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Abstract

Predictor variables are often collected as both categorical and quantitative

variables, with categorical variables creating rapid growth in model

complexity when creating indicator variables for the levels of each variable,

leading to estimation and interpretation challenges when used in models.

Principal Component Analysis (PCA) provides a method for reducing the

dimension of a suite of variables, retaining much of the original variation.

This research investigates the predictive efficacy of logistic regression using

the scores from a version of PCA for a mix of categorical and quantitative

variables. A dataset from a Portuguese retail bank spanning 2008 to 2013,

featuring customer attributes and socio-economic factors, including the

impact of the financial crisis, is used to demonstrate the reduction of

dimensionality of the suite of predictors and assess the performance of the

resulting logistic regression model to classify deposit subscriber based on the

derived features. This model is compared to a model using the original

variables in terms of its predictive performance.
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1 Introduction

1.1 Motivation

In an era of evolving financial landscapes, predictive modeling has become a

cornerstone for financial institutions seeking to optimize customer engagement and

enhance business profitability. One such domain is the banking sector, where

understanding customer behavior and preferences is paramount for effective product

development and targeted marketing strategies. In this context, the ability to

predict bank term deposit subscriptions holds is critical, as it enables institutions to

tailor their offerings to individual customer needs, optimize resource allocation, and

ultimately foster long-term customer relationships (Su et al., 2006). Our approach

integrates Principal Component Analysis (PCA) and Logistic Regression, two

powerful methods renowned for their efficacy in extracting meaningful patterns from

complex datasets and making accurate predictions. Through this endeavor, we seek

to not only showcase the practical application of advanced analytics in the financial

domain but also contribute to the growing body of knowledge surrounding

predictive modeling in banking.

PCA is typically designed for continuous quantitative data, but for mixed data

containing both quantitative and categorical variables, an extension called Principal

Component Analysis of Mixed Data (PCAmix) can be used to reduce the dimension

of the variables. Its use and interpretation are demonstrated with the example data

set.

1.2 Background

Grzonka et al. (2016) compared classification methods to predict bank deposit

decisions, finding previous campaign effectiveness as the most crucial factor. While

a single decision tree achieved the highest true positive rate, random forests yielded
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the best overall results. Parlar and Acaravci (2017) employed information gain and

Chi-square methods to select key features from the dataset. They compared these

methods using Naive Bayes, demonstrating that a reduced set of features enhances

classification performance. Bahari and Elayidom (2015) proposed a CRM-data

mining framework and examined Näıve Bayes and Neural Networks as classification

models. Their findings suggest that Neural Networks offer superior accuracy

compared to Näıve Bayes.

A bank term deposit, also known as a fixed deposit or time deposit, is a

financial instrument offered by banks and financial institutions where funds are

deposited for a specific period at a fixed interest rate. These deposits typically have

a predetermined maturity date, and the depositor agrees not to withdraw the funds

until the maturity date is reached. In return, the depositor receives interest

payments on the deposited amount, which is usually higher than the interest rates

offered on regular savings accounts. Bank term deposits are commonly used by

individuals and businesses as a low-risk investment option to earn interest on their

savings over a fixed period. The institution that collected these data would have

been interested in using characteristics of clients to be able to determine which are

most likely to use one of these financial instruments.
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2 Data

2.1 Data Collection and Description

The dataset utilized in this study is sourced from the “Bank Marketing” dataset,

compiled by Moro et al. (2014), and publicly accessible via the UCI Machine

Learning Repository. The dataset comprises a total of 41188 observations, organized

into 21 variables. Each observation represents a unique interaction between clients

and a Portuguese retail bank, while the variables capture diverse attributes and

indicators relevant to the banking domain. These variables include both categorical

and quantitative types, reflecting aspects such as customer demographics,

socio-economic factors, and economic metrics. Among the variables, there exists a

binary response variable labeled “y”, indicating whether the client has subscribed to

a term deposit, with possible responses being “yes” or “no”. Additionally, the

dataset consists of 20 explanatory variables, with ten that are categorical and ten

that are quantitative. Table 1 describes the variables in the dataset.

The dataset comprises several categorical variables with distinct levels. For the

variable “job”, representing the type of job, there are 12 levels including “admin”,

“blue-collar”, “entrepreneur”, “housemaid”, “management”, retired”,

“self-employed”, “services”, “student”, “technician”, “unemployed”, and

“unknown”. The “marital” variable, indicating marital status, encompasses four

levels: divorced, married, single, and unknown (where divorced also includes

widowed individuals). Education level, denoted by the “education” variable,

encompasses eight levels: “basic.4y”, “basic.6y”, “basic.9y”, “high.school”,

“illiterate”, “professional.course”, “university.degree”, and “unknown”. For

“default”, indicating whether the client has credit in default, there are three levels:

no, yes, and unknown. The “housing” variable, signifying whether the client has a

housing loan, includes levels of no, yes, and unknown. Similarly, the “loan” variable,
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representing whether the client has a personal loan, has levels of no, yes, and

unknown. The “contact” communication type is categorized into two levels: cellular

and telephone. The “month” variable, referring to the last contact month of the

year, encompasses all twelve months from jan to dec. The “day of week” factor

indicates the last contact day of the week, includes five levels: mon, tue, wed, thu,

and fri. The “poutcome” variable, representing the outcome of the previous

marketing campaign, includes three levels: failure, nonexistent, and success. Finally,

the output variable “y”, indicating whether the client has subscribed to a term

deposit, has levels of yes and no. All missing values were represented as unknown

and that creates an additional category of many of the categorical variables. Before

beginning our data cleaning process, we convert all “unknown” values to “NA”

which better describes the values as missing value. In section 2.2, we describe how

we handled the missing values.

2.2 Data Cleaning

Various techniques are applied to ensure the quality and consistency of the dataset

using the open-source statistical software R (R Core Team, 2023). The “pdays”

variable wasn’t relevant to our research objective so we took it out. The variable

“default” was removed because it had only one level. Including such a variable in

the model can lead to issues during model fitting, such as perfect separation.

Categorical variables are converted to factor versions of the variables to prepare

them for analysis to correctly handle their text coding. We randomly selected 1000

observations for further analysis in order to reduce the computational burden across

the various methods explored. This enables analysis and modeling to proceed more

swiftly due to the use of a smaller, more manageable subset. By taking a random

sample, this ensures that the selected subset is representative of the overall data set.

We ended up with a total of 19 variables, including 18 explanatory variables and
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Table 1: Variable Description
No Variable Names Description Type
1 age Age of the client (years) Quantitative
2 job Type of job (12 levels) Categorical
3 marital Marital status (4 levels) Categorical
4 education Education level (8 levels) Categorical
5 default Has credit in default? (3 levels) Categorical
6 housing Has housing loan? (3 levels) Categorical
7 loan Has personal loan? (3 levels) Categorical
8 contact Contact communication type (2 levels) Categorical
9 month Last contact month of the year (12 levels) Categorical
10 day of week Last contact day of the week (5 levels) Categorical
11 duration Last contact duration (in seconds) Quantitative
12 campaign Number of contacts performed during this

campaign
Quantitative

13 pdays Number of days since the client was last contacted
from a previous campaign

Quantitative

14 previous Number of contacts performed before this
campaign

Quantitative

15 poutcome Outcome of the previous marketing campaign (3
levels)

Categorical

16 emp.var.rate Employment variation rate (quarterly indicator) Quantitative
17 cons.price.idx Consumer price index (monthly indicator) Quantitative
18 cons.conf.idx Consumer confidence index (monthly indicator) Quantitative
19 euribor3m Euribor 3 month rate (daily indicator) Quantitative
20 nr.employed Number of employees (quarterly indicator) Quantitative
21 y Has the client subscribed a term deposit? (2 levels) Categorical
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one response variable on the 1,000 sampled observations.

