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Abstract

Latent space cluster models have been developed to analyze network data,

and have been used for many applications. While a dynamic latent space cluster

model has been developed, we propose a more flexible version with a time series

on cluster means. This allows for updated latent positions at each time step.

After testing this model with simulated data, we apply it to model political

division in the United States. We can represent senators as actors in a network

and weight their ties by the number of times any pair votes the same on a bill.

After accounting for senator party, we then model clusters within the Senate

and how they evolve by Congress.
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1 Introduction

Networks are common data structures for relational data. Fundamentally, networks

describe a collection of objects (actors) and the connections between actors (ties). An

illustrative example is a network of social media users and friendship statuses wherein

the users are actors and two users are tied if they share a friendship status. Another

example is Wikipedia articles and hyperlinks to other Wikipedia articles. Here, the

articles are actors and article i has a tie to article j if there is a hyperlink from article

i to article j. We can denote yi,j to be the event that there is a tie between actors i

and j. That is,

yi,j =


1, Actors i and j have a tie

0, Actors i and j do not have a tie

Specifically, yi,j above comes from an undirected network in which if actor i has

a tie with actor j, then conversely, actor j also has a tie with actor i. A directed

network is another form of network in which yi,j is the event that actor i has a tie with

actor j but not the converse; that is, in a directed network yi,j = 1 does not imply

that yj,i = 1. The Wikipedia article example is an example of a directed network

since one article could have a hyperlink to a second article while that second article

can lack a hyperlink to the first. In this paper, we will only be considering undirected

networks, but each of the mentioned models work for directed networks.

The adjacency matrix Y contains the information about ties between actors,

and position (i, j) has the value of yi,j. Given the variety of applications of network

data, there is interest in creating a statistical model for Y . Towards that end, Hoff

et al. (2002) proposed a latent space network model. They introduced the notion of

a latent space which is an assumed space underlying a network in which the closer

any two actors are, the more probable that there is a tie between these two actors.
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This underlying space is often euclidean with arbitrary dimension. The latent space

network model is given by:

yi,j|Zi,Zj, xi,j, α, β ∼ Bernoulli(pi,j)

log odds(pi,j) = α + β′xi,j − |Zi −Zj|,

where Zi and Zj are the latent positions for actors i and j, xi,j is some pairwise

covariate between actors i and j, and pi,j is the probability of there being a tie between

actors i and j (Hoff et al., 2002). Here, yi,j follows a Bernoulli distribution in which

the log-odds of pi,j depends on a linear model in which α is the intercept term and

β is the coefficient for xi,j. In addition, the distance between the latent positions of

actors i and j, |Zi−Zj|, is subtracted to incorporate the inverse relationship between

the probability of a tie and the distance between actors within the latent space. It

is important to note that this model can be analyzed using a Bayesian framework.

We can put Gaussian priors on α, β, and the latent positions, and estimate Y using

posterior means obtained from a Monte Carlo Markov Chain algorithm.

Sometimes, actors can have weighted ties between each other. This can be useful

for modeling networks in which a pair of actors can have several ties between each

other. This only requires a slight adjustment to the latent space network model

defined above:

yi,j|Zi,Zj, xi,j, α, β ∼ Binomial(ni,j, pi,j)

log odds(pi,j) = α + β′xi,j − |Zi −Zj|,

where ni,j is the binomial size parameter and is the maximum number of ties between

actors i and j, and pi,j is the probability of a single tie between actors i and j. The size

parameter is typically known or assumed. The log-odds of the probability parameter

is modeled the exact same way.
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Handcock et al. (2007) provide a further refinement by incorporating the notion

of clustering into the latent space network model and proposed the latent space cluster

model. This model allows for the possibility that within the latent space, there are

groups of latent positions clustered together. That is, clusters can capture trends of

groups of actors having on average a higher probability of having ties among actors

within their cluster than without. The latent space cluster model is given by:

log odds(yij = 1|Zi,Zj,X,β) =

p∑
k=1

xk,i,jβk − |Zi −Zj|

βk
iid∼ N(ξk, ϕ

2
k), k = 1, . . . , p

Zi
ind∼

G∑
g=1

λgMVNd(µg, σ
2
gId), i = 1, . . . , n

µg
iid∼ MVNd(0, ω

2Id), g = 1, . . . , G

σ2
g

iid∼ σ2
0Inv − χ2

α, g = 1, . . . , G

(λ1, . . . , λG) ∼ Dirichlet(ν1, . . . , νG)

