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Abstract

An effective forecasting approach is paramount in financial analysis and

decision-making. However, the volatile nature of the stock market makes it

challenging, if not impossible, to forecast. This study aims to understand the

underlying dynamics of stock prices, to model the behavior of stock markets

using advanced statistical techniques, and to forecast future movements of

stock prices with a high degree of accuracy. To do this, we adopt a blending

approach (Bröcker & Smith, 2007), which takes a weighted average of the

forecast and historical climatology distribution to predict stock prices with

high accuracy. We built our historical forecast distribution on the training

data using kernel density estimation, followed by the development of a

stochastic volatility model (SVM) in a Bayesian framework. Subsequently, we

developed our blended model by taking a weighted average of the historical

and forecast distributions, progressively decreasing the weight on the forecast

distribution for predictions extending farther into the future. Our preliminary

results based on logarithmic score find that this blended model provides

robust forecasts compared to standalone historical or forecast-based models.
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1 Introduction

1.1 Background

The stock market is a critical backbone of the global economy, offering a potentially

lucrative platform for those who trade within its confines. Understanding its

underlying dynamics is crucial for navigating its complex landscape. However, the

market trends remain one of the most difficult things to predict.

In financial markets, accurate forecasting of stock prices is paramount in

investment strategies and decision-making. These include but are not limited to

hedging, taking advantage of arbitrage opportunities, and many more. The ability

to anticipate or predict market movements can safeguard investment and guide

economic policy. This transcends beyond individual benefits to society and the world

economy at large. Stock markets serve as a conduit for money and liquidity, which

are necessary for economic growth and stability (Chikwira & Mohammed, 2023).

It is undeniable the role the stock market plays in terms of advancing economic

growth. It is one of the two main sources of capital for most companies (equity

financing) – serving as a means of obtaining funds to facilitate the growth of the

company which leads to the creation of jobs and economic growth at large.

This study seeks to understand the stock market behavior and how we can use

this knowledge to predict stock market trends using stochastic volatility models and

historical approaches (kernel density estimation). Volatility is central to many

applied issues in finance and financial engineering, ranging from asset pricing and

asset location to risk management (Joubert & Vencatasawmy, n.d.). Stochastic
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volatility models (SVMs) are non-linear state-space models that enjoy increasing

popularity for fitting and predicting heteroskedastic time series (Hosszejni &

Kastner, 2021). In recent financial econometrics research, stochastic volatility

models have been extensively studied to better capture the underlying dynamics of

market volatility. One notable advancement includes developments such as the

continuous particle filtering technique, which offers a refined and robust alternative

to traditional estimation methods. It simplifies the estimation process of complex

stochastic volatility models, making it particularly suitable for handling the

non-linearities and non-Gaussian features of financial data (Pitt, Malik, & Doucet,

2014). SVMs have been well-studied in statistics and have been used demonstrably

in the development of new statistical methodology.

1.2 Motivation

This project is motivated by a dual desire to both broaden and deepen my

analytical expertise, particularly in the realm of financial market dynamics, and to

stay abreast with the demands of financial markets. At it’s core, the aim of this

project is to foster a comprehensive understanding of time series analysis – an

important component for predicting financial trends. This includes improving

practical abilities in handling and interpreting real-world finance data, alongside

developing sophisticated statistical modeling techniques and pipelines. The

importance of this endeavor extends beyond academic advancement, and is central

to contemporary finance practices. In an era where data reinforces important
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segments such as algorithmic trading, risk evaluation, and portfolio strategy,

mastering time series analysis is an indispensable skill.

1.3 Objectives

The aim of this study has three components. First, we seek to investigate the

complex mechanisms that drive stock price fluctuations, shedding light on the

patterns and behavior of the stock market. Second, we seek to capture and model

stock market behaviors through the deployment of sophisticated statistical methods,

constructing models that can accurately represent these complex systems. Finally,

following from Bröcker and Smith (2007), we aim to leverage a blending approach to

predict stock price movements with enhanced precision. This methodology, which

combines forecasts from multiple models, is central to achieving our goal of

delivering forecasts with a superior level of accuracy, thereby providing valuable

insights into future market trends.
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2 Methodology

This study aims to forecast future movements of stock prices with a high degree of

accuracy. We intend to find a robust model that leverages the strengths of both

predictive and historical insights. Following Bröcker and Smith (2007), we employ a

blending technique that takes a weighted average of the forecast and historical

climatology distribution to predict stock prices with high accuracy. We demonstrate

this technique by applying it to Netflix and Apple stock data.