Figure 1: Plot of missingness patterns in 1,000 observation data set.

In Figure 1, the dark parts represent missing values and corresponds to each

variable. The purpose of this plot is to visually represent missing data patterns

within the dataset. It allows for a quick and intuitive understanding of which

variables have missing values and the extent of those missing values, aiding in the

data cleaning process. The results show that 83 observations were missing on five

variables. Missing values are addressed by employing completion imputation

methods, where the missing values are replaced by the mode of the respective

variable within their class. This step helps maintain the integrity of the data and

prevents bias in subsequent analyses. Figure 1 was made using the R package “mi”

by Gelman and Hill (2011).

2.3 Data Splitting

The sample of 1,000 observations was further divided into training and test sets to

facilitate model training and evaluation. Here, 80% of the data are randomly

selected as the training set (800 observations), while the remaining 20% are

allocated to the test set (200 observations). This ensures that the model is trained
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on a sufficient amount of data while still retaining a portion for independent

evaluation of the trained models.

2.4 Exploratory Data Analysis

In the Exploratory Data Analysis (EDA) phase, we delve into the dataset to gain

insights and understand its characteristics better. Alluvial diagrams show how data

move between categories across multiple dimensions by creating flows or “alluvia”

for each observation or unique combination of results. Quantitative variables are

binned into categories and labeled by the mean of the category. These displays help

find patterns and relationships in the dataset, especially in the presence of multiple

categorical variables. Alluvial plots were created using the R package “easyalluvial”

by Koneswarakantha (2023).

Figure 2: An alluvial plot of the categorical variables against the response variable
for the n=800 training observations.

From Figure 2, we can discern the relationships between different levels of each

categorical variable and their corresponding response outcomes. The plot visualizes

the flow of observations across various levels of categorical predictors, showcasing

how these levels contribute to different response outcomes. For the response, “0”
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represents a client who has not subscribed to the bank term deposit and “1”

represents a client who has subscribed to the bank term deposit. This visualization

aids in understanding the distribution of the response variable across different levels

of categorical predictors and highlights which levels are associated with higher or

lower response rates. As seen, a higher response rate was associated to a client not

subscribing to the bank term deposit. It also shows that most of the clients did not

subscribe, so the overall success rate (0.1175) is quite low, which eventually will

create challenges in the modeling and model evaluation steps.

Figure 3: An alluvial plot of the quantitative variables against the response variable
for the n=800 training observations.

Figure 3 illustrates the flow of observations across different bins or levels of

each quantitative predictor, showcasing how these variables contribute to different

response outcomes. The response outcome has the same meaning as explained in

Figure 2 even though the colors have been switched.
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3 Principal Component Analysis (PCA)

PCA is a widely used tool in data analysis across various fields. Its main objective

is to find a new basis to represent data that highlights its underlying structure while

filtering out noise. This method is utilized for tasks like dimensionality reduction,

data compression, feature extraction, and visualization. By transforming a set of

variables into a set of orthogonal variables called principal components, PCA helps

extract important information and reduce noise in observations. These principal

components represent linear combinations of the original variables and can be

interpreted as projections of the data onto a new coordinate system. Essentially,

PCA seeks to minimize the average distance between data points and their

projections, making it an efficient technique for data analysis and interpretation

(Pearson, 1901). This discussion is based on Autio et al. (2023), which is among

many potential sources for understanding PCA.

3.1 Theory

First, the process of Principal Component Analysis (PCA) is outlined for analyzing

a data set X = [x1, ..., xN ], structured as an N ×M matrix where each column

represents an observation of one of the M variables. Initially, the sample mean

vector x̄ and sample covariance matrix, Σ̂, are defined as follows:

x̄ =
1

N

N∑
i=1

xi (1)

Σ̂ =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T =
1

N
X∼X∼T (2)

Here, X∼ represents the centered data matrix, derived from subtracting the mean

vector from each observation. It is crucial to note the alternative formulation of the

covariance matrix, Σ̂∗, used in some PCA implementations, which employs an
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unbiased estimator:

Σ̂∗ =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T =
1

N − 1
X∼X∼T . (3)

Moving forward, PCA extracts essential information from observations by

computing factor scores as linear combinations of original variables:

y1i = aT1 (xi − x̄), (i = 1, ..., N), where a1 denotes the weight vector for these

combinations for the first PC. The weight vector a1 is optimized to maximize the

sample variance of the new variable under the constraint aT1 a1 = 1. Utilizing

Lagrange multipliers, the optimization problem is formulated as maximizing the

Lagrange function: L(a1, λ1) = aT1Σa1 − λ1(a
T
1 a1 − 1). The remaining principal

components are defined similarly but are constrained to also be orthogonal to one

anoth. This framework explains the mathematical underpinnings of PCA, outlining

its steps from data preprocessing to the derivation of optimized factor scores. A

more detailed proof is found in Kurita (2019).

For each principal component, the weights are eigenvectors of the

decomposition of Σ̂ and the eigenvalues of that decomposition capture the relative

variance of each those PCs. The sum of the eigenvalues equals the trace of the

covariance matrix being decomposed and so the proportion of the total variance of

the original variables accounted for by each PC can be found using this relationship.

3.2 Principal Components

We utilized the quantitative variables from the training dataset to conduct principal

component analysis (PCA). We obtained a total of 9 principal components from the

dataset.

Table 2 shows the loadings of principal components (PC) for 9 variables.

Loadings indicate how much each variable contributes to a particular principal
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component. These loadings are standardized/normalized, allowing for a direct

comparison of the contribution of each variable across components. Here, we see the

first few components (PC1 and PC2) shows more variables having high loadings. For

example, PC1 seems to have high loadings on variables like “age”, “emp.var.rate”,

and “euribor3m”, suggesting it might capture factors related to economic conditions.

Table 2: Principal Components
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
age -0.02 0.56 0.11 0.71 -0.33 -0.24 0.02 -0.01 0.01
duration 0.01 0.08 -0.77 0.34 0.53 0.11 -0.04 0.00 -0.01
campaign -0.10 -0.31 0.56 0.49 0.48 0.35 0.00 0.00 -0.01
previous 0.28 -0.26 -0.18 0.21 -0.51 0.56 -0.45 0.03 0.01
emp.var.rate -0.51 -0.07 -0.08 0.01 -0.10 0.06 -0.08 -0.77 0.34
cons.price.idx -0.39 -0.22 -0.19 0.12 -0.31 0.25 0.69 0.32 0.08
cons.conf.idx -0.10 0.68 0.11 -0.29 0.12 0.63 0.03 0.08 0.12
euribor3m -0.51 0.04 -0.04 -0.03 -0.06 0.05 -0.23 0.00 -0.82
nr.employed -0.48 -0.03 0.00 -0.02 0.03 -0.18 -0.50 0.55 0.43

3.3 Screeplot and biplot

The screeplot (Figure 4) shows the eigenvalues for each principal component (PC)

in the PCA analysis. The eigenvalues are plotted in descending order on the y-axis,

which represents the variance explained by each component. Eigenvalues represent

the total amount of variance that can be explained by a given principal component.