This model assumes there are G clusters in the latent space of dimension d, so

Zi
ind∼

∑G
g=1 λgMVNd(µg, σ

2
gId) where λg is the mixing probability of cluster g, µg is

the center of cluster g in the latent space, and σ2
g is the variance parameter of cluster

g. During model fitting G is fixed, but Handcock et al. (2007) note that choosing

the number of clusters can be treated as a model selection problem. This model can

easily be extended to include weighted ties in the exact same way as described earlier

where yi,j ∼ Binomial(ni,j, pi,j).

Other researchers have developed latent space models that change over time

called dynamic latent space network models. That is as time progresses, the ties

within a network might also change. Sarkar and Moore (2005) proposed the first

dynamic latent space model and others such as Sewell and Chen (2015) have offered

other renditions.
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2 Model

We propose a new dynamic model that incorporates clustering in which the

probability of there being a tie between actors i and j depends on k pairwise covariates

at time t and the distance between these actors’ latent positions at time t. This

model assumes G clusters within the latent space of dimension d. The following is

our proposed dynamic latent space cluster model:

log odds(yijt = 1|Zit,Zjt,X,β) =

p∑
k=1

xk,i,j,tβk,t − |Zit −Zjt|

βk,t
iid∼ N(ξk, ϕ

2
k), k = 1, . . . , p

Zit
iid∼

G∑
g=1

λgtMVNd(µgt, σ
2
gtId), i = 1, . . . , n

σ2
gt

iid∼ σ2
0Inv − χ2

α, g = 1, . . . , G, t = 1, . . . , T

(λ1t, . . . , λGt)
iid∼ Dirichlet(ν1, . . . , νG), t = 1, . . . , T

µ·,t= ϕµ·,t−1 + ε·,t ε·,t
iid∼ MVNd(0, ω

2Id)

µg,1
iid∼ MVNd(0, ω

2Id)

ϕ ∼ Unif(−1, 1)

Here the prior on the latent positions depends on λgt, the proportion of latent positions

belonging to cluster g at time t; µg,t, the cluster center for cluster g at time t; σ2
gt,

the variance parameter for cluster g at time t; and ϕ a first order auto-regressive

coefficient. This model allows for clusters to have different sizes and spreads. The

cluster centers at time t depend on its center at the previous time, t− 1. We assume

that the variance of the cluster means is stable over time. It is important to include

ϕ in the model because without it, the expected squared distances between cluster

means from one time point to the next increases; that is, the cluster means follow a

random walk across time, grow farther and farther apart, and hence lack stationarity
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without ϕ (i.e. ϕ = 1). Lemma 2.1 and the following proof demonstrate this fact.

Lemma 2.1. Given the dynamic latent space cluster model, the squared distance

between cluster means achieves stationarity if the value of the first order auto-

regressive coefficient is between zero and 1: 0 ≤ |ϕ| < 1. We call d0 = µ1,t − µ2,t, the

distance between cluster means at time point t.

Proof. For one dimension,

E
[
(µ1,t+1 − µ2,t+1)

2
]
= E

[
(ϕµ1,t + ε1,t)− (ϕµ2,t + ε2,t)

2]
= E

[
(ϕµ1,t − ϕµ2,t)

2 + (ε1,t − ε2,t)
2
]

= E
[
ϕ2(µ1,t − µt)

2
]
+ 2E [ϕ(µ1,t − µ2,t)(ε1,t − ε2,t)] + E

[
(ε1,t − ε2,t)

2
]

= ϕ2d20 + 2ϕE [µ1,t − µ2,t]E [ε1,t − ε2,t] + E
[
ε21,t − 2ε1,tε2,t + ε22,t

]
= ϕ2d20 + 0 + 2E [ε1,t]E [ε2,t] + E

[
(ε1,t − 0)2

]
+ E

[
(ε2,t − 0)2

]
= ϕ2d20 + 0 + V(ε1,t) + V(ε2,t)

= ϕ2d20 + 2ω2

Thus, the expected squared distance depends on ϕ2. For |ϕ| = 1, the expected

squared distance will always increase over time: E [(µ1,t+1 − µ2,t+1)
2] = d20 + 2ω2.

