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ABSTRACT

A genetic algorithm (GA) is an adaptive search strategy based on simplified
rules of biological population genetics and theories of evolution. The basic concepts
of GAs are presented along with their known ability to optimize numerical functions.
However, knowledge of these algorithms has been slow to reach the statistical com-
munity. In order to show the importance and practical use of GAs to statisticians,
a GA is implemented and applied to estimating unknown parameters in linear and
nonlinear models. In this problem realm, the GA is demonsrated to be effective by
comparing evolved solutions to least squares estimates. The results from simulations
indicate the applied GA is a useful tool in fitting linear and nonlinear models.



CHAPTER 1

Introduction

A genetic algorithm is an adaptive search strategy based on simplified rules of
biological population genetics and theories of evolution. A genetic algorithm (GA)
maintains a population of candidate solutions for a problem, and then uses a biased
sampling procedure to select the solutions that seem to work well for the problem.
After selecting the “best” candidate solutions, those solutions are combined and/or
altered by reproduction operators to produce new solutions for the next generation.
The process continues, with each generation providing better solutions, until an ac-
ceptable solution 1s evolved.

Although the foundations of todays GAs were created in the late sixties by
John Holland and were successfully applied to a wide variety of problems, it wasn’t
until the mid 1980’s before the algorithms found their way into other disciplines
outside the artificial intelligence community. The GAs of today are used to find
solutions to complex problems in optimization, machine-learning, programming, and
Job scheduling. The widespread use and interest is due to the fact that GAs are
relatively easy to implement, the objective function does not have to be differentiable,
and GAs search a space in parallel for a global optimum which reduces the chance
of reporting local extrema. Keeping those benefits in mind, a GA is a useful tool
that modern day statisticians should be aware of. There are three main goals of this
thesis:

1. Introduce GAs into the sf_,a,tistics literature in order to explain what they

are and how they can be used.
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2. Demonstrate how GAs can be developed and applied to linear and nonlinear
regression problems.

3. Stimulate interest in statisticians to possibly apply GAs to solve problems
that are difficult to address with current procedures and further the evolution of both
fields.

Chapter 1 describes the terminology associated with a genetic algorithm and
looks at the simple genetic algorithm (SGA). Chapter 2 examines a GA applied to
simple linear regression and how the applied GA differs from the SGA. Chapter 3
discusses a GA applied to nonlinear regression problems by estimating the relevant
parameters of a variogram and identifying an appropriate variogram model. The final

chapter contains the conclusions and areas of future work.



CHAPTER 2

Terminology and the Simple Genetic Algorithm

The terminology used in describing the components of a GA, like the name
itself, 1s a blend of terms used in biology and computer science. The first step in
any GA is to generate (usually randomly) a population of candidate solutions called
chromosomes. Analogous to genetics, chromosomes are made up of genes. In the
computer a chromosome is repreéented by a string of bits (the genes) that usually
take on I's or 0’s. Once the initial population has been generated, the next step is to
calculate the chromosome evaluated in some objective function .

Ior example, say we are interested in maximizing the function F(z,y) =z +y
with respect to z and y, where = and y can take on integer values between 0 and 15.
One representation, would be to let the chromosome be made up of eight bits, four
bits for « and four bits for y. An example chromosome ¢, could be equal to 10110101,
implying that = = 1011 and y = 0101 in binary, or equivalently + = 11 and y = 5
in decimal. An obvious fitness function, given that representation of a chromosome,
could be the function of interest evaluated at the decimal values of z and y for that
particular chromosome. Therefore, the objective function evaluated at chromosome
¢, £y, equals 11 + 5 = 16. In this setting, the objective function can be graphed
to give us a view of the space the GA is searching. Figure 1 displays the objective
function surface over the parametric support.