The x-axis represents the component number.

The elbow method looks for the point where the slope of the screeplot changes

abruptly, forming an elbow-like shape. By looking for an “elbow” in the curve, we

can determine the number of principal components where there are diminishing

returns in terms of total variance explained by adding additional components.

Often, components to the left of the elbow explain large portions of the variance,

while those to the right contribute progressively less. The screeplot for the nine

quantitative predictors in the training data shows a sharp elbow at component 2,
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suggesting that the first two principal components capture a Substantial portion of

the variance and that no additional components are needed here.

Figure 4: Screeplot of the eigenvalues for each principal component (PC) identified
in the PCA analysis in the training data on the quantitative predictors.

The biplot (Figure 5) is a graphical tool used to visualize the relationships

between variables and observations (data points) in PCA. The data points (in grey

color) represent the observations in the dataset. Their positions on the biplot are

determined by their scores on the two principal components (PC1 and PC2) used to

create the plot. In this case, points closer together tend to be more similar based on

the principal components.

The vectors (arrows) represent the original variables in the PC-space and are

based on the eigenvectors (loadings). The direction of an arrow indicates how the

original variables contribute to that component. The length of the vector reflects the

amount of variance explained by that component. The ’previous’ variable appears in

the lower right quadrant of the biplot, suggesting a positive association with PC1

and a negative association with PC2. This aligns with the loadings table (Table 2),

where ’previous’ has a positive value (0.28) for PC1 and a negative value (-0.26) for

PC2. In contrast, the “duration” variable is located closer to the origin, indicating a

15



weaker influence from both PC1 (loading of 0.01) and PC2 (loading of 0.08).

Figure 5: Biplot of the PCA of the quantitative predictors in the training data.
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4 Principal Component Analysis of Mixed Data

(PCAmix)

Traditional PCA, as discussed previously, is a powerful technique for analyzing

datasets consisting solely of quantitative variables. However, real-world data often

encompasses a mix of quantitative and qualitative variables. This presents a

challenge for standard PCA, as it cannot directly handle categorical data.

To address this limitation, Principal Component Analysis of Mixed Data

(PCAmix) emerges as a versatile extension. PCAmix incorporates both quantitative

and qualitative variables, allowing for a more comprehensive analysis of datasets

with mixed data types. Chavent et al. (2011) proposed PCAmix as a method for

generating variables to create a version of PCA that can adapt to conventional PCA

(quantitative variables only) or can handle all categorical variables (Multiple

Correspondence Analysis) or a mix of quantitative and categorical variables. It

resembles conventional PCA in that it creates a single set of orthogonal lower

dimensional variables to represent as much variability as possible in the original

data set.

4.1 Theory

In this framework, a real matrix Z of dimension n × p is considered, where n

represents the number of observations and p represents the number of variables.

The key concept is to project the rows of Z onto axes spanned by vectors by

V1, ..., Vr, where r denotes the number of principal components to be retained.

The principal component scores, also known as factor coordinates, are

calculated as the projections of the rows of Z onto these axes. These scores are

stored in a matrix F of size n× r. The relationship between Z, M (inner product

matrix), and V is expressed by F = ZMV . The factor scores matrix F is also
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equivalent to UΛ, where U contains the left-singular vectors and Λ is a diagonal

matrix containing the singular values. The loadings represent the relationships

between the original variables (columns of the data matrix Z ) and the principal

components.

4.2 Principal Components

The principal components for the predictor variables in the training data set were

obtained using the R package “PCAmixdata” by Chavent et al. (2017). The total

number of principal components extracted by PCAmix was forty-four (44), which

relates to the total number of dimensions implied by the mix of 9 quantitative

variables and 9 categorical variables with varying numbers of levels.

Table 3 shows the squared loadings of the first ten principal components

obtained from the PCAmix analysis. These loadings indicate the correlation

between each variable and the corresponding component. The interpretation of

loadings for qualitative variables depends on the levels of the variable. For example,

the “marital” status variable has three levels (married, divorced, and single). This

can influence how we interpret the strength and direction of the association and

other tools are needed to fully understand the new dimensions created from the

categorical variables.
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Table 3: Squared loadings using PCAmix for the predictors in the training data set.
dim 1 dim 2 dim 3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10

age 0.00 0.49 0.14 0.00 0.01 0.02 0.03 0.01 0.00 0.00
duration 0.00 0.01 0.00 0.00 0.00 0.05 0.04 0.04 0.00 0.03
campaign 0.03 0.00 0.01 0.01 0.02 0.01 0.15 0.05 0.00 0.17
previous 0.37 0.04 0.02 0.03 0.31 0.02 0.00 0.02 0.02 0.00
emp.var.rate 0.87 0.00 0.01 0.00 0.05 0.00 0.00 0.00 0.01 0.00
cons.price.idx 0.55 0.06 0.05 0.05 0.11 0.01 0.02 0.00 0.02 0.00
cons.conf.idx 0.05 0.22 0.08 0.27 0.01 0.03 0.08 0.01 0.00 0.01
euribor3m 0.88 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.01 0.00
nr.employed 0.80 0.00 0.02 0.05 0.01 0.00 0.00 0.00 0.02 0.00
job 0.10 0.46 0.52 0.21 0.29 0.51 0.37 0.40 0.39 0.33
marital 0.05 0.24 0.11 0.03 0.00 0.08 0.01 0.05 0.00 0.07
education 0.03 0.13 0.51 0.16 0.18 0.50 0.37 0.13 0.29 0.05
housing 0.00 0.02 0.00 0.04 0.01 0.09 0.00 0.04 0.02 0.08
loan 0.00 0.01 0.00 0.01 0.00 0.02 0.01 0.04 0.01 0.01
contact 0.35 0.02 0.10 0.27 0.01 0.02 0.00 0.02 0.03 0.00
month 0.41 0.32 0.40 0.49 0.29 0.09 0.27 0.37 0.31 0.23
day of week 0.01 0.02 0.02 0.07 0.02 0.01 0.11 0.04 0.16 0.26
poutcome 0.40 0.02 0.02 0.12 0.31 0.06 0.00 0.10 0.03 0.02

4.3 PCAmix Analysis Plots

Having identified the principal components (PCs) from our mixed data analysis

using PCAmix, the next step is to delve deeper into their characteristics and how

they relate to the original data. Visualizations play a crucial role in this exploration.

This section presents various plots generated from the PCAmix analysis to aid in

interpreting the components and understanding the underlying structure of the data.

This scatterplot (Figure 6) depicts the distribution of observations in the space

spanned by the first two principal components (Dimension 1 and Dimension 2)

obtained from the PCAmix analysis. The points are colored according to the

categories of the response variable “y”. The response variable is “Has the client

subscribed a term deposit?” (2 levels: Yes or No). Each point represents a data

point (client) from the original dataset. The position of a point on the x and y axes

reflects its scores on the first two principal components.
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Figure 6: Scatterplot of PCAmix Scores in Dimension 1 and Dimension 2, colored by
the response variable indicating whether the client has subscribed to a term deposit.