With 0 ≤ |ϕ| < 1, the expected squared distance at time t depends only on a fraction

of the previous time’s expected squared distance in addition to 2 times the variance

of ε. This result generalizes to dimension d > 1, but we do not show those results

here.

To illustrate the effect of values of ϕ, we simulated the distance between 1000

pairs of cluster means over 100 time steps. In Figure 1 top left, the average distance

increases over time with a value for ϕ of barely greater than 1. In the top right,

ϕ = 1 as was in the initial model, the distance still lacks stationarity as previously
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described. For the values of ϕ that are less than 1 in the bottom left and right, there

is no trend in the distances as time progresses, and stationarity is enforced.

Figure 1: Average distance between cluster means across time for different values of
ϕ.

3 Simulation Study

In order to test and study our model, we developed a simulation study in R (R Core

Team, 2024) using nimble (de Valpine et al., 2017, 2024). The goal of our simulation

study was to confirm that our model can recover the data generating values, and to

examine the impact of our hierarchical time series structure on inference compared

to the latent space cluster model of Handcock et al. (2007).

For the simulation, we first chose a sample size of n = 100, a latent space

dimension of d = 2, number of clusters G = 2, and 9 time steps. First, we

randomly generated values for the two cluster means and randomly chose values

for the beta coefficients from Unif(1, 5), ω =
√
2, and ϕ = 0.5. Second, we

8



randomly generated symmetric covariate matrices X1 and X2 whose elements are

1 or 0 for each time step. Finally, we randomly assigned cluster ids to the actors

and simulated latent positions for all 100 actors from a multivariate normal with

mean depending on the cluster mean according to cluster id for the first time point

and covariance matrices as 0.05I2 regardless of cluster id. For the subsequent 8 time

points, the cluster mean was that of the previous time step weighted by ϕ with

some additional noise from a multivariate normal distribution with mean zero and

variance ω. Then, we generated the response matrix (adjacency matrix) Y from

Yi,j,t ∼ binomial(Nij, logit
−1(X1i,j,tβ1 +X2i,j,tβ2 − |Zi,t − Zj,t|)).

Table 1 gives the true, simulated values and estimates calculated from the

posterior mean for each parameter as well as the bounds generated from a 95% credible

interval. On average, the model estimates the parameters accurately for β1, β2, ϕ,

σ2
1, σ

2
2, λ1, and λ2. There are two exceptions however; the posterior means for σ2

1 and

σ2
2 at time point 1 are notably distant from the true, simulated value. Additionally,

the posterior mean for ω, the variance parameter for cluster means is over estimated

because we only simulated 2 clusters. As the number of clusters increases, so will

the accuracy for the ω posterior mean keeping all other parameters constant. The

traceplots for each of these parameters as well as the distances between cluster means

and latent positions converge to the true simulated value (with the exception of ω

and can be found in the appendix.

Latent positions and cluster mean location estimates are unidentifiable

parameters, but the distances between these positions and means are. That is, the

actual coordinate location for each of these parameters is inconsequential to the model

since likelihood depends on the distance between the latent positions. Table 2 shows

how well the simulation captured these distances. For this one simulation, the true

latent position distances are captured approximately at or above 95% for each time

step.
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Because the coordinate locations of latent positions and cluster means are non-

identifiable, visualizing the posterior means for these positions is challenging as the

latent positions will almost certainly be oriented differently from their cluster means.