Once the initial population of chromosomes has been created and each chro-
mosome’s fitness calculated, then the selection and reproduction process can take
place. The selection process is an important component of a GA. We want to select

chromosomes that seem to be doing well relative to the rest of the population so that



'|".‘
o 5 10 16 20 25 30

4

Objective Function Surface

Figure 1: Objective Function Surface for Flx,y)=X+Y



5
they can pass on their good traits to future chromosomes. Likewise, we do not want
to select chromosomes for the reproduction that seem to be performing poorly. A
common selection technique is to select chromosomes from the population propor-
tional to their fitness. Thus, chromosomes with larger fitness values get selecied a
higher precentage of the time. The reason for selecting the chromosomes in the first
place is for reproduction purposes, that is, to produce new chromosomes.

In terms of a GA, reproduction is the process of combining one, or more chro-
mosomes to produce new chromosomes. The SGA uses two reproduction operators to
perform this task: crossover and mutation. The crossover operator takes two selected
chromosomes and then randomly selects a point to “cut” the chromosomes. The “cut”
pieces are then recombined with the opposite chromosome from which it originally
belonged, thus producing two new chromosomes. For example, if pl = abcdefgh and
p2 = ABCDEFGH, and the crossover point was 3, then the new chromosomes cl =
abcDEFGH and ¢2 = ABCdefgh would be produced. This type of crossover operator
is referred to as a one-point crossover.

The ideal situation for applying the crossover operator is to take the “best”
part of each chromosome, yielding new chromosomes with potentially higher F values.
Because the crossover point is randomly selected, we do not know what parts of
the original chromosomes are good or bad, leading to children with possibly lower
fitness values than the original chromosomes. However, over the long run (generation
after generation), certain substrings of the chromosomes become prominent in the
population. These substrings (schema) identify what values of the genes are good
and in what location. The crossover operator plays an important role in evolving the
chromosome that optimizes the objective function. However, a GA that only uses a
crossover operator 1s impaired in its ability to find the global optimum. Theoretically,

all the chromosomes in a population could have the same values at a particular gene
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or substring of genes. Thus, any crossover would never change the value of that gene,
due to invariance on the chromosomes selected and the choice of the crossover point.
Thus, the algorithm may never find the global optimum, the most fit chromosome,
simply because it cannot search the space where the global optimum exists.

The mutation operator solves this problem by introducing diversity into the
population. It does so by taking a selected chromosome and sweeps down through each
gene randomly changing the gene’s current value if a probability test is passed. The
probabiltiy that mutation occurs (the mutation rate) is usually very low. Intuitively,
this should be clear since we want to exploit fit chromosomes and not turn a CGA
nto strictly a random search. However, we do want to explore the search space and
maintain some diversity in the population in order to find the global optimum and
not get fooled by local extrema.

The reproductive operators are applied to selected chromosomes unti! N new
chromosomes have been produced. These NV new chromosomes replace the old ones to
form-the-next generation. The objective function is-evaluated for each chromosome
in the current population, selection and reproduction take place, and the process
starts agan. After the final generation, the chromosome with the highest objective
function evaluation is reported. Figure 2 and Figure 3 display how the chromosomes
search the space shown in Figure 1. The population size was kept constant at 100
chromosomes. These figures illustrate how the majority of the population climb
towards the maximum and how some chromosomes keep searching the space for other
areas of high fitness. At generation 30, most of the 100 chromosomes are near the
maximum at X and Y equal to 15. For this example, the best chromosome evolved

would be 11311111.
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Although this example was simple, it illustrates the basic ideas behind the
SGA. The theory of the SGA is intensively developed in David Goldberg’s book,
Genetic Algorithms in Search, Optimization, and Machine Learning. The SGA has
paved the way for a new breed of GAs. GA Researchers are studying different genetic
representations, reproduction operators, evolutionary parameter settings and their
corresponding effects on the performance of GAs. The GAs implemented and applied

to regression problems in the remainder of this thesis are based on the components

of the SGA.
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CHAPTER. 3

A GA Applied to Simple Linear Regression

The Problem Setting

In this chapter a GA is described and implemented to find the coefficients of
a line that mimimize the sum of the squared residuals. Althougth we know we can
solve this problem analytically, the simple linear regression (SLR) setting will be an
appropri.a.te place to test the algorithm. The differences between the SGA and GA
applied in this chapter will be discussed using a relatively simple problem.

