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Abstract

Missing values are a common phenomenon encountered in datasets,

posing challenges to data analysis. Thus, it becomes important to employ

effective methods for imputing missing values to reduce potential bias in data

analysis. Principal Component Analysis (PCA) is a well-known technique

for reducing data dimensionality. However, there have been instances where

PCA has been used for imputing missing data. In this project, we explore

three different PCA-based methods namely Singular Value Decomposition

PCA (SVDPCA), Probabilistic PCA (PPCA) and Local Least Squares PCA

(LLSPCA). These methods are applied to a dataset with two types of

missingness: missing completely at random (MCAR) and missing at random

(MAR). The performance of these methods will be discussed under the MCAR

and MAR assumptions, for different percentages of missing values in the data.
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1 Introduction

Missing values occur when there is no value recorded for a variable in a data set. There

are various reasons why data can have missing values. Some of these reasons include

human error, data entry errors, respondents failing to provide information during data

collection process, malfunctioning of equipment among others. They are a common

phenomenon in real life data and can pose several challenges to data analysis, such

as bias in results, loss of statistical power and reduction of representativeness of the

data (Hyun (2013)). Therefore, it is crucial to employ effective techniques to impute

missing values prior to data analysis.

Prior to missing value imputation, it is important to investigate the underlying

mechanism that generated the missing values. The types of missing values were first

described by Rubin (1976) and they fall into three categories: Missing Completely at

Random (MCAR), Missing at Random (MAR) and Missing Not at Random (MNAR).

Missing Completely at Random (MCAR) occurs when the probability of missing

values is not related to the observed data. Thus, the missingness is entirely random

and independent of observed and unobserved data. Missing at Random (MAR) occurs

when the probability of missing values depends on the observed data. When missing

values are not categorized as MCAR or MAR, then they are put into the category of

Missing Not at Random (MNAR), which is considered the most difficult mechanism

to work with. For MNAR, the missingness can depend on unobserved variables. The

scope of this project covers MCAR and MAR cases.

When addressing missing values, there are several approaches one could employ.

Common approaches used include deletion and imputation. Some deletion methods

involve removing rows that have missing values from the dataset. However, this

method leads to loss of data, which can subsequently lead to loss of power and

biased estimates. Some common imputation methods also include mean and median

imputation, where missing values within columns of data are replaced with the
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respective column mean and median values. A potential problem here as well is

that these values are then treated as the true values in the analysis, which can also

introduce some bias in the results.

More robust methods for imputation such as mutliple imputation and Principal

Component Analysis (PCA) based methods have been developed to address the

problems of biased estimates and missing data more effectively. In multiple

imputation, proposed by Rubin (1996), missing values are replaced by multiple

plausible values based on the distributions of the variables in the data. The multiple

imputed datasets are then analyzed separately, and the results are combined to

provide more accurate estimates. The estimates from multiple imputation have been

found to result in valid statistical inference (Li et al. (2015)). However, because

multiple datasets need to be generated for the multiple imputation procedures, this

method can be computationally intensive for high-dimensional data (Nguyen et al.

(2023)). Thus, PCA-based methods become useful in this context, as PCA reduces

data dimensionality while capturing important relationships among variables in the

data.

The main objective of this project is to explore three different PCA based

imputation methods namely Singular Value Decomposition, Local Least Squares and

Probabilistic PCA methods. In Section 2, we introduce the concept of Principal

Component Analysis. Then, in Section 3 we explore the three PCA-based methods for

imputation of missing data. Finally, in Section 4, these methods will be implemented

on a data set and their performance will be compared.

2 Principal Component Analysis (PCA) Overview

Principal Component Analysis (PCA) is a commonly used method for dimension

reduction. First introduced by Karl Pearson in 1901 (Pearson (1901)), the goal of
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PCA is to reduce dimensionality of a multivariate dataset, while accounting for as

much variation in the original dataset as possible (Everitt and Hothorn (2011)). A

new set of variables called the principal components are formed, which are linear

combinations of the original variables in the dataset. These principal components

are uncorrelated variables. Additionally, they are ordered, such that the first few

principal components account for the most variation in the original variables (Everitt

and Hothorn (2011)).