There seems to be some minor clustering of the data points. The red points

(clients who did not subscribe) appear to be concentrated, while the blue points

(clients who subscribed) show a little more spread throughout the plot. Coloring by

the response variable helps us investigate whether subscription behavior is reflected

in the positions of the points within the principal component space.

The correlation circle plot (Figure 7) visually represents the correlations

between each numerical variable and the principal components extracted by

PCAmix. The distance of a variable from the center of the circle indicates the

strength of its correlation with the two principal components (PC1 and PC2)

extracted by PCAmix. Variables closer to the center have weaker correlations, while

those further away have stronger correlations (either positive or negative). The

“duration” variable is closer to the center. This confirms a weaker correlation based

on the squared loadings in Table 3 where its squared loading for Dimension 1 was

0.00 and Dimension 2 was 0.01.
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Figure 7: Correlation circle plot illustrating correlations between numerical variables
and principal components in PCAmix analysis for predictor variables in the training
data.

Figure 8 is a plot from the PCAmix analysis that visualizes the levels of the

qualitative variables. The plot represents the categories (levels) of each qualitative

variable as points or symbols within the principal component space. The position of

a point for a specific level indicates how that level contributes to the overall

variation captured by the principal components. From Figure 8, we can also observe

some levels of different variables grouped at certain areas. Levels from different

variables that cluster together in the PCAmix levels plot likely contribute similarly

to the variation captured by the principal components (PC1 and PC2). This

suggests that these levels might share some underlying characteristics that influence

the data in a similar way. For example, if one variable represents “education level”

and another represents “job title,” the levels from both variables might indicate

that certain education levels are typically associated with specific job titles.
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Figure 8: PCAmix Levels Plot: Visualization of qualitative variable levels in the
principal component space.

Figure 9 plots all the variables (categorical or numerical) using squared

loadings. Each variable’s location reflects its “squared loading” on two key

components. Squared loadings act like a strength measure - higher values indicate a

stronger connection between the variable and a principal component. This applies

to both numerical variables (using squared correlations) and categorical variables

(using correlation ratios). We can observe that variables or vectors close to any axis

indicates a high or low contribute to that axis. For instance, “age” and “job”” are

close to the PC2 axis. They represent a higher contribution in the second principal

component than the first principal component. In Table 3, “age” has a squared

loadings of 0.49 for PC2 and 0.00 for PC2. We can see a similar interpretation for

the “job” variable. This has 0.46 for PC2 and 0.10 for PC1. The “month” variable

stays within the distance of both axes. This also indicates a contribution for both

principal components. The “month” variable has a contribution of 0.41 under PC1

and 0.32 under PC2.
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Figure 9: Plot of squared loadings for all variables in PCAmix analysis

Figure 10 shows an alluvial plot of the variables against the first principal

component to help understand the main drivers of the scores of the first PC from

the PCAmix on the predictors in the training data. We arrange the variables

according to their contribution to the first principal component and with a cutoff

value of 0.3, arranged from the least contribution on the left and end with the

highest contribution on the right side. From the alluvial plot, we can see a lot of

direct or straight mapping from the very few variables to the first principal

components, which suggests very strong positive relationships for quantitative

predictors and clear relationships between the levels of the categorical variables and

the PC scores created. The variables in order of importance are “contact”,

“previous”, “poutcome”, “month”, “cons.price.idx”, “nr.employed”, “emp.var.rate”

and “euribor3m”. This suggests that the first PC represents a combination of both

quantitative and categorical variables with much contributions coming from the

quantitative variables such as the “nr.employed”, “emp.var.rate” and “euribor3m”.

Larger values of the first PC are related to higher values of “nr.employed”,

“emp.var.rate” and “euribor3m” variables. They are also related to some levels of

the “month” variable, in particular, June is related to the highest values on this PC
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and May and July often occur with the next highest scores on this PC, while April

is associated with the smallest values.

Figure 10: An alluvial plot of the variables with high contribution against the first
principal component for PCAmix on the training data.

In Figure 11, we again plot an alluvial plot but the variables are against the

second principal component. We also arrange the variables according to the

contribution to the principal component with a cutoff of 0.2, which provides 5

variables in Figure 11. A straight path through the plot indicates that a variable is

strongly associated with a particular category. The bends in the path indicate

potentially less strong relationships. With categorical predictors, the sorting of the

levels might lead to crossing but also there might not be as clear a relationship

shown in the plot because the squared loadings (Table 3) were lower and this PC

explains less variation in the variables than the first PC. The “age” and “job”

variable had a contribution of 0.49 and 0.46 respectively and are the only two

variables with at least 0.40 contribution to the second principal component. Larger
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values of the second PC are related to older age clients in Figure 11. Also, the

“retired” level of the “job” variable is related to the largest value of the second PC

and “student” tends to occur with the lowest values.

Figure 11: An alluvial plot of the variables against the second principal component
for PCAmix on the training data.
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5 Logistic Regression

Logistic regression is a statistical model for a binary (success/failure) outcome that

is driven by a Bernoulli distribution for the response as a function of the probability

of success, π. The probability of success is related to the predictors using the logit

link function, which allows us to predict the probability of a specific outcome based

on one or more predictor variables. The logit function is:

logit(p) = log

(
p

1− p

)
where p represents the probability of success. The logit function transforms the

probability of success from the range (0,1) to the entire real number line (-∞, ∞),

which has units then of log-odds of probability of success and makes it suitable for

modeling with the systematic component of the generalized linear model that

relates the predictors to the log-odds of success.

We used a logistic regression model because the response variable (Y) has only

two levels: “Has subscribed a term deposit” (Yes/No) and we want to predict the

probability of a customer subscribing to a bank term deposit. Logistic regression is

particularly well-suited for this scenario where the outcome variable has two

categories and we’re interested in estimating the probability of belonging to one

category based on the predictor variables.

The theoretical model is given by:

logit(π) = β0 + β1(X1) + ...+ βi(XI) (4)

subscribe ∼ Bernoulli(π) (5)

In the model, logit(π) represents the log-odds of the probability π of a customer

subscribing to a term deposit, β0, β2, to βi are the coefficients of the predictor
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variables, and X1 and XI are the predictor variables, which could be quantitative

predictors or indicator variables that were created from the levels of categorical

predictors. For a categorical predictor with K levels, K − 1 indicator variables must

be created.

5.1 Logistic regression model using the full data

Using all of the available predictors in the logistic regression model and assuming no

interactions are present or needed, the logistic regression model included a

combination of 9 quantitative and 9 qualitative predictor variables. This resulted in

a model with 45 coefficients, which can make interpretation challenging. Table 4

includes the coefficients from the estimated model and an effects plot (Figure 12).