Recall, that SLR implies having one independent variable, X, and one depen-
dent variable, Y. In this setting, the general linear model, Y = X 8+ ¢ takes on the
following form:

Y is an n x 1 column vector of the observed responses.

X =[1 X]is an x 2 design matrix made up of an n x 1 column vector of
ones and an n X 1 column vector of the known, levels of the independent variable X.

Bisa 2 x 1 column vector of unknown parameters.

€isan x 1 column vector of random errors.

The goal is to find the values of the unknown parameter vector, §, that mini-
mize the sum of the squared residuals, or the SSE. The SS/ 1s equal to (Y - XB)(Y
- Xf). Linear models theory tells us that b = (X' X)7' X’y minimizes the SSE and is
the Best Linear Unbiased Estimator for 3. Therefore, we know that if we find b, then
we will have the coefficients for a regression line that has the smallest possible SSE
for a particular data set. Now, let’s think of this problem in terms of implernenting

a GA.
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Genetic Representation

The first task in applying a GA to any problem is to construct what a chromo-
some will represent. For the SLR problem, (a , ) will represent the general form of
a chromosome. Where @ is the y-intercept and b is the slope, both of which are real
numbers. That is, a chromosome will consist of two genes, the first gene is a proposed
y-intercept and the second gene is a possible slope for the regression line. This type of
genetic representation is referred to as real number encoded chromosomes. Using real
number encoded chromosomes instead of binary ones is the first obvious distinction
between this implementation of a GA and the SGA.

Although binary representation is used more by GA practitioners in general,
real number representation is becoming more popular for a variety of reasons. Law-
erence Davis of TICA Technologies, an authority in the field of GAs, has found
that in practice real number encoded GAs have out-performed binary encoded GAs
in numerical optimization problems. Numerical representation works effectively on
mathematical optimization problems and allows for the use of numerical reproduction
operators. In the SLR. setting, numerical representation should make intuitive sense,
because of the nature of the problem - estimating parameters of a line to minimize the
SSE, all of which are real numbers. It should be clear that the choice of chromosome
representation directly affects the development of the fitness or objective function and

the reproduction process.

The Objective Function

The objective function is the function we wish to optimize. It has to be written
in a way that uses the chosen representation of a chromosome from the population
as input and then ouiputs the objective function evaluated at the parameters in

that chromosome. In the SLR case, the SSE is to be minimized for a given data
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set. Realistically, dozens of possible objective functions come to mind that would
accomplish this goal given our real number encoded chromosomes. The following

objective function was implemented:

100000
~ (SSE¢ + .01)

f(C.')

Where ¢; is the ith chromosome and SSEc¢; is the sum of the squared residuals found
by letting the y-intercept and slope of the model equal the y-intercept and slope in
chromosome ¢;. Thus a chromosome that yields a regression line with a low SSE,
evaluates to a larger fitness or objective value. For the remainder of this discussion,
F; will denote the objective function evaluated at the sth chromosome. It is up to
the selection and reproduction process to evolve the chromosome which in this case

maximizes the objective function.

Selection Method

The method applied to select chromosomes to be used in the reproduction
process is a commonly chosen technique referred to as roulette wheel parent selec-
tion. Imagine partitioning_a rouleite wheel into N_slots, one for each chromosome in
the population. The size of the slot i is proportional to Fi. The wheel is spun, and
whichever slot the ball lands in is the selected chromosome. That is, a chromosome
with a large F relative to the rest of the population will on average be selected more
often for the opportunity to be used in the reproduction process. However, chromo-
somes with a relatively lower F still have a nonzero probability of being selected.

Allowing less than average chromosomes to be involved in the reproduction
process aides in maintaning the diversity of the population. Without diversity, the
objective function may be falsely optimized by a less than perfect chromosome because

the place where the true optimum lies was not, reached. Finding the balance between
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exploiting “good” chromosomes (ones with high F values) and exploring the entire
search space is a job that is handled not only by the selection procedure, but also by

the reproduction process.