Suppose there exist a set of variables in a dataset xT = (x1, ...., xq), then a set

of uncorrelated variables yT = (y1, ...., yq) are formed which are linear combinations

of the original variables, as described below:

y1 = a11x1 + · · ·+ a1qxq

...

yq = aq1x1 + · · ·+ aqqxq

yT is ordered in decreasing order of variance such that V ar(y1) > V ar(y2) > · · · >

V ar(yq). For y1, choose values of aT
1 = (a11, a12, · · · , a1q) that maximizes V ar(y1)

such that
∑n

j=1 a
2
ij = 1. For y2, choose values of aT

2 = (a21, a22, · · · , a2q) that

maximizes V ar(y2) such that

1.
∑q

j=1 a
2
ij = 1 ↔ aT

j aj = 1

2. aT
2 a1 = 0

The second condition implies that y2 is uncorrelated with y1. In general, for the kth

principal component yk, maximize V ar(yk) such that

1. aT
kak = 1

2. aT
kaj = 0 for all j < k
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After the principal components have been found, the subsequent important step

is determining the optimal number of primary components to use. There is no

definitive rule for determining the number of principal components, however, Jolliffe

(2002) suggests keeping enough principal components that account for between 70%

and 90% of the total variation of the variables.

In the next section, we discuss the three PCA-based methods implemented in

this project.

3 Imputation Methods

For this project, three PCA-based imputation methods were implemented, namely

Singular Value Decomposition PCA (SVDPCA), Local Least Squares PCA

(LLSPCA) and Probabilistic PCA (PPCA) methods. We briefly discuss these

methods below. All methods were implemented using the pcaMethods (Stacklies

et al. (2007)) package in R (R Core Team (2023)).

3.1 Singular Value Decomposition PCA (SVDPCA)

In this section, we describe the Singular Value Decomposition PCA (SVDPCA)

method as initially proposed by Troyanskaya et al.. The motivation behind this

method stems from the need to fill in missing values in gene expression microarray

experiments, which often result in data sets with many missing expression values.

This method uses singular value decomposition to obtain principal components from

the data matrix which are then used to impute missing values. In singular value

decomposition (SVD), an m × n data matrix X is decomposed into a product of

three matrices as follows

Xm×n = Um×mΣm×nV
T
n×n (1)
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where U is an m × m orthogonal matrix, Σ is an m × n diagonal matrix with

real non-negative numbers on the diagonal, and V is an n × n orthogonal matrix.

Σm×n = diag(σ1, σ2, · · · , σn) where σ1 ≥ σ2 ≥ · · · ≥ σn.

The columns of V are identical to principal components (PCs) obtained from

a classical PCA procedure. They are sorted according to importance based on the

corresponding eigenvalues in Σ. Then, the k most significant principal components

are identified and selected. Troyanskaya et al. (2001) state that exact number of k

components should be determined empirically. For our dataset, we run a classical

PCA and selected the principal components that account for at least 85% of the

variation in the data. After selecting k, the next step is to impute the missing values

as linear combinations of the k selected PCs, and we describe this process in the next

paragraphs.

For each missing value αi,j in row i = 1, · · · ,m and column j = 1, · · · , n, replace

αi,j in X with ᾱ = 1
n

∑n
j=1 xi,j to obtain X ′, where xi,j represents the data entries in

each ith row across j columns. SVD is then performed on X ′ using 1.

The next step is to choose k significant PCs from V T . For each αi,j in row i, solve

Xi,−j = β0 +
∑k

m=1 βmYm(−j), where Xi,· is the ith row with all elements except the

missing value αi,j and Ym(−j) is the m
th principal component selected from V T except

the jth elements, for m ∈ (1, · · · k). Using the estimated β̂ and the jth elements of

the principal components Ym(j), αi,j is reconstructed as αi,j = β̂0 +
∑k

m=1 β̂mYm(j).

In other words, the missing value αi,j is estimated by regressing Xi,−j against the k

PCs and then using the coefficients of the regression to reconstruct αi,j as a linear

combination of the k PCs. Once all αi,j in X ′ are imputed, the process is then

repeated on the new matrix until total change in matrix falls below a determined

threshold of 0.01.
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3.2 Local Least Squares PCA (LLSPCA)

Similar to the SVDPCA method, the Local Least Squares PCA method was also

developed to impute missing values in gene microarray experiments. Initially

proposed by Kim et al. (2004), the local least squares imputation is based on least

squares formulation, which exploits local similarity structures in the data.

The LLSPCA method imputes missing values of a given row in the data as linear

combinations of k rows with similar features. These k rows are selected using L2-norm

or Pearson’s correlation coefficients. In this project, we will describe the Pearson’s

correlation coefficient method by Kim et al. (2004) , as implemented in the R package

pcaMethods (Stacklies et al. (2007)).