2.1 Data

Our analysis focuses on stock price movements of Apple and Netflix. To procure

data, we use the quantmod (Ryan & Ulrich, 2024) package in R (R Core Team,

2021), a comprehensive tool tailored for financial data analysis and trading strategy

development. Using tools from this package, we were able to download accurate

historical stock data for both companies, spanning from January 1, 2018, to

November 5, 2023. The dataset encompasses detailed daily trading information,

including the date, opening prices, closing prices, lowest and highest prices of the

day, trading volume, and adjusted prices.

Given the scope of our study, we chose to look at the adjusted prices from the

dataset, as they provide a more accurate reflection of the stock’s value over time,

adjusting for factors like dividends, stock splits, and other corporate actions. We

divided the dataset into training and test subsets:

• The first 1,440 data points of the dataset were designated for training our
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models. This selection allows the models to learn from the historical adjusted

price movements of Apple and Netflix stocks, capturing essential trends and

patterns.

• We reserved the subsequent 30 data points, immediately following the training

data, as our test dataset. This strategic division enables an objective

assessment of the models’ forecasting capabilities, testing their predictions

against actual market performance in a recent period.

2.2 Stochastic Volatility Model

We employed the stochastic volatility model to derive our predictive distribution.

The key feature of the SV model is its stochastic and time-varying specification of

the variance evolution (Hosszejni & Kastner, 2021). Stochastic volatility models

(SVMs) are also crucial for capturing asymmetry and heavy tails in financial

returns, providing a flexible framework for modeling such behavior (Vankov,

Guindani, & Ensor, 2019), and we model this process as:
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yt = ϵt exp(ht/2)

ht+1 = µ+ ϕ(ht − µ) + δt

h1 ∼ Normal

(
0,

σ√
1− ϕ2

)

δt ∼ Normal(0, 1)

ϵt ∼ Normal(0, 1)

yt ∼ Normal

(
0,

ht

2

)
ht ∼ Normal(µ+ ϕ(ht−1 − µ), σ)

Table 1: Parameter Descriptions for the Stochastic Volatility Model (SVM)

Parameter Description
yt Centered returns on the underlying asset: Apple and

Netflix.
ht Log volatility, a latent parameter that evolves over time

according to the model’s dynamics.
µ Mean log volatility, indicating the long-term average

level of volatility in the model.
ϵt Random shock term on the asset returns at time t,

assumed to follow a normal distribution.
δt Shock on the volatility term, representing random

disturbances in the volatility process.

We estimate parameters using a Bayesian approach via Markov Chain Monte

Carlo (Robert & Casella, 2004). MCMC is a flexible technique for parameter

estimation, and is able to handle complex posterior distributions such as our SVM.

As with any Bayesian analysis, we are required to choose prior distributions for our

parameters. The prior distributions that we chose are :
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• The autoregressive coefficient, ϕ, was assigned a Uniform prior distribution

ϕ ∼ Uniform(−1, 1). This choice is delibrate to ensure the stationarity of the

autoregressive process by constraining ϕ within the bounds of -1 and 1.

Stationarity is crucial for the stability and meaningful interpretation of the

model.

• For the volatility parameter, σ, we opted for a Cauchy prior,

σ ∼ Cauchy(0, 5). The Cauchy distribution, with its heavy tails, was selected

to accommodate the potential for large variations in market volatility, a

common characteristic in financial time series data.

• The mean return, µ, was also modeled with a Cauchy distribution,

µ ∼ Cauchy(0, 10), allowing for a wide range of possible values given the

uncertainty surrounding average market returns over long periods.