To ameliorate this problem for the sake of visualization, we rotated the latent positions

and cluster means using the same rotation matrix in a procrustes transformation (Hoff

et al., 2002). Figure 3 shows the true, simulated latent positions and cluster means.

Figure 3 shows the procrustes transformed posterior mean latent positions and cluster

means. The locations on the axes are different between 2 and 3 as well as the general

orientation of the points in particular for time points 6 and 8, but the distances

between latent positions and cluster means are preserved.
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Figure 2: True, simulated latent positions colored by cluster id with cluster means as
the black diamonds.
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Figure 3: Procrustes transformed cluster means as the black diamonds and posterior
mean latent positions colored by posterior mean cluster id.
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β1 Time Step Truth Lower Bound Estimate Upper Bound

1 4.348 4.331 4.342 4.355
2 2.283 2.244 2.272 2.285
3 3.721 3.621 3.712 3.730
4 3.793 3.713 3.782 3.799
5 2.828 2.823 2.832 2.842
6 3.806 3.789 3.799 3.815
7 2.663 2.645 2.653 2.663
8 2.213 2.203 2.209 2.217
9 4.506 4.378 4.493 4.519

β2 Time Step Truth Lower Bound Estimate Upper Bound

1 1.476 1.468 1.475 1.484
2 4.608 4.565 4.587 4.607
3 4.812 4.663 4.791 4.818
4 3.814 3.730 3.810 3.827
5 3.063 3.055 3.064 3.075
6 2.798 2.787 2.796 2.806
7 4.369 4.349 4.360 4.379
8 1.441 1.434 1.441 1.447
9 4.453 4.321 4.442 4.467

ω Time Step Truth Lower Bound Estimate Upper Bound

NA 1.414 1.737 2.997 4.87

ϕ Time Step Truth Lower Bound Estimate Upper Bound

NA 0.5 0.153 0.489 0.818

σ2
1 Time Step Truth Lower Bound Estimate Upper Bound

1 0.05 0.034 0.817 9.145
2 0.05 0.037 0.051 0.067
3 0.05 0.039 0.054 0.072
4 0.05 0.040 0.055 0.072
5 0.05 0.039 0.053 0.071
6 0.05 0.023 0.064 0.093
7 0.05 0.035 0.083 0.071
8 0.05 0.028 0.477 5.082
9 0.05 0.031 0.044 0.056
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σ2
2 Time Step Truth Lower Bound Estimate Upper Bound

1 0.05 0.033 0.100 0.589
2 0.05 0.034 0.048 0.063
3 0.05 0.034 0.048 0.064
4 0.05 0.038 0.052 0.070
5 0.05 0.035 0.048 0.064
6 0.05 0.025 0.066 0.096
7 0.05 0.034 0.051 0.071
8 0.05 0.032 0.068 0.143
9 0.05 0.040 0.056 0.076

λ1 Time Step Truth Lower Bound Estimate Upper Bound

1 0.5 0.003 0.459 0.606
2 0.5 0.423 0.520 0.617
3 0.5 0.422 0.519 0.615
4 0.5 0.422 0.519 0.615
5 0.5 0.423 0.519 0.616
6 0.5 0.241 0.499 0.759
7 0.5 0.379 0.489 0.597
8 0.5 0.003 0.423 0.664
9 0.5 0.422 0.520 0.615

λ2 Time Step Truth Lower Bound Estimate Upper Bound

1 0.5 0.394 0.541 0.997
2 0.5 0.383 0.480 0.577
3 0.5 0.385 0.481 0.578
4 0.5 0.385 0.481 0.578
5 0.5 0.384 0.481 0.577
6 0.5 0.241 0.501 0.759
7 0.5 0.403 0.511 0.621
8 0.5 0.336 0.577 0.997
9 0.5 0.385 0.577 0.578

Table 1: The true value, lower bound from a 95% credible interval, posterior mean
(estimate), and upper bound from a 95% credible interval for each parameter.
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Time Step Latent Positions Cluster Means

1 0.982 1.000
1 0.949 1.000
1 0.958 1.000
1 0.984 1.000
1 0.981 1.000
1 0.979 1.000
1 0.960 1.000
1 0.962 1.000
1 0.963 1.000

Table 2: Percentage of credible intervals of the distances between simulated latent
positions and cluster means containing the true latent position and cluster mean
distances from the single simulation. In the future, true coverage should be calculated
for many simulations.