The first step is selecting the k nearest neighbors. For simplicity in the algorithm,

Kim et al. (2004) describes the missing value estimation by assuming a missing value

in the first position of the first row in the data. This missing value is denoted as

g1(1) = α where the first row is denoted as g1. The k -nearest neighbor row vectors

for g1 are also defined as

gT
si
∈ R1×n, 1 ≤ i ≤ k

where si is an index for the selected k -nearest neighbor vectors. For g1, the Pearson

correlation coefficient is between two vectors is found as

rij =
1

n− 1

n∑
k=2

(g1k − ḡ1
σ1

)(gjk − ḡj
σj

)
(2)

where ḡ1 and ḡj represent the mean values for the row vectors gT
1 and gT

j respectively,

and σ1 and σj represent the standard deviation of these respective row vectors. The

columns that correspond to the missing value column are excluded in calculating rij.

Then the k rows with the largest Pearson correlation coefficients in magnitude are

selected.

The following are formed from the k -nearest neighbor rows: matrix A ∈ Rk×(n−1),
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vectors b ∈ Rk×1 and w ∈ R(n−1)×1. The matrix A is formed from the k -nearest

neighbor row vectors with the first elements excluded, b is formed from the first

elements of the k -nearest neighbor row vectors and w is formed from the first row

vector g1 with the missing value. For example, for some N × 4 matrix with a missing

value in the first element of row 1, suppose k vectors are selected, A, b and w are

formed as follows:

α wT

b A

 =



α w1 w2 w3

b1 A1,1 A1,2 A1,3

...
...

...
...

bk Ak,1 Ak,2 Ak,3


Then the least squares problem can be formulated as follows:

min
x

||ATx − w||2 (3)

The missing value α is then estimated using the following linear combination

α = bTx = bT (AT )†w (4)

where (AT )† is the pseudoinverse of AT and x is a vector of the coefficients of the

linear combination obtained from 3.

3.3 Probabilistic PCA (PPCA)

Probabilistic PCA method was introduced by Tipping and Bishop (1999), which

extends the classical PCA method to a probabilistic model. PPCA assumes the data

can be generated by projecting latent variables into a high-dimensional space. The

latent variables are estimated using Maximum Likelihood Estimation (MLE) and

an Expectation-Maximization (EM) algorithm. The PPCA method, as derived by

Tipping and Bishop (1999) is described below.
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For a d-dimensional observation vector t which relates to a corresponding q-

dimensional vector of latent variables x, we have the model

t = Wx + µ + ϵ

where W is a d × q matrix which relates the two variables x and t, x ∼ N(0, Iq)

where Iq is a q-dimensional identity matrix, µ is a d-dimensional mean vector which

permits the model to have non-zero mean, ϵ ∼ N(0, σ2Iq).

This implies that t|x also follows a Gaussian distribution as follows

t|x ∼ N(Wx + µ, σ2Iq)

The marginal distribution of t also follows a Gaussian distribution, where t ∼

N(µ,C), and C = σ2I + WW T . The log-likelihood of t is given as

L =
−N

2
dln(2π) + ln|C|+ tr(C−1S)

where

S =
1

N

N∑
n=1

(tn − µ)(tn − µ)T

S is the sample covariance matrix of observed data {tn}, where n ∈ {1, · · · , N}. The

MLE of µ is the mean of the observed data. MLEs for W and σ2 can be estimated

explicitly or by using an EM algorithm specified by Tipping and Bishop (1999). The

pcaMethods (Stacklies et al. (2007)) package implements the EM algorithm. Once

W and σ2 are estimated, the conditional distribution of latent variables x given

observed data t is given as

x|t = N(M−1W T (t − µ), σ2M−1)
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where M = W TW +σ2M−1. Missing values can then be estimated using the values

of x̂, Ŵ and σ̂2.

4 Results

4.1 Data

Data on food prices for nutrition was obtained from the World Bank Open Data

website . We subset the full dataset to 27 quantitative variables, with no missing

data, describing the cost and availability of diets and food groups for 174 countries

in 2017.

Using missMethods package (Rockel (2022)) in R, missing values were introduced

to this data under Missing Completely at Random (MCAR) and Missing at Random

(MAR) assumptions across different percentages of missingness (10%, 25%, 40%,

55%). The methods described earlier were then implemented to impute the missing

values.

