can be attributed to their mode of application of these

methods. Conversely, the Bonferroni procedure consistently exhibits the lowest power

among all adjustment methods across the two tests. This can be attributed to the fact that

the Bonferroni method is conservative in nature and hence has lower statistical power.

26



4.0.1 Tables of Statistical Power

Comparison of Adjustment Methods between Log-Rank Test and Peto-Peto

Test

Group Mean Combination 1, 1, 1
2*Sample Size BH Bonferroni Holm Hochberg Hommel

Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto
10 0.0117 0.0083 0.0083 0.0083 0.0100 0.0083 0.0100 0.0083 0.0100 0.0083
25 0.0117 0.0150 0.0117 0.0133 0.0117 0.0133 0.0117 0.0133 0.0117 0.0133
50 0.0233 0.0200 0.0217 0.0150 0.0217 0.0150 0.0217 0.0150 0.0217 0.0167
100 0.025 0.0250 0.0217 0.0167 0.0233 0.0183 0.0233 0.0183 0.0233 0.0200
200 0.035 0.0283 0.0283 0.0233 0.0317 0.0233 0.0317 0.0233 0.0333 0.0250

Group Mean Combination 1, 2, 3
2*Sample Size BH Bonferroni Holm Hochberg Hommel

Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto
10 0.1867 0.1683 0.1617 0.1383 0.17 0.1517 0.1733 0.155 0.175 0.1583
25 0.5 0.44 0.435 0.3667 0.47 0.3983 0.4767 0.415 0.4767 0.4167
50 0.725 0.655 0.645 0.5733 0.7167 0.6317 0.72 0.6383 0.72 0.6383
100 0.8983 0.8667 0.8383 0.7783 0.8983 0.8633 0.8983 0.8667 0.8983 0.8667
200 0.9817 0.965 0.9583 0.9367 0.9817 0.9817 0.9817 0.965 0.9817 0.965

Group Mean Combination 1, 3, 5
2*Sample Size BH Bonferroni Holm Hochberg Hommel

Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto
10 0.4183 0.3817 0.3533 0.3167 0.3967 0.3533 0.4 0.3533 0.4017 0.3583
25 0.7183 0.6733 0.665 0.5933 0.7117 0.645 0.7117 0.645 0.7117 0.65
50 0.885 0.8383 0.8167 0.7783 0.8383 0.8383 0.8383 0.8383 0.8383 0.8383
100 0.9617 0.935 0.915 0.8833 0.9617 0.935 0.9617 0.935 0.9617 0.935
200 0.9983 0.9967 0.9983 0.9867 0.9983 0.9967 0.9983 0.9967 0.9983 0.9967

Group Mean Combination 1, 4, 8
2*Sample Size BH Bonferroni Holm Hochberg Hommel

Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto Log-Rank Peto-Peto
10 0.5583 0.4783 0.4633 0.4017 0.535 0.4467 0.5383 0.4533 0.5383 0.455
25 0.8417 0.805 0.775 0.7333 0.8383 0.8017 0.8417 0.805 0.8417 0.805
50 0.9567 0.9317 0.9117 0.8833 0.9567 0.9317 0.9567 0.9317 0.9567 0.9317
100 0.995 1 0.9917 0.9983 0.995 1 0.995 1 0.995 1
200 1 1 0.9983 0.9983 1 1 1 1 1 1

Table 5: Tables of Statistical Power for the two tests.
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4.0.2 Visualizations of Statistical power

Visual Comparison of Statistical Power of the two Tests Across Adjustment

Methods for Different Sample Sizes and Mean Combinations.

(a) mean=(1,1,1) (b) mean=(1,2,3)

(c) mean=(1,3,5) (d) mean=(1,4,8)

Figure 4: Plots of statistical power of the two tests across different sample sizes, adjustment
methods and mean combinations. These plots show increasing statistical power as sample
size increases. In all cases, the Log-rank tests shows higher statistical power over the Peto-
Peto test. The BH adjustment method shows the highest power, followed by the Hommel
procedure,then the Hochberg method, followed by Holms procedure and the Bonferroni with
the lowest statistical power
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5 Conclusion and Recommendation

5.1 Conclusion

The analysis and the results from both the numerical example and the simulation study

offer valuable insights into the usefulness of the two non-parametric tests discussed in this

project. Additionally, they shed light on the significance of p-value adjustment methods in

controlling the overall type I error rate in multiple hypothesis testing scenarios. Moreover,

the effects of sample size on statistical power and the impact of differences between group

means on the ability of tests to detect significant effects, if they exist, have been

established.

From the numerical example earlier, it became evident that the different choices of

p-value adjustment methods have distinct ways of handling multiplicity. Some methods,

such as the Bonferroni, are conservative, while others, like the BH procedure and the

Hommel procedure, are more liberal. This characteristic of adjustment methods makes

them suitable for their respective uses, highlighting the importance of researchers clearly

defining their end goals and expectations before deciding on a particular adjustment

method.

When comparing multiple survival curves using the two tests discussed in this project,

it is crucial to understand the population or the characteristics of the data being analyzed.

Researchers can opt for either the popular Log-rank test, which assigns equal weights to

each observation, or the Peto-Peto test, which assigns higher weight to earlier observations.

Generally, the Log-rank test and the Peto-Peto test yielded similar results in terms of

detecting significant or non-significant differences between the curves being compared,
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suggesting that either test can be used for comparing survival curves in this context.

The various sample sizes used in this project have demonstrated the importance of

having enough sample size to detect significant differences if they exist. Across all tests and

adjustment methods, it has been shown that an increased number of observations is

associated with an increase in statistical power.

In conclusion, there is a trade-off between statistical power and controlling the overall

type I error rate. It is imperative for researchers to clearly define research goals and make

informed decisions to achieve the best results. Adequate sample size is crucial for detecting

significant differences if they exist

5.2 Recommendations

• Explore additional non-parametric tests: Future studies should consider investigating

a broader range of non-parametric tests for comparing multiple survival curves

beyond the Log-rank test and the Peto-Peto test. Exploring alternative tests could

provide insights into how suitable these methods are for handling different types of

survival data.

• Application to Real-world Data: It is necessary to apply the methods discussed in

this project to real-world datasets that encompasses diverse populations and

conditions. By analyzing real-world data, researchers can assess the performance of

thees methods in different contexts, enhancing our understanding of their

effectiveness and limitations. This real-world application will provide valuable

insights into how these methods perform under various scenarios and inform best
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practices for survival analysis in practical settings.
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