Reproduction Process .

The SGA used the one point crossover and mutation operator to alter selected
binary encoded chromosomes to create new chromosomes for the next generation.
Given that we are using real number chromosomes, new reproduction operators need
to be defined. Nothing would be gained by applying the one point crossover to
selected chromosomes in the SLR setting. Only the slope (the second gene) would
have a chance of being altered by the one point crossover due to the fact that there
1s only one place to crossover. In his book, Handbook of Genetic Algorithms, Davis
proposes several reproduction operators for real number chromosomes, three of which
were applied in this GA.

We would like a crossover operator to combine two selected chromosomes to
produce one which is potentially better than the original two. One possible real num-
ber crossover is what Davis refers to as the average crossover. The idea behind this
operator is to take two selected parent chromosomes and average their corresponding
genes to produce one new chromosome. In order to keep the population of chromo-
somes from converging too quickly and perhaps finding a less than optimal solution,
an appropriate crossover rate has to be used and mutation operators need to be ap-
plied. One of the applied mutation operators is basically identical to the mutation
operator used in the SGA. It changes a gene of a selected chromosome by replacing
what is currently there, to a real number randomly selected from the appropriate
range for that particular gene.

The third reproduction operator applied is also a type of mutation operator.
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The real number creep operator takes a selected chromosome and adds a randomly
selected amount from a uniform (-8, 8) distribution to the value in the first gene if a
probability test is passed. The operator proceeds in a similar manner through all of
the genes in the selected chromosome and thus has the potential to alter every gene.
- This reproduction operator can be thought of as fine tuning a possible solution to get
closer to the global optimum.

The a.veraée crossover, mutation, and real number creep operators are the only
ones used to create new chromosomes for the next generation in this GA. However,
what percentage of the time should each operator be used in creating new chromo-
somes? In order to answer this question, the following experiment was done. The GA
was allowed to run until the best chromosome, the one that yields the smallest SSE,
had a fitness within 5 percent of the known maximum fitness (1.e., the fitness function
evaluated with the least squares estimates). The response that was recorded was the
number of generations it tock to evolve an acceptable solution. This was carried out
for different proportional uses of the three reproduction operators on the_same data
set. Table 1 contains nine settings of the reproduction operators. The setting that
had the lowest mean number of generations and variance was setting E. Figure 4
displays the distribution of the number of generations, N, in the form of a boxplot
for each setting in Table 1. Setting E had a mean of 22.4 generations and a standard
deviation of 14.85. Increasing the average crossover rate beyond .40, or decreasing it
below .30, caused the number of generations to increase along with the variability.

Applying the crossover operator too much pulls the majority of the population to-
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wards a chromosome that is better than average, but not necessarily close enough to
the global optimum. Not using the average crossover operator enough, turns a GA
into a strictly random search which slows down the optimization process. Although
other combinations of reproduction operator rates were examined, Figure 4 displays
where the best settings were found. Keep in mind, that setting F was found to be the
best in this problem realm, these are not necessarily the most robust reproduction
operafor settings for any function optimization problem.

Table 1: Settings of the Reproduction Operators
Setting Crossover Mutation Creep

A 40 .05 .99
B 40 10 .50
C .40 15 45
D .30 .05 .65
E 30 -10 .60
F 30 15 .30
G .20 05 15
H 20 10 70
I .20 15 .65
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Example 1

Table 2: Example 1 data

X Y
5 200
10 215
15 227
20 248
25 261
30 279

The GA was applied to the data shown in table 2. The least squares solution
for this data set was found to be, b’ = (182.933 3.16531) and have a SSE — 18.81S.
Therefore, we know the best chromosome should be (182.933 3.16531) with