4 Data

Our motivating application is modeling political division within the United States

Senate. Every two years, a subset of senators are replaced with new senators after

the conclusion of their six year term. These two year periods are called Congresses,

during which senators vote on hundreds of bills. If we treat each Congress as a time

step, senators as actors, and ties between senators as when two senators both vote

”yea“ (affirmative) or ”nay“ (negative) on a bill as a tie, we can model the probability

of ties between senators using the dynamic latent space cluster model developed here.

It is important to note that for each of the Congresses that we have inspected,

each senator has voted the same as each of the other senators as least once, so we

weight the ties by the number of times these pairs of senators voted in agreement.

Hence, the (i, j, t)th cell from the three dimensional adjacency matrix, Y in this

context must follow a binomial likelihood whose count parameter is the (i, j, t)th

cell from the three dimensional array we call N . That is, position (i, j, t) from N is

the number of times senators i and j participated in voting on the same bill during
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Congress t, and position (i, j, t) from Y is the number of times senators i and j both

voted either “yea” or “nay” during Congress t.

We acquired senator voting data from Senate.gov (United States Senate, 2023)

for the 101st Congress (January 1989 - January 1991) through the 117th Congress

(January 2021 - January 2023). This data contains the name and party of each

senator for each Congress as well as their vote for each bill. For each Congress, we

calculated the number of times each pair of senators voted the same on a bill and

number of times they voted on the same bill to populate Y and N respectively. We

also created two covariates, X1 and X2, in which cell (i, j, t) denotes senators i and

j at Congress t are both Democrats for X1 and Republicans for X2.

We were only interested in investigating voting trends among Democrats

and Republicans so we removed independent senators. Another complication is

occasionally, during a given Congress, some senators pass away, resign, or are

appointed to other government rolls, and in these cases, their tenures ends early.

Special elections are held, and newly elected senators serve the rest of the term. This

means that the dimension of Y , N , etc. vary from Congress to Congress and that

must be incorporated in the analysis of the model.

5 Application

We input this data into our model, ran it in R (R Core Team, 2024) using nimble

(de Valpine et al., 2017, 2024) with 10000 iterations with a initial burnin of 2000

iterations. Table 3 shows the posterior means for β1 and β2 as well as the 95% credible

intervals. A notable result is that for the 17th time step which corresponds to the

117th congress (January 2021 - January 2023), the credible interval for β1 associated

with the covariate that both senators are either Democrat or not is noticeably greater

than that for β2 associated with the covariate that both senators are either Republican
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or not. This seems to indicate, that for this Congress, there is greater impact towards

whether or not two senators vote the same on a bill during the 117th Congress

if both senators are Democrat than Republican. This can be seen by Figure 4

bottom right. The squares (Republican latent position) have a greater spread than

the circular points (Democrats). Since the Democrats appear, on average, to have

shorter distances between them, it is more likely that they will vote the same than

Republicans who have greater distances.

As aforementioned, Figure 4 shows the procrustes transformed posterior mean

latent positions and cluster means for a subset of Congresses: 102nd, 106th, 115th,

and 117th Congresses. The most noticeable aspect of these plots is that there is a

clear line on which the majority of points fall. This seems to indicated that for this

application, that perhaps a latent space of dimension 1 will be a better fit. In the

106th Congress (January 1999 - January 2001), we noticed a senator whose latent

position in noticeably distant from the rest in the bottom left corner. This latent

position is that of senator John McCain (R-AZ). In the 115th Congress (January

2017 - January 2019), the very distant latent position on the far left also belongs

to John McCain (R-AZ). This indicates that John McCain is relatively less likely to

vote similarly with other senators. The other noticeable distant latent position in

the top in the 115th Congress belongs to Jeff Sessions (R-AL). In the most recent

Congress (January 2021 - January 2023), the top most latent position belongs to

Diane Feinstein (D-CA), the right-most latent position belongs to Rand Paul (R-

KY), and the left most latent position belongs to Mike Rounds (R-SD).