4.2 Performance Measure

To evaluate the performance of the aforementioned methods in imputing missing

values, we utilised the Normalised Root Mean Square Error (NRMSE). The NRMSE

is given by

NRMSE =

√∑n
i=1(yi − ŷi)2

nσ2

where yi represent the observed values in the data, ŷi represents the imputed

values, σ2 is the variance of the observed data, and n is the number of observed data

in each variable.

NRMSE values closer to 0 will indicate higher accuracy of the imputation
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method, while higher values indicate lower accuracy of the imputation method.

4.3 Results for MCAR and MAR for different proportions

of missingness

Different percentages of missing values (10 %, 25 %, 40 %, 55%) were introduced into

the data using missMethods package under the assumption of Missing Completely at

Random (MCAR) and Missing at Random (MAR). Each of the three methods were

implemented in R for 100 iterations and the Normalized Root Mean Squared Errors

(NRMSE) were calculated and stored. For SVDPCA, we chose k = 3 as the most

significant PCs, which accounted for 86% of the variation in the original data. For

LLSPCA, different k values were implemented to determine the optimal k that will

lead to higher performance of the method. We found k = 3 as the optimal number

of nearest neighbors. In the figures below, the results are visualized. The mean and

standard deviations of the NRMSE of each method are presented in Tables 1 and 2

in the appendix. Figure 1 displays the performance of the 3 methods for different

percentages of MCAR values. In this figure, the median NRMSE is highest for the

LLSPCA, followed by PPCA and then SVDPCA. This pattern is consistent for 10%

and 25% missingness, though the NRMSE values are larger across all methods for

25% than for 10%. However, for higher proportions of missing values (40% and 55%),

though the LLSPCA still has the largest median NRMSE, the PPCA outperforms

the SVDPCA.

These patterns are also noticed in the NRMSE values for the Missing at Random

(MAR) scenario in Figure 2 , where LLSPCA has the largest median NRMSE, but

the PPCA outperforms SVDPCA from 40% missing values and beyond.
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(a) 10% MCAR values (b) 25% MCAR values

(c) 40% MCAR values (d) 55% MCAR values

Figure 1: Boxplots showing the Normalized Root Mean Square Error of the methods
for MCAR values at different levels of missing values.
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(a) 10% MAR values (b) 25% MAR values

(c) 40% MAR values (d) 55% MAR values

Figure 2: Boxplots showing the Normalized Root Mean Square Error of the methods
for MAR values at different levels of missing values.
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It is worth noting that the LLSPCA sometimes led to excessively high NRMSE

values for all percentages of missing data. Due to the significant impact of these

values, they were excluded from the dataset for the purpose of visualisation. We

excluded NRMSE values greater than 1.5. For MCAR, 4 values were excluded for

10%, 15 for 25%, 58 for 40% and 55 for 55%. For MAR, 3 values were excluded

for 10%, 7 for 25%, 17 for 40% and 67 for 55%. In the next section, we investigate

possible factors contributing to the poor performance of this method.

4.4 Local Least Squares PCA Challenges

From the results, it was shown that the LLSPCA method performed poorly, compared

to the other methods. To investigate the factors contributing to the performance of

LLSPCA, we investigated how the percentage of missingness as well as the the number

of columns which contain missing values influence the performance of this method.

We explored these for the Missing at Random (MAR) case and each method was

implemented for 100 iterations. The results from these investigations are shown in

the plots below.
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(a) LLSPCA up to 40% (b) LLSPCA for 20% MAR in different columns

Figure 3: Plots of Mean NRMSE for LLSPCA across different percentages of missing
values and missing values in specified number of columns of the data over 100
iterations.

From figure 3(a), we discovered that LLSPCA performs poorly for missing values

beyond 30%. The mean NRMSE values for each percentage are displayed in table

5 in the Appendix. Using this information, missing values were introduced into a

specified number of columns and this was done for 20% missingness. The results are

displayed in figure 3(b), for a specific seed value in R. However, in general, it was

found that that the NRMSE values become unstable when there are missing values

in 17-18 columns or more. Based on this, the performance of LLSPCA was evaluated

with the other methods for missing values that are at or below 20% and only in 16

columns. The results will be presented in the next section.