100000
Fraz = == = 5310.956503.
(18819 + .o1) ~ ~>10-95650

Figure 5 displays a scatter plot, of the data with the least square regression line.
The GA begins by randomly generating 100 chromosomes where a gene's value comes
from a uniform(0,200) distribution. It then calculates each chromosome evaluated in
the objective function so the selection scheme can begin. Selection takes place and the
three different reproduction operators are applied to produce 99 new chromosomes
for the next generation. The 100th chromosome for the new population (i.e., the next
generation) is the most fit chromosome from the previous generation. Keeping the
best chromosome from the previous generation for the next one s a process referred
to as elitism. Elitism guarantees that the best solution found thus far wil]h. be in
the next generation to help the search and not be lost in the selection process. The

objective function is evaluated at each chromosome in the new population, the new
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population becomes the old population, and the process starts over. The algorithm
runs for sixty generations and the chromosome with the largest F, the solution, is
reported. Due to the stochastic nature of a GA, the solution will vary from run to
run. However, the applied GA evolves a solution close to the least squares estimates
of the parameter 3.

Since the parameter space is in )2, we can view the objective function surface
over the parameter space. Figure 6 is a plot of the interesting part of the objective
function surface, that is, where the optimum lies. Most of the surface is relatively flat
and the GA needs to search for the hill by using the mutation operators to “jump”
around the surface. Once a “super” chromosome is evolved, the selection process and
the average crossover operator pull some of the population towards the hill. The real
number creep operator takes chromosomes that are on the hill and has the potential
to create chromosomes that will climb towards the top. However, in order to make
sure that there is not a larger hill being overlooked, the mutation operators keep
some.of the chromosomes exploring different regions of the search space. By the last
generation, the majority of the chromosomes are concentrated near the top of the hill
while others are still exploring other areas of the objective function surface. If the
GA was applied again to the data in example 1, then a different solution would be
evolved, unlike least squares where we would obviously get the same estimate of 8.
In the next section, an attempt is made to determine on average how close the GA

solutions are to the least squares solution and the variablility of those solutions.

Expectation and Variability

The total variabality of a solution found by the applied GA is the variablity in
the data, plus the variability in the GA itself. In order to estimate the expected value

and variability of the algorithm in the SLR setting a simulation was run. A model with
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known parameters and error structure was chosen to be ¥ = 133X 4 33 + €, where
¢ iid N(0,1) distribution. The explanatory variable, X, was the first ten integers.
Three hundred Y’s were created from the model with three hundred different random
error vectors. The GA was run on the three hundred different data sets for sixty
generations and each solution was recorded.
Figure 7 displays a scatter plot of by versus b, for three hundred runs. ¥igure
8 contains histograms of by and b;. The mean of by and b; was found to be 33.1417
and 132.9784, respectively. Thus, the simulation results indicate that the algorithm is
evolving toward unbiased estimators of bo and by, respectively. This seems reasonable
when considering the optimal solution we are searching for (the least squares solution)

is unbiased for 8. Under least squares, the covariance matrix Is,

A6667  —.06667
~—.06667 01212

The variance of by was equal to .560485, which is slighty more than the variance under
least squares. The variance of by was-equal to .014464. Although the sample vanances
are greater than the variances of b under least squares, by looking at Figure 8, the
normal distribution assumption still looks valid. This empirical evidence indicates
that standard inferences can still be made, using inflated variances. In this case,
the variance of b and b; were inflated by 20 and 19 percent, respectively. If the
inflated variances_are functions of the number of generations allowed for the search
(in this case sixty), then asymptotically the GA variances approach the least squares

variances.
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In order to verify that the distributional and variances results were not artifacts
of the previous model selected, Y = 133X 4 33, another simulation was run. Models
were selected in a way to create a solid support in %% and 100 different data sets were
created from each model, again by adding random N{(0,1) errors. The distributions of
bo and b; generated by the GA for each model were approximately normal with means
close to the true model parameters. The variances of by and b, were inflated by an
average of 15 and 20 percent of their corresponding variances under least squares. The
results from the simulation indicate that the GA will perform effectively, regardless of
the underlying SLR model. In other words, the performance of the GA is independent
of the selected SLR model.