(Fox and Weisberg, 2019) is provided to show the complexity of the model that is fit

in this situation. The effects plot shows the estimated probability of success across

the values in each predictor holding the other variables at their means (quantitative

predictors) or at a weighted average of the results (categorical predictors). While

each term can be interpreted conditional on the others (holding others constant),

the overwhelming number of coefficients makes the model nearly uninterpretable. It

might also be over-fit and suffering from other issues.
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Table 4: Coefficients of the Logistic Regression Model (Full Data)
Coefficients Estimate Std. Error z value Pr(>|z|)
(Intercept) -438.312 332.029 -1.320 0.18680
age 0.01220 0.01950 0.626 0.53160
jobblue-collar 0.63976 0.63091 1.014 0.31057
jobentrepreneur 0.31086 0.94052 0.331 0.74101
jobhousemaid -0.09677 1.22270 -0.079 0.93692
jobmanagement -0.46230 0.67182 -0.688 0.49137
jobretired 1.25613 0.80448 1.561 0.11842
jobself-employed 0.71187 0.75708 0.940 0.34707
jobservices -1.80772 1.17003 -1.545 0.12234
jobstudent -0.03233 0.81004 -0.040 0.96817
jobtechnician 0.84830 0.50296 1.687 0.09168
jobunemployed -2.20543 1.52779 -1.444 0.14887
maritalmarried -0.74216 0.50354 -1.474 0.14051
maritalsingle -0.96996 0.59824 -1.621 0.10494
educationbasic.6y -0.01886 1.34866 -0.014 0.98884
educationbasic.9y 0.65662 0.79365 0.827 0.40805
educationhigh.school 1.94921 0.77638 2.511 0.01205
educationprofessional.course 0.81986 0.86429 0.949 0.34282
educationuniversity.degree 2.07047 0.73127 2.831 0.00464
housingyes -0.33708 0.33107 -1.018 0.30860
loanyes 0.12199 0.47363 0.258 0.79675
contacttelephone -0.66377 0.69488 -0.955 0.33946
monthaug 0.01605 1.03183 0.016 0.98759
monthdec -1.43533 1.76709 -0.812 0.41664
monthjul 0.12411 0.72683 0.171 0.86441
monthjun -1.24693 1.15697 -1.078 0.28114
monthmar 1.56457 1.21375 1.289 0.19739
monthmay -1.06725 0.69239 -1.541 0.12322
monthnov -0.24958 0.99489 -0.251 0.80192
monthoct -0.72901 1.23992 -0.588 0.55657
monthsep -1.51716 1.75051 -0.867 0.38611
day of weekmon 0.62090 0.51888 1.197 0.23145
day of weekthu -0.02575 0.53969 -0.048 0.96195
day of weektue 0.39460 0.51788 0.762 0.44609
day of weekwed 0.94692 0.51439 1.841 0.06564
duration 0.00583 0.00064 9.061 <2e-16
campaign -0.04437 0.08349 -0.531 0.59509
previous 0.87263 0.68468 1.275 0.20248
poutcomenonexistent 1.25169 0.98338 1.273 0.20307
poutcomesuccess 0.75687 0.76760 0.986 0.32412
emp.var.rate -1.31184 1.36265 -0.963 0.33569
cons.price.idx 3.12246 2.23266 1.399 0.16195
cons.conf.idx 0.14897 0.06420 2.320 0.02032
euribor3m -1.36417 1.07279 -1.272 0.20351
nr.employed 0.02908 0.02600 1.118 0.26336
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Figure 12: Effect plot of the logistic regression model on the full data.

One possible issue of including so many predictors in the model is

multi-collinearity, which is a statistical phenomenon that occurs when two or more

predictor variables in a model are highly correlated with each other. Table 5 reports

the variance inflation factors and generalized variance inflation factors for this full

model. The table has four columns and the second column is the GVIF which shows

the VIF values for single degree of freedom predictors and an extension of the VIF

for multi-category predictors called the GVIF (Fox and Weisberg (2019)) for each
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variable. A higher (G)VIF suggests a stronger potential for multi-collinearity,

meaning the variance of that variable’s coefficient might be inflated due to its

correlation with other variables in the model. The next column is the df (degress of

freedom) column. This column shows the degrees of freedom associated with each

variable. Categorical variables with more categories will have higher df values. The

last column displays the adjusted VIF scores. These scores take the original GVIF

values and adjust them based on the degrees of freedom. This adjustment helps to

compare the importance of variables on a more equal footing, especially for

categorical variables with different numbers of categories and provides a value that is

directly interpreted for all the terms as how many times higher the standard error(s)

(SE) of the predictors due to multi-collinearity than they would have been without

it present. So even a value of 1.5 would be worrying with the suggestion that the SE

is 50% larger than it would have been if no multi-collinearity was present.

Based on a threshold of 10 and using the adjusted VIF, the variables that are

highly impacted by multi-collinearity in the model are: “emp.var.rate”,

“cons.price.idx”, “euribor3m” and “nr.employed”. Some of the impacts are quite

extreme and suggest that the variables should not all be used together. But that

high amount of shared information might also suggest that we can usefully reduce

the dimensionality of the predictor space to retain the useful shared information in

some of these predictors.
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Table 5: Variance Inflation Factors (VIF) for the Predictor Variables
Variable GVIF Df GVIFˆ(1/(2*Df))
age 2.741699 1 1.655808
job 15.632133 10 1.147363
marital 2.060938 2 1.198164
education 5.417034 5 1.184067
housing 1.239478 1 1.113318
loan 1.240734 1 1.113883
contact 3.384086 1 1.839588
month 245.440494 9 1.357609
day of week 1.949551 4 1.087031
duration 1.681815 1 1.296848
campaign 1.139730 1 1.067581
previous 8.371005 1 2.893269
poutcome 9.457701 2 1.753664
emp.var.rate 266.800150 1 16.334018
cons.price.idx 104.861310 1 10.240181
cons.conf.idx 6.432055 1 2.536150
euribor3m 182.861780 1 13.522640
nr.employed 226.385271 1 15.046105

A useful summary of the logistic regression models that will help us to compare

different approaches to modeling this response is to measure the percentage of

variation explained by each model. There are a variety of approaches to finding

R-squared values in generalized linear models, but we will use the

“r.squaredGLMM” function from the MuMIn package (Bartoń (2023)). For the full

model using all predictors, the R-squared is 0.6384, which suggests that this model

explains 63.84% of the variation in subscriptions. This suggests that despite the

issues with multi-collinearity and nearly impossible number of interpretations, the

model is good at explaining the variation in the response.
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5.2 Logistic regression model using the first two principal

components

In the previous section, we explored a logistic regression model using the full set of

original variables to predict customer subscription to bank term deposit. However, a

large number of variables, especially those with mixed data types (categorical and

quantitative), can lead to model complexity and potentially hinder its

interpretability.

To address this challenge, we now turn to use the Principal Components, in

particular to PCAmix that can help us condense the original set of variables into a

smaller number of uncorrelated components, capturing most of the relevant

information. To illustrate this idea, we will use a logistic regression model built

using the first two principal components derived from the PCAmix analysis. More

components could be extracted from the original 45 dimensional data, but then the

model complexity is akin to the results using all the predictors and likely many of

those predictors would not be needed. Table 6 shows the coefficients from the

estimated model. For this model using only two principal components, the

R-squared is 0.1767, which tells us that this model explains 17.67% of the variation

in subscriptions. This is quite a bit lower than the model using all the predictors,

but only uses two predictors to attain this amount of variation explained.

Table 6: Logistic Regression Coefficients
Coefficients Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.295 0.1355 -16.93 2.596× 10−64

dim 1 -0.3788 0.04951 -7.652 1.977× 10−14

dim 2 0.03937 0.06672 0.5901 0.5551

Figure 13 shows the effects plot of the logistic regression model using the first

two principal components, which visualizes the relationship between predictor

variables (two principal components) and the estimated probability a customer
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subscribing to a bank term deposit, suggesting that higher values of the first PC are

related to lower probabilities of subscription, controlled for the second PC.