4.5 Updated Results

Figure 4 now shows that the LLSPCA, although still with a larger median NRMSE

than the two methods, is significantly lower. It is also with noting that no values

were excluded for these visualizations, as the NRMSE values across all 100 iterations

were within reasonable range. These findings imply that, for this data, the number

of columns with missing values as well as the overall percentage of missing values can
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(a) 5% MAR values (b) 10% MAR values

(c) 15% MAR values (d) 20% MAR values

Figure 4: Boxplots showing the performance of the methods after introducing missing
values to 16 columns of the data. Each method was run over 100 iterations.

impact the performance of the LLSPCA method. The SVDPCA and PPCA methods

have results consistent with the results in figure 2, where the SVDPCA shows slightly

lower median NRMSE for lower percentages of missingness (figure 4a and4b), but as

the percentage of missingness increases, the NRMSE for both SVDPCA and PPCA

become roughly the same (figure 4c and 4d).
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5 Discussion

In this project we explored the performance of Singular Value Decomposition PCA,

Local Least Squares PCA and Probabilistic PCA methods in imputing values for

Missing Completely at Random (MCAR) and Missing at Random (MAR) data.

Overall, we found that across all methods, the mean NRMSE values are higher for the

MAR case than for the MCAR case, as expected. Additionally, SVDPCA and PPCA

have similar results for lower percentages of missing values (specifically up to 20%),

implying that either of these methods will be appropriate for imputation of missing

values for lower percentages of missingness. These results hold for both MCAR and

MAR cases. However, for higher percentages of missing values (beyond 20%), the

PPCA method performs better than SVDPCA, implying that PPCA method is more

appropriate for imputing missing values for higher percentages of missingness.

LLSPCA had the highest NRMSE across both MCAR and MAR cases. Our

investigation into the reasons for unusually high NRMSE values revealed that the

percentage of missing values in the data, as well as the number of columns with

missing values can impact the performance of this method. For this dataset, we

found that LLSPCA performs better when the percentage of missingness is less than

30%, and if the missing values are in 16 or less columns out of 27 total columns.

After implementing all three methods with this update, we found that the LLSPCA

performance improved drastically, even though the NRMSE was still higher than that

of the other two methods.

LLSPCA is a method that is found to perform well in other papers, but based on

this project, that may not be the case for all datasets. If this method is implemented

on a dataset and the outcomes are similar to the findings of this project, it can

be worthwhile to further investigate how the percentage of missing values and the

number of variables (columns) with missing values impact its performance.
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Appendix

Method 10% 25 % 40 % 55 %

LLSPCA 0.6687257 5.469468 4.864967 × 109 286256.2
(2.725017) (35.12486) (4.8649678 × 1010) (2555651)

PPCA 0.2365183 0.2462316 0.2510717 0.2606672
(0.03008588) (0.02150488) (0.02066219) (0.01690271)

SVDPCA 0.232038 0.2438552 0.2514775 0.2607766
(0.02793949) (0.02032547) (0.01922548) (0.01731296)

Table 1: Mean Normalized Root Mean Square Error of the 3 methods and (standard
deviations) for different levels of values Missing Completely at Random (MCAR).
The lowest means and standard deviations are in bold.

Method 10% 25 % 40 % 55 %

LLSPCA 6.113699 × 1013 2.955020 × 1011 4.070795 × 1011 2.074265 × 1011

(6.113699 × 1014) (2.955018× 1012) (2.241× 1012) (1.51698× 1014)
PPCA 0.259924 0.2812591 0.24115 0.3338465

(0.02032932) (0.02010198) (0.02228307) (0.02210731)
SVDPCA 0.255321 0.2801688 0.3330018 0.4349711

(0.01907295) (0.01836679) (0.04810779) (0.1050797)

Table 2: Mean Normalized Root Mean Square Error of the 3 methods and (standard
deviations) for different levels of values Missing at Random (MAR). The lowest means
and standard deviations are in bold.
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Method 5% 10 % 15 % 20 %

LLSPCA 0.2722258 0.25022 0.2514673 0.2559868
(0.08160983) (0.04912931) ( 0.04465657) (0.03725447)

PPCA 0.2227678 0.2247663 0.2243388 0.2271396
(0.04320312) (0.03277379) (0.02487691) (0.01954769)

SVDPCA 0.2162115 0.2197251 0.222001 0.2268008
(0.04277343) (0.0309615) (0.02405244) (0.0215927)

Table 3: Updated Average Normalized Root Mean Square Error and (standard
deviations) of the 3 methods for different percentages of values Missing at Random
(MAR), after introducing missingness to only 16 columns and percentages less than
20%. The lowest means and standard deviations are in bold.
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