CHAPTER 4

A GA Applied To Nonlinear Regression

The Problem Setting

In this chapter, a GA is applied to finding the unknown parameters in a non-
linear model such that the SSE is minimized for a given data set. The spherical
model, which is a commonly used model to fit variograms, was selected as a nonlinear
model to test the algorithm. This model is difficult for many techniques to fit to data
hecause it is nondifferentiable at particular points. Gradient based searches would
have to be modified to numerically approximate the derivatives in an attempt to fit
the model. Assuming no nugget effect and equally spaced data, the spherical model

reduces to,

(k) = (1.5 x hfa, — 5 x (h/a,))

Where h is the lag, c, is the sill, and a; is the range. For relevant variogram informa-

tion, refer to Noel Cressie’s book, Statistics for Spatial Data 1991.

Changes in Genetic Algorithm

A nice characteristic of a GA is it can be changed to solve a different opti-
mization problem without much effort. We will still be using real number encoded

chromosomes with two genes, one for each parameter in the model. However, gene
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one will be equal to a possible sill and gene two will represent the range. The ob-
Jective function has the same form as in the SLR regression setting, except SSE,
is now the SSE found by using the spherical model. With the representation and
objective function defined, the selection and reproduction process can take place.
Roulette wheel parent selection will again be the chosen selection technique. Average
crossover, mutation, and the real number creep will be the operators applied in the
reproduction process. Now that the main components of the GA are defined, lets

apply the GA to the data in example 2.

Example 2

Assuming a spherical model with known parameters, we can see if the GA is

evolving acceptable solutions. The data in example 2 came from a spherical model

with ¢g = 9 and a; = 10, plus some white noise.

Table 3: Example 2 data

h y(h)

1 0.8392
2 2.8045
3 4.9857
4 377586
5 56109
6 6.5367
7 71301
8 8.1980
9 7.1317
10 8.9134

On average, the GA evolves the chromosome (8.32 10.12), which is extremely
close to the parameter estimates using a Gauss-Newton based procedure. This pre-
Irminary test indicates that the GA is working rather well. However, the data in

example 2 was not generated in a fashion that we actually believe to be driving a
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one dimensional time series process. A more legitimate simulation was done in the
following manner. Assuming second order stationarity and the spherical model with
known parameters, a known covariance matrix was developed.
A one dimensional time series having that covariance structure was randomly gener-

ated. From the time series, the estimates of y(k) were found in their usual manner.

Example 3

The 4(k)’s in Table 4 were calculated from randomly generated observations
with a known covanance structure and a spherical-model with ¢, = 5 and a, = 10.
The parameter estimates using a Gauss-Newton technique to minimize the SSE for
this data set were found to be ¢, = 4.642 and a; = 20.654. On average the GA evolved
estimates of ¢, = 4.634 and a, = 20.691. Similar results were obtained by applying
the GA to other data sets from other spherical models. The GA can be used as an
alternative optimization tool to fit nonlinear models instead of a Gauss-Newton based
techmque.

Why would you use a GA instead of a Gauss-Newton based algorithm to fit
a nonlinear model? Because, sometimes, a Gauss-Newton based algorithm fails to
converge or yields incorrect parameter estimates. To use a Gauss-Newton algorithm,
good starting points for tl_:e estimates of the parameters need to be supplied. If
the starting point is not close enough to the global optimum, then invalid parameter
estimates may be found or possibly none will be found due to divergence. Admittedly,
the GA needs to have an allowable range supplied for each parameter. However, that
range can be extremely large relative to ranges or starting points needed in other
search algorithms and still evolve acceptable solutions.

An additional ability of a GA over other optimization strategies is that it has

the capability to not only evolve good parameter estimates, but also evolve the “best”
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Scatter Plot of Example 3 Data
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Figure 10: Scattier Plot of Example 3 Data
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model, where “best” could be related to any desired criteria, such as minimmzing the

SSE. Example 4 discusses this interesting variation on this potential use of a GA.