Specifically, for two similar clients differing by 1 standard deviation on the first

principal component (PC1), we estimate that the client with the higher PC1 score

has an estimated mean odds of subscribing to a bank term deposit of exp(-0.3788)

= 0.6847 (95% profile likelihood CI: [0.62, 0.75]), controlling for the second principal

component (PC2).

Figure 13: Effect plot of the logistic regression model with the first two principal
components.
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6 Receiver Operating Characteristic (ROC)

Curve Analysis

In the previous section, we built and evaluated a logistic regression model for

predicting customer subscription to a bank term deposit. While evaluating the

model’s performance using metrics like accuracy or error rate is helpful, a more

informative approach for classification tasks is often Receiver Operating

Characteristic (ROC) curve analysis.

A Receiver Operating Characteristic (ROC) curve is used to study the trade-off

between the true positive rate (sensitivity) and false positive rate (1 - specificity)

across different threshold values. It helps assess the performance of a binary

classifier model. The ROC curves provide a valuable tool to assess the model’s

ability to discriminate between positive (subscribed) and negative (not subscribed)

cases across different classification thresholds.

Figure 14 shows a comparison of two ROC curves for the model with all 18

predictors and the model with the two principal components as the predictor

variables in the training data. The plot was done using the R package “pROC” by

Robin et al. (2011). Figure 14 (a) has AUC (Area under the curve) of 0.95 and a

confidence interval of (0.93, 0.95). Figure 14 (b) also has AUC of 0.74 with a

confidence interval of (0.68, 0.74). By comparing both AUC, the full model has

better performance. Also, the ROC curve for the full model is closer to the upper

left corner than the ROC curve for the two-PCs model. This also indicates that the

model with full data performed better. We would expect both models to perform

well in the data used to estimate the models.
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Figure 14: Comparison of ROC Curves: Full Model vs. Two Principal Components
in the training data
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7 Using the Test Data

We’ve now built and trained (estimated) both models using the training data. The

training data helped us identify patterns and relationships between the features

(predictors) and the target variable. However, the real test is how well these models

perform on unseen data. This is where the 200 observations in the test data set are

used.

Figure 15 shows that the full predictor space logistic model had better

predicted probabilities than the predictions from the PC-score logistic model shown

in Figure 17. Assuming we define a high probability of success as being greater than

0.5 (> 0.5), the correct classification rate in the test data for the two models are

91.5% for Model 1 and 89.5% for Model 2.

7.1 Model 1: Full Data

We evaluate the performance of our logistic regression model trained that was

estimated using all the predictors in the training data by applying that model to

doing prediction in the test data. We obtain predicted probabilities for the test data

from this model. These predicted probabilities represent the likelihood of each

instance belonging to either class 0 or class 1. We then visualize (Figure 15) the

predicted probabilities against the true class labels using a stripchart plot. This plot

helps us understand how well our model’s predictions align with the actual classes

in the test data. The x-axis represents the true class labels, while the y-axis

represents the predicted probabilities. Points are jittered to avoid overlap, and

different colors are used to distinguish between class 0 and class 1.

Figure 15 shows the distribution of predicted probabilities for customer

subscription to a bank term deposit, plotted against the actual truth labels

(subscribed or not subscribed) for Model 1 (full data). Based on the high AUC
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(Figure 16) of 0.92 and narrow confidence interval (0.87, 0.96), we can conclude that

Model 1 using all variables exhibits strong performance in differentiating between

potential subscribers and non-subscribers. This suggests the model effectively

captures the underlying relationships between customer characteristics and their

likelihood of subscribing to a term deposit.

Figure 15: Predicted probabilities vs truth (Model 1: Full Data) in the test data set.

Figure 16: This ROC curve shows the performance of Model 1 (using all variables)
in predicting customer subscription to a bank term deposit on the test data.
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7.2 Model 2: Model with 2 PCs predictors

Model 2 employs a logistic regression model utilizing two principal components

(PCs) as predictors. These principal components are derived from the training

data’s quantitative and qualitative features using PCAmix. Then predicted scores

are generated in the test data using the ‘predict.PCAmix‘ function from PCAmix to

create PC scores for the test data set. The logistic model from the training data is

used to predict with these new PC scores in the test to assess the potential for this

combination of work to predict the probabilities of class membership. The resulting

predicted probabilities are then visualized against the true class labels using a

stripchart plot (Figure 17). This plot helps in understanding how well the model’s

predictions align with the actual class labels, providing insights into its performance.

Similarly for Figure 15, Figure 17 also shows the distribution of predicted

probabilities for customer subscription to a bank term deposit. The ROC curve for

Model 2 demonstrates an Area Under the Curve (AUC) of 0.68 (seen in Figure 18)

with a confidence interval from 0.56 to 0.80. Overall, the ROC analysis suggests

moderate predictive performance for Model 2 in predicting customer subscription to

a bank term deposit on the test data.

Figure 17: Predicted Probabilities vs Truth (Model 2: Model with 2 PCs predictors)
in the test data.
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Figure 18: This ROC curve shows the performance of Model 2 (using two principal
components) in predicting customer subscription to a bank term deposit on the test
data.

Overall, the ROC analysis suggests that Model 1, utilizing all variables,

outperforms Model 2, which relies on only two principal components, in predicting

customer subscription to a bank term deposit on the test data. Therefore, Model 1

may be preferred for its stronger predictive capability.
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8 Conclusion and further studies.

This project investigated the use of logistic regression for predicting customer

subscription to a bank term deposit. We explored two approaches or models. Model

1 is a logistic regression model using all predictors (both quantitative and

qualitative). Model 2 is a logistic regression model using principal components

derived from PCAmix to reduce the dimensionality of the dataset introduced in

Chapter 2.

Our analysis revealed some key findings. Model 1 achieved better predictive

performance as evidenced by ROC curves and stripchart plots and prediction error

rates in the test data set. However, this model also suffered from extremely high

complexity due to the large number of features, making interpretation challenging.

While it explained a substantial portion of the variation in customer subscription

(63.84%), the complexity made it difficult to understand the underlying variables

influencing these predictions. Model 2 offered a more interpretable solution by

utilizing principal components. While its performance was lower, it demonstrates

the potential benefits of dimensionality reduction for model interpretability. It

explained a smaller proportion of the variation (17.67%), but the use of principal

components provided valuable insights into the key drivers (variables) of customer

subscription. In our Model 2 analysis, we found some variables contributing

substantial to the two principal components. There were: “nr.employed (Number of

Employees)”, “emp.var.rate (Employment Variation Rate)”, “euribor3m (Euro

Interbank Offered Rate, 3-month)”, “age” and “job”. These variables influences a

customer to subscribe to a bank term deposit or not.

For further explorations, we suggest a variety of extensions to this work. We

did not consider identifying an optimal number of principal components from

PCAmix or using model refinement techniques to decide how many PCs are optimal

in the logistic regression model. By exploring the number of principal components
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to use in Model 2, we might be better able to find the optimal balance between

dimensionality reduction and information retention.