We expected to see that for at least a subset of Congresses, that cluster

assignment and party affiliation would overlap closely. However, for these results, this

is not the case. In some Congresses, such as the 102nd and 115th Congresses, there

only appears to be a single cluster with only a very small subset of senators comprising

the second cluster. There is some amount of error created in estimating cluster
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assignment however. These assignments are made on a continuous scale between 1

and 2, and then are rounded to be either 1 or 2. There are some senators who fall

“in between” clusters but are still assigned to a cluster.

A problem with this plot is that despite procrustes transforming, the cluster

means of the 102nd and 106th Congresses are clearly oriented differently than the

surrounding latent positions. This is likely an issue with the procrustes transformation

code despite testing to ensure its functionality. This requires further attention in the

future.

Figure 4: Selected procrustes transformed posterior mean cluster means in black
and posterior mean latent position colored by poster mean cluster id. In addition,
Democrats are represented by the circular points and Republicans by the squares.
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β1 Time Step Lower Bound Estimate Upper Bound

1 1.093 1.098 1.103
2 1.156 1.162 1.168
3 1.458 1.464 1.470
4 1.442 1.448 1.455
5 1.501 1.508 1.515
6 1.749 1.758 1.766
7 1.665 1.672 1.679
8 1.642 1.649 1.657
9 1.650 1.658 1.666
10 1.726 1.733 1.741
11 2.131 2.139 2.146
12 1.976 1.984 1.992
13 2.587 2.596 2.606
14 2.062 2.072 2.082
15 2.016 2.025 2.033
16 1.827 1.835 1.843
17 3.350 3.366 3.383

β2 Time Step Lower Bound Estimate Upper Bound

1 0.945 0.951 0.957
2 1.077 1.084 1.091
3 1.290 1.296 1.302
4 1.778 1.784 1.790
5 1.598 1.604 1.610
6 1.742 1.748 1.755
7 1.519 1.525 1.532
8 2.087 2.095 2.103
9 1.651 1.657 1.663
10 1.327 1.335 1.343
11 1.757 1.766 1.775
12 1.375 1.382 1.390
13 1.580 1.588 1.596
14 1.697 1.706 1.715
15 2.412 2.422 2.431
16 2.150 2.158 2.166
17 1.951 1.961 1.972

Table 3: Posterior mean (estimate) and 95% credible intervals for β1 and β2.
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6 Conclusion

We developed a new dynamic latent space cluster model by extending the static latent

position cluster model of Hoff et al. (2002). After simulating data from a dynamic

network based on simulated latent positions informed by cluster, we were able to

successfully recover nearly all parameter values with our model. With a greater

number of clusters in the simulation, we expect that we will be able to recover ω,

the cluster mean variance, as well. The development of our model was motivated by

framing the US Senate as a dynamic network, and evaluating division within using

clusters and seeing how they change over time. We acquired Senate data and were

able to apply this model. At the current stage in development of the model, it does

not appear that two clusters to the extent that they exist can be explained by party.

This project still has work and refinement that is required. In particular, this

model has challenges being extended beyond 2 clusters. When we simulated data

from 10 clusters, it became difficult to identify clusters due to label switching. In the

future, we will need to find a solution for this. We also need to further inspect the

results and resolve the problem from cluster means still having a different orientation

than the latent positions after procrustes transformation. This should not be the

case.

In the future, we hope to compare our new dynamic latent space cluster model

with another proposed latent space cluster model applied to a dynamic network by

(Jin, Z., Sosa, J., & Betancourt, B., 2002). A key difference with our proposed model

is that at each time step, there are new latent positions.

We are also curious about applying this model to the US House of

Representatives. If we are able to develop the model to extend beyond 2 clusters,

this would be an interesting application. Since there are 435 representatives, there is

greater potential for them to exhibit a greater number of clusters than 2.
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7 Appendix

7.1 Simulation Study

Figures 5 and 6 show that the simulation study successfully captured the simulated

values for β1 and β2.