Example 4

Suppose we are trying to decide wether to fit a spherical model or an expo-
nential model to a particular data sot of S(h)’s such that the SSE is minimized.
The exponential model used to fit variograms, assuming equally spaced data and no

nugget effect becomes,
(k) = ce(l — exp(—hfac))

Where h is the lag, c. is the sill, and «. 15 the range.

Chromosome representation thus far has been only to let genes take on specific
parameters in a given model. For this problem, a chromosome was defined to be, { m
s 7 ). Where m will identify the desired model and take on any real number between
0 and 1, s and r are the sill and range for that model. If m is less than or equal to .5,
then the spherical model will be used to obtain the fitness for that chromosome. Or, if
m is greater than .5, then the exponential model will be used. The objective function
was changed to facilitate the use of-the new chromosome. It still takes.a chromosome
for input, but now outputs the F associated with evaluating the chromosome’s sill and
range in the model specified by the first gene. The last change in the GA was in the
initialization process. The initial population of chromosomes is randomly generated
having the new ( m s r ) structure.

It may seem that the reproduction operators need to be changed to handle
the new chromosome structure. However, the point of allowing m to take on any
real number between 0 and 1 was so the reproduction operators do not need to be
changed. The average crossover, mutation, and the real number creep operators will

work with the newly defined chromosome. The new GA was applied to finding the
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best model and parameters {or that model that minimize the SS ¥ for the data shown
in Table 5.

The data in Table 5 is from evaluating a spherical model with a sill = 9 and
a range = 10, at the first ten integers. A spherical model was fit to the data using
a Gauss-Newton technique which yielded a sill = 9.028845 and a range = 10.10603
with a SSE = .3622863. A sill =13.63256 and range = 8.525267 was found by fitting
an exponential model to the data again using a Gauss-Newton technique. The new
GA was applied to the data and evolved the chromosome ( .109 9.016399 10.07732 )
with a F = 268.3853 (SSE = .3726125). In other words, the best chromosome states
to use the spherical model { m less than .5} with a sill = 9.016399 and a range =
10.07732 to mimimize the SSE. The majority of the chromosomes in the population
at the final generation (the GA was allowed to run for 50 generations) had a number
less than .5 for the first gene. This implied that the spherical model was the better
choice. Although, there were still chromosomes exploring parameter settings for the
exponential-model.

Of course, it would be possible to fit the spherical model and exponential
models separately and compare the resulting SSE. However, the purpose of the
example was to illustrate another way of using a GA. Also, this example led to
potentially beneficial new ways of applying a GA to difficult problems which will be

described 1n the next chapter.
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Table 4: Example 3 data
3(h)
0.9084
1.3839
2.0408
2.3124
2.6386
2.9182
3.1931
3.4518
3.9404
41423
4.3676
4.5118
4.5671
4.7415
4.7198
4.9023
4.7143
4.3426.
3.5684
3.2047
3.1985
3.2555
2.9462
2.8491
2.6386
3.1159
3.6943
4.5624
4.9074
5.3574
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Table 5: Example 4 data
v(R)
1.3455
2.6640
3.9285
3.1120
6.1875
7.1280
7.9065
S.4960
8.8695
10 9.000

Lo =~ D R Gl N |



34

CHAPTER 5

Conclusions

Future Work

Example 4 illustrated the idea of using a GA to select a model and the pa-
~ rameters for that model that minimize the SSE for a particular data set. That idea
led to an inherently harder problem of trying to fit a mixture model to a data set.
For example, say we are trying to determine wether to fit a spherical, exponential,
or linear combination of the two models to a specific data set. What 1s commonly
done in practice is to fit one of the models and ignore the mixture model due to
the complexity in finding the appropriate parameters. However, the GA applied in
this thesis could be modified to solve this problem. For example, the model would

become,

y(h) = aSpherical(sl,r1} + (1 — a)Ezponential(s2,72)

Where « is a real number between 0 and 1. A chromosome would take the form (a
s1 r1 s2 r2). The GA would evolve the best «, sill and range for the spherical and
exponential models to minimize the SSE. If o were close to zero, then fit just the
exponential model with sill = 52 and range = r2. On the other hand, if « were close
to one, then fit the spherical model with the evolved sill and range. Otherwise, use
the evolved linear combinations of the two models.