Similarly, we did not engage in model refinement or variable selection in Model

1. By removing un-needed predictors, this could improve the predictive performance

in the test data set.

For both approaches, all quantitative predictors were assuming to be linearly

related to the response on the link (log-odds) scale and for all variables, we did not

explore potential interactions between variables. This is a strong assumption that

was made to avoid the high complexity that could have been engaged with 18

predictors. For the PC-score approach, this could be more manageable. In further

applications, these modifications could be explored.

Finally, logistic regression is a somewhat restrictive modeling framework and

contains assumptions about the relationship between the predictors and the

response. It provides a model that can be written out but if the interest is purely in

developing a predictive model, approaches such as random forest, gradient boosting

machine, neural networks, and support vector machines could be considered. These

could be compared to the approaches discussed in the work of Moro et al. (2014).
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10 Appendix 1: R-code

knitr::opts_chunk$set(echo = TRUE)

library(ggplot2)

library(dplyr)

library(tidyverse)

library(GGally)

library(ggcorrplot)

library(pander)

library(MVA)

library(MASS)

library(pheatmap)

library(factoextra)

library(arm)

library(caret)

library(gridExtra)

library(tree)

library(ISLR)

library(pander)

library(olsrr)

library(ggResidpanel)

library(PCAmixdata)

library(FactoMineR)

library(mi)

library(effects)

library(car)
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library(easyalluvial)

#remotes::install_github("greenwood-stat/catstats2")

library(catstats2)

library(parcats)

library(PCAmixdata)

library(pROC)

library(GGally)

library(ggthemes)

library(MuMIn)

library(gtsummary)

2 Data

2.2 Data Cleaning

# Getting the data in R workspace and converting unknown to NA

d <- read.table("bank-additional-full.csv", header=TRUE, sep=";",

na.strings = "unknown")

# Removing pdays variable from the dataset

d <- d[, !colnames(d) %in% "pdays"]

# Randomly getting 1000 observation

total_obs <- nrow(d)

set.seed(123)

random_indices <- sample(1:total_obs, 1000)
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dat <- d[random_indices, ]

head(dat)

# Checking or counting missing values in each variable

na_counts <- numeric(length(colnames(dat)))

for (i in 1:length(colnames(dat))) {

na_counts[i] <- sum(is.na(dat[, i]))

}

for (i in 1:length(colnames(dat))) {

cat("Variable:", colnames(dat)[i], "\tCount of NA:", na_counts[i], "\n")

}

# Visualizing the misisng values in each variables

library(mi)

dat %>% as.data.frame() %>% missing_data.frame() %>% image()

# Handling the missing values

Variables with missing values: job, marital, education, default, housing and loan.

We handle these values by using completion imputation techniques.

This means that the missing values have been replaced by the mode of the

respective variable within their class.

## Checking the mode of the covariates with missing values

calculate_mode <- function(x) {

freq_table <- table(x)

mode_value <- names(sort(freq_table, decreasing = TRUE))[1]

return(mode_value)
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}

variables <- c("job", "marital", "education", "default", "housing", "loan")

modes <- sapply(dat[variables], calculate_mode)

print(modes)

pander(modes)

**The provided code replaces NA values with the mode for each categorical variable

in the dataset "dat" and then counts the number of NA values after the replacement.**

variables <- c("job", "marital", "education", "default", "housing", "loan")

for (var in variables) {

mode_value <- names(sort(table(dat[[var]], useNA = "ifany"), decreasing = TRUE))[1]

dat[[var]][is.na(dat[[var]])] <- mode_value

na_count <- sum(is.na(dat[[var]]))

cat("Variable:", var, "\tCount of ’NA’:", na_count, "\n")

}

# Checking (again) all variables with unknown

unknown_counts <- numeric(length(colnames(dat)))

for (i in 1:length(colnames(dat))) {

unknown_counts[i] <- sum(dat[,i] == "unknown", na.rm = TRUE)

}

for (i in 1:length(colnames(dat))) {

cat("Variable:", colnames(dat)[i], "\tCount of ’unknown’:", unknown_counts[i], "\n")

}
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# Count unique value for each variable

sapply(lapply(dat, unique), length)

# Remove the "default" variable from the dat dataset

To prevent this error;

"Error in ‘contrasts<-‘(‘*tmp*‘, value = contr.funs[1 + isOF[nn]]) :

contrasts can be applied only to factors with 2 or more levels"

dat <- dat[, !colnames(dat) %in% "default"]

# Factor the categorical variables

dat$job <- factor(dat$job)

dat$marital <- factor(dat$marital)

dat$education <- factor(dat$education)

dat$housing <- factor(dat$housing)

dat$loan <- factor(dat$loan)

dat$contact <- factor(dat$contact)

dat$month <- factor(dat$month)

dat$day_of_week <- factor(dat$day_of_week)

dat$poutcome <- factor(dat$poutcome)

dat$y <- factor(dat$y, levels = c("no", "yes"), labels = c(0, 1))

str(dat)
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2.3 Data Splitting

# Splitting data into train and test

training_data <- slice_sample(dat, prop = 0.8)

test_data <- anti_join(dat, training_data)

2.4 Exploratory Data Analysis

# Qualitative variables vs response variable (under training data)

alluvial_wide(training_data[, c("job", "marital", "education", "housing", "loan",

"contact", "month", "day_of_week", "poutcome", "y")],

fill_by = "last_variable",

bin_labels = "mean")

# Quantative variables vs response variable (under training data)

alluvial_wide(training_data[, c("age", "duration", "campaign", "previous",

"emp.var.rate", "cons.price.idx", "cons.conf.idx", "euribor3m", "nr.employed", "y")],

fill_by = "last_variable",

bin_labels = "mean")

3 Principal Component Analysis (PCA)

# Standard PCA

quant_training_data <- training_data[c("age", "duration", "campaign", "previous",

"emp.var.rate", "cons.price.idx", "cons.conf.idx", "euribor3m", "nr.employed")]

stan_pca <- prcomp(quant_training_data, scale.=T)

stan_pca$rotation[, 1:9]

pander(round(stan_pca$rotation[, 1:9], 2))
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Screeplot diagram

plot(stan_pca$sdev^2, type="b", xlab="Component Number",

ylab="Eigenvalue (Variance)", main="Screeplot diagram")

Biplot

biplot(stan_pca, col = c("gray", "black"), main="Biplot (PC1 vs PC2)")

4 Principal Component Analysis of Mixed Data (PCAmix)

4.2 Principal Components

# PCAmix on training data

split_td <- splitmix(training_data%>% dplyr::select(-y))

pcamix_td <- PCAmix(X.quanti=split_td$X.quanti,

X.quali=split_td$X.quali,

rename.level=TRUE,

graph=FALSE, ndim=45)

summary(pcamix_td)

4.3 PCAmix Analysis Plots

PCAmix Scores Scatterplot, colored by the response variable.

