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Introduction

This article considers coinfidence intervals of the parameter # from the binomial distribu-
tion
r L r n—x
P()& = .'1:[6) = (T)H (1 — 9) I{O.l.....n}(w)- (1)
The generation of confidence intervals by a particutar method results in a collection of n +1
intervals of the form [beyus], z = 0,1,...,n. The coverage probability of a method can be

calculated as the probability that a closed random interval [£x,ux] covers the true parameter

6. This is computed by

Pex <0< ux) = 3 (7)o - 0710, )

=0 \*

For a given set of confidence intervals, it is useful to look at the minimum coverage probability,
namely infs P({x < 8 < uy). The actual construction of a set of 1 — «a confidence intervals
for 0 (where 0 < a < 1) may