There were two GAs written for this thesis, one in C and the other in S-Plus.
The S-Plus code is slow and can be improved. One future goal is to write a GA library

for S-Plus. The researcher will be able to use different settings of the evolutionary
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parameters, different reproduction operators, and specific objective functions, and

run a GA from within the S-Plus environment.

Conclusions

A GA is based on a relatively basic idea, that of using simplified theories of
evolution to search a space. The key is to encode possible solutions to a problem in
the form of chromosomes. Select the solutions that solve the problem better than the
others and allow reproduction operators to change them to form potentially better
solutions. GAs search a space in parallel for a global optimum. Using the selection
and reproduction processes a GA avoids local extrema and steers toward the global
optimum whereas many other search strategies can be easily fooled by local extrema.
GAs do not need to have the luxury of continuous spaces and/or existence of deriva-
tives to be effective. However, this is not, to say that they could not Lake advantage of
further information about the search space if it is available. This thesis discussed the
components of a GA that was used to fit linear and nonlinear models. The applied
GA can be summarized as follows:

Real number encoded chromosomes

Generational replacement with elitism

Roulette wheel parent selection

Average crossover

Mutation

Real number creep

The GA successfully evolved parameters for linear and nonlinear models to
minimize the SSE. In the realm of fitting variograms, the GA always converged
on a solution that was acceptable at minimizing the SSE, while a modified Gauss-

Newton technique occasionally failed to converge. The idea of converging on near
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optimal solutions when other search strategies fail is one obvious advantage of using
a GA over other search strategies. A GA is an extremely versatile search strategy. A
GA found the parameters for a nonlinear model to minimize the SSE and without
much effort, was changed to evolve a model, and the parameters for that model, that
minimize the SSE.

Although minimizing the SSE was the criterion used for selecting the “best”
model, other criteria could have been successfully implemented. For example, the sum
of the absolute residuals could have been used if robustness to outliers was a concern.
Any quantitative criteria could have been used and written.to be the objective or
fitness function for the GA. The GA’s simphlicity, versatility, and power make it an

excellent search strategy that statisticians can and should take advantage of.
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APPENDIX

Help Guide
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This appendix contains a brief description on how to use the GA within the
5-Plus environment. The GA is written in one function called “GA”. This function
contains the population initialization, selection, and reproduction processes. A call
to the GA function takes on the following form:

answer < —GA(N,T, h,gh)

Where N is the desired number of chromosomes in the population, T is the maximum
number of generations until termination, h is a vector of length n containing the lags,
and gh is a vector of length n of ¥(h)’s. The GA function returns the best chromosome
found after T generations of searching. Thus, answer would contain the sill and the
range that minimize the SSE for fitting say, the spherical model, to the data stored
in h and gh.

The GA function calls another function called CalcFit, for calculate fitness.
The CalcFit function uses the population of chromosomes for mput and returns a
vector containing the value of each chromosome in the population evaluated in the
objective function. Recall, the objective function used in this thesis was,

_ 100000
~ (SSEc; + .01)

f (Ci)

Where ¢; is the ith chromosome in the population and SSE¢; is the SSE found by
fitting the spherical model with the sill and range in chromosome ¢; to the data (h and
gh). Thus, CalcFit returns a length n vector containing the fitness values. Currently,
CalcFit fits the spherical model, but it can be altered to be any desired model.

Say we wanted to find the sill and range for the spherical model that minimize
the SSE for the data in example 2 using the GA function. Once in S-Plus create the
. vector h to be the first ten integers and gh to be 10 * 1 vector of the ¥{h)’s shown in

Table 3. Then type,
answer < —GA(100, 50, £, gh)

which will ran the GA with a population of 100 chromosomes for 50 generations and
store the best solution found during the search in the 1 * 2 vector answer. For this
example, answer would contain the range and sill that minimize the SSE.