We fit our SVM using the R package STAN (Stan Development Team, 2023)

2.3 Kernel Density Estimation

We employed kernel density estimation (KDE) to model the distribution of

historical stock prices using the training data. Kernel density estimation is a

non-parametric modeling approach that is used to estimate an empirical probability

distribution for a dataset {x1, ..., xT}. Here, we use KDE to create an empirical

probability distribution for the historical stock prices. For our KDE, we used a

Gaussian kernel, and for the bandwidth (b) estimation we used Silverman’s rule of

thumb (Silverman, 1986). Silverman’s rule of thumb balances the trade-off between
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smoothness and accuracy of the density estimate, and is well-suited for estimating

unimodal probability distributions. Silverman’s rule of thumb, alongside the

Gaussian kernel, allow us to estimate our historical distribution h(x) as follows:

h(x) ≈ 1

bn

n∑
i=1

N(xi, σ
2)

b =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n− 1
5

2.4 Blending

Following Bröcker and Smith (2007) proposition, we blend the forecasts from the

stochastic volatility and KDE models using a weighted average approach to form a

blended forecast model, bt(x). This allows us to leverage the strength between

historical climatology and the forecast from the stochastic volatility model,

therefore creating a more robust forecast that can adapt to different market

conditions. For instance, during periods of high volatility, the stochastic volatility

model might perform better and, therefore, receive a higher weight in the blend.

Conversely, in more stable periods, the kernel density estimation model might

perform more reliably.

bt(x) = wtft(x) + (1− wt)h(x), 0 ≤ wt ≤ 1
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Where wt adjusts the weighting between the two distributions, ft is the forecast

distribution at time t, and h(x) is the historical distribution

2.5 Schemes for Blending Parameters

In developing our blending model, bt(x), we employed two weighting schemes: linear

and exponential decaying weights. Recognizing that stochastic volatility models

tend to decrease in reliability for predictions extended further into the future, we

strategically selected these weights to gradually shift emphasis between models.

Specifically, as the forecast horizon extends, we increase the weight allocated to the

historical model, simultaneously decreasing the weight on the predictive distribution

derived from the stochastic volatility model. This approach aims to balance the

immediate accuracy of stochastic models with the enduring stability offered by

historical trends, optimizing our blended forecasts for both short-term precision and

long-term consistency.

2.5.1 Exponential Decay Weights

We designed the exponential decay weights to give more importance to recent

predictions, diminishing the weights exponentially as we predict farther into the

future. The formula used to calculate the exponential decay weights is given below:

wt = exp(−λt)
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Where:

• wt is the weight assigned to the tth prediction,

• λ is the decay rate, determining the rate at which the weights decrease.

For our analysis, we chose the decay rate, λ to 0.04621 with t = 1, 2, . . . , 30

wt = exp(−0.04621t), t = 1, 2, . . . , 30

2.5.2 Linear Decay Weights

For the linear decay weights, we designed an approach that reduces the weight on

each subsequent prediction by a constant amount. The formula used to derived

these weights is given below:

wt =
N − t

N − 1

Where:

N is the total number of predicted data points, t is the index of the predicted

data point.

For our analysis, N = 30 and the weights are calculated as:
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wt =
30− t

29
, t = 1, 2, . . . , 30

Comparison of Weighting Schemes

Figure 1: Weighting Schemes for the Blended Model: This plot illustrates the linear
(green line) and exponential (red line) decay weighting schemes applied within the
blended forecasting model for stock analysis.
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2.6 Model Evaluation

2.6.1 Logarithmic Scoring

In assessing the performance of our predictive models, we applied the logarithmic

scoring rule as introduced by Good (1952). This method calculates the score as

IGN(xt) = − log(f(xt)),

where f(xt) is the predictive distribution of the stock returns at time t, and xt is the

materialization of the the stock return. A lower logarithmic score corresponds to a

more accurate prediction, providing a quantitative measure of each model’s

performance. The logarithmic scores for each model applied to Apple and Netflix

stock forecasts are graphically represented in Figure 1.

In Figure 2(a), due to the close proximity of the scores, distinguishing the

superior model is challenging. However, for the Apple stock as shown in Figure

2(b), the logarithmic scores shed more light on model performance. The test data’s

low score indicates a close match with the predicted values, which is expected.