Figure 7 shows that the simulation study over estimated the value for ω. This is

because the simulation only included 2 clusters. The greater the number of clusters,

the more accurate the estimate for ω will be.

Figure 8 shows that the simulation study successfully recovered the value for ϕ.

Figure 9 shows the traceplots for σ2
1. The other traceplots associated with σ2

2 are

similar. They show that the simulation study successfully captured the true value for
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σ2
1 which was 0.05 for all time steps.

Figure 10 shows the traceplots for λ1. The other traceplots associated with λ2

are similar. These plots show that the simulation study successfully recovered the

true value for λ1 which was 0.5. Time point 8 for both clusters have chains that do

not mix as thoroughly as the other time points.

Figure 11 shows that the simulation study successfully recovered the true

distances between the two cluster means. This is especially important as cluster

distances are identifiable and are vital for understanding the evolution of clusters

over time as is motivation of the model.

Figure 12 shows that the model converged for the distance between the first and

second latent positions. We inspected the traceplots between several other pairs of

latent positions, and they similarly converge.

Figure 13 shows that for all distances between latent positions that the simulation

study recovers the true distance.

Figure 5: Traceplots for β1 with the dashed black line at the true, simulated value.
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Figure 6: Traceplots for β2 with the dashed black line at the true, simulated value.
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Figure 7: Traceplot for ω with the dashed black line at the true, simulated value.

Figure 8: Traceplot for ϕ1 with the dashed black line at the true, simulated value.
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Figure 9: Traceplots for σ2
1 (variance parameter for cluster 1) with the dashed black

line at the true, simulated value.

Figure 10: Traceplots for λ1 (probability of belonging to cluster 1) with the dashed
black line at the true, simulated value.
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Figure 11: Traceplots for the distances between cluster means.
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Figure 12: Traceplots for the distances between the first and second latent positions.

Figure 13: Plot of true distances between all latent positions against that of posterior
latent positions distances.

28



7.2 Model Application

Figures 14 and 15 show that the model converged at every step for β1 and β2 with

sufficient mixing for the 101st Congress through the 116th Congress. The traceplots

for the 117th Congress are similar and were excluded for the sake of formatting.

Figure 16 shows that the model converged. This is likely an overestimate as in

the simulation since we are only modeling two clusters.

Figure 17 shows that the model converged for ϕ.

Figure 18 shows the traceplots for σ2
1. For many of the Congresses, the chains

failed to mix indicating a failure in convergence. The variance parameter, σ2
2 is similar

for all Congresses. The 117th Congress was excluded for the sake of formatting.

However, this is relatively less concerning since σ2
. are not primary parameters.

Figure 19 shows the traceplots for λ1. For many of the Congresses, the chains

failed to mix indicating a failure in convergence. λ2 is similar for all Congresses. The

117th Congress was excluded for the sake of formatting. However, this is relatively

less concerning since λ. are not primary parameters.

Figure 20 shows that the model converged for all Congresses for the distance

between clusters. The 117th Congress was similar and was excluded for the sake of

formatting.

Figure 21 shows that the model converged for the distance between the first and

second latent positions. We inspected the traceplots between several other pairs of

latent positions, and they similarly converge.
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Figure 14: Traceplots for β1 for the 101st Congress through the 116th Congress.

Figure 15: Traceplots for β2 for the 101st Congress through the 116th Congress.
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Figure 16: Traceplot for ω.

Figure 17: Traceplot for ϕ.
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Figure 18: Traceplots for σ2
1 (variance parameter for cluster 1) for the 101st Congress

through the 116th Congress.

Figure 19: Traceplots for λ1 (probability of belonging to cluster 1) for the 101st
Congress through the 116th Congress.
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Figure 20: Traceplots for cluster distances for the 101st Congress through the 116th
Congress.
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Figure 21: Traceplots for distances between the first and second senator for the 101st
Congress through the 116th Congress.
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