# New dataframe with y from the training dataset and the score_td dataframe

combined_td_df <- cbind(scores_td_df, y = training_data$y)

color_map <- c("0" = "#FF0000", "1" = "#0000FF")

ggplot(combined_td_df, aes(x = dim_1, y = dim_2, color = factor(y))) +

geom_point() +
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scale_color_manual(values = color_map) + # Apply custom color mapping

labs(x = "Dimension 1", y = "Dimension 2", color = "Response (y)",

title = "PCAmix Scores Scatterplot, colored by the response variable.") +

theme_bw()

# Loadings of the numerical variables

plot(pcamix_td, choice = "cor", main = "Numerical Variables")

# Scores of the levels of the categorical variables

plot(pcamix_td, choice="levels")

# Contributions of all variables

plot(pcamix_td, choice="sqload", coloring.var="type", main = "All variables")

# An alluvial plot of the variables with high contribution against the first

principal component for PCAmix on the training data.

combined_new <- cbind(scores_td_df, training_data)

alluvial_wide(combined_new[, c("contact","previous","poutcome","month",

"cons.price.idx","nr.employed","emp.var.rate","euribor3m", "dim_1")],

fill_by = "last_variable",

bin_labels = "mean")

# An alluvial plot of the variables against the second principal component

for PCAmix on the training data.

alluvial_wide(combined_new[, c("cons.conf.idx","marital","month","job","age","dim_2")],

fill_by = "last_variable",

bin_labels = "mean")
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5 Logistic Regression

5.1 Logistic regression model using the full data

logistic_model <- glm(y ~., data = training_data, family = binomial)

summary(logistic_model)

plot(allEffects(logistic_model), type="response", grid = T)

r.squaredGLMM(logistic_model)

vif(logistic_model)

r.squaredGLMM(logistic_model)

5.2 Logistic regression model using the first two principal

components

logistic_model_pcamix_td <- glm(y ~ dim_1 + dim_2,

data =combined_td_df,

family = binomial)

summary(logistic_model_pcamix_td)

# R-squared for the logistic model with two principal components

r.squaredGLMM(logistic_model_pcamix_td)

# Effects plot

plot(allEffects(logistic_model_pcamix_td), type="response",

ylab = "Estimated probability of subscribing",

grid = T)
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6. Receiver Operating Characteristic (ROC) Curve Analysis

library(gridExtra)

roc_td <- roc(combined_td_df$y, logistic_model_pcamix_td$fitted.values, ci = TRUE)

roc_initial_model <- roc(training_data$y, logistic_model$fitted.values, ci = TRUE)

roc_plot_initial_with_text <- (

ggroc(roc_initial_model, linewidth = 1) +

ggtitle("(a) Plot of ROC (Full Data)") +

geom_segment(aes(x = 1, xend = 0, y = 0, yend = 1), col = "red", alpha = 0.5) +

theme_bw() +

coord_fixed()

)

roc_plot_with_text <- (

ggroc(roc_td, linewidth = 1) +

ggtitle("(b) Plot of ROC \n (two PCs predictors)") +

geom_segment(aes(x = 1, xend = 0, y = 0, yend = 1), col = "red", alpha = 0.5) +

theme_bw() +

coord_fixed()

)

final_plot <- grid.arrange(roc_plot_initial_with_text, roc_plot_with_text, ncol = 2)

final_plot

7. Using the Test Data

# Calculating the prediction rate

# For Model 1: Full Data

predicted_probabilities_full <- predict(logistic_model, newdata = test_data,

type = "response")

54



binary_prediction_full <- ifelse(predicted_probabilities_full >= threshold, 1, 0)

confusion_matrix_full <- confusionMatrix(factor(binary_prediction_full),

factor(test_data$y))

accuracy_full <- confusion_matrix_full$overall[’Accuracy’]

# For Model 2: Model with 2 PCs predictors

split_td <- splitmix(training_data%>% dplyr::select(-y))

pcamix_td <- PCAmix(X.quanti=split_td$X.quanti,

X.quali=split_td$X.quali,

rename.level=TRUE,

graph=FALSE, ndim=45)

split_test <- splitmix(test_data %>% select(-y))

pred <- predict(pcamix_td, split_test$X.quanti, split_test$X.quali)

pred_test_df <- as.data.frame(pred)

names(pred_test_df) <- c("dim_1", "dim_2")

prediction <- predict(logistic_model_pcamix_td, newdata = pred_test_df,

type = "response")

threshold <- 0.5

binary_prediction <- ifelse(prediction >= threshold, 1, 0)

confusion_matrix_pca <- confusionMatrix(factor(binary_prediction),

factor(test_data$y))

accuracy_pca <- confusion_matrix_pca$overall[’Accuracy’]

7.1 Model 1: Full Data

# Predicted probabilities vs truth (Model 1: Full Data) in the test data set.

logistic_model <- glm(y ~ ., data = training_data, family = binomial)
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predicted_probabilities_full <- predict(logistic_model, newdata = test_data,

type = "response")

predicted_probabilities_full_class0 <- predicted_probabilities_full[test_data$y == 0]

predicted_probabilities_full_class1 <- predicted_probabilities_full[test_data$y == 1]

predicted_data_full <- data.frame(Predicted_Probability =

c(predicted_probabilities_full_class0, predicted_probabilities_full_class1),

Truth = rep(c("Class 0", "Class 1"),

c(length(predicted_probabilities_full_class0),

length(predicted_probabilities_full_class1))))

ggplot(predicted_data_full, aes(x = Truth, y = Predicted_Probability, color = Truth))+

geom_jitter(width = 0.2, height = 0, size = 2.5) +

labs(title = "Predicted Probabilities vs Truth (Model 1: Full Data)",

x = "Truth",

y = "Predicted Probabilities") +

scale_y_continuous(limits = c(0, 1)) +

theme_minimal() +

theme(legend.position = "top") +

guides(color = guide_legend(title = NULL)) +

scale_color_manual(values = c("Class 0" = "red", "Class 1" = "blue"))

# ROC Curve for Model 1: Full Data (Test Data)

library(pROC)

predicted_data_full <- data.frame(Predicted_Probability =

c(predicted_probabilities_full_class0, predicted_probabilities_full_class1),

Truth = rep(c("Class 0", "Class 1"), c(length(predicted_probabilities_full_class0),

length(predicted_probabilities_full_class1))))
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plot(roc_data_full, main = "ROC Curve for Model 1: Full Data (Test Data)")

7.2 Model 2: Model with 2 PCs predictors

# Predicted Probabilities vs Truth (Model 2: Model with 2 PCs predictors)

in the test data.

split_td <- splitmix(training_data%>% dplyr::select(-y))

pcamix_td <- PCAmix(X.quanti=split_td$X.quanti,

X.quali=split_td$X.quali,

rename.level=TRUE,

graph=FALSE, ndim=45)

split_test <- splitmix(test_data %>% select(-y))

pred <- predict(pcamix_td, split_test$X.quanti, split_test$X.quali)

pred_test_df <- as.data.frame(pred)

names(pred_test_df) <- c("dim_1", "dim_2")

# ROC Curve for Model 2: 2-PCs predictors (Test Data)

prediction <- predict(logistic_model_pcamix_td, newdata = pred_test_df,

type = "response")

roc_data <- roc(predictor = prediction, response = test_data$y)

plot(roc_data, main = "ROC Curve for Model 2: 2-PCs predictors (Test Data)")

ci_values <- ci.auc(roc_data)

auc_value <- auc(roc_data)

legend("bottomright",

legend = paste("AUC =", round(auc_value, 2), " (", round(ci_values[1], 2),

"-", round(ci_values[3], 2), ")", sep = ""),

col = "black", lty = 1)
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