Moreover, it is noteworthy that the blended model’s score is consistently lower than

that of the standalone stochastic volatility model, which lends credence to our

hypothesis regarding its superior predictive power. This comparison underscores the

potential benefits of the blended approach in achieving more accurate stock price

forecasts.
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(a) Netflix Stock (b) Apple Stock

Figure 2: Comparative Logarithmic Scoring of Forecasting Models for Netflix (left)
and Apple (right) Stocks. These plots demonstrate the logarithmic scores for each
forecasting model, with lower scores representing more accurate predictions.
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3 Results and Discussion

3.1 Results

The results presented in Figure 3 and 4 show the forecasting performance of the

standalone stochastic volatility model (SVM) and the blended model relative to the

historical data using the two weighting schemes: exponential and linear decaying

weights. This comparative analysis is essential for evaluating the precision and

reliability of each model in predicting the stock returns of Netflix and Apple.

3.1.1 Netflix Stock Performance

From the left plot in Figure 2 (a), we observe that the standalone stochastic

volatility model occasionally underpredicts and overpredicts the stock returns,

demonstrating a deviation from the pattern of the test data at certain points.

However, the blended model, represented by the red line, follows more closely the

actual stock return trajectory, especially during periods of heightened market

volatility. This enhanced performance suggests the blended model’s effectiveness in

predicting stock returns for Netflix stock.

3.1.2 Apple Stock Performance

In the right plot of Figure 2 (b), the Apple stock analysis reflects a similar trend,

with the blended forecasts often mirroring the actual returns more closely than the

standalone SVM. This similarity between the blended forecasts and the actual data

reinforces the robustness of the blended model compared to the standalone SVM.
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The data visualization was enhanced using ggplot2, part of the tidyverse package

(Wickham et al., 2019). The application of the linear decaying weights also mirrors

these results, further reinforcing the robustness of the blended model in capturing

the underlying dynamics of the stock market across the two weighing schemes.

(a) Netflix Stock (b) Apple Stock

Figure 3: Comparative analysis of actual and predicted stock returns for Netflix (left)
and Apple (right) using exponential decaying weights.
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(a) Netflix Stock (b) Apple Stock

Figure 4: Comparative analysis of actual and predicted stock returns for Netflix (left)
and Apple (right) using linear decaying weights.
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4 Conclusion and Future Directions

In conclusion, as evidenced by our results, the blending approach to forecasting,

which combines the forecast and historical distributions through a weighted average,

offers several significant advantages. These include the accuracy and reliability of

our forecasts. Moreover, the blending approach allows for the flexibility of tuning

the model according to the confidence in the forecast versus the historical data

through changing the time dependent blending weights. In this manner, we may

give more weight to the forecast distribution if it is more accurate, and vice versa.

We learned a lot of key lessons throughout this study. Most notably, the

importance of model selection and the integration of diverse methodologies to

address forecasting problems in financial time series data. This journey has

reinforced the notion that a singular model often falls short in capturing the

complexity of stock market behaviors, whereas a blended approach can yield more

refined and robust predictions.

Moving forward, we intend to build upon the foundational work done in this

research. Future improvements include the exploration of local climatologies via

k-Nearest Neighbors algorithms to provide a more informed historical climatology

distribution. Additionally, there is a plan to test different weighting schemes to

improve the robustness of the forecasts, and to consider more advanced stochastic

volatility models such as the SV-GARCH model proposed by Pitt et al. (2014),

which is a hybrid model that attempts to bridge the elements of SV and GARCH

specifications to better accommodate unexpected market movements. We also
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intend to employ the approximate Bayesian computation (ABC) based auxiliary

particle filter proposed by Vankov et al. (2019) which enhances the performance of

filtering and estimation in stochastic volatility models with intractable likelihoods.

This approach proposed by Vankov et al. (2019) will also allow us to approximate

the likelihood function through simulation, enabling effective estimation of the

model parameters and latent space irrespective of how complex the underlying

distribution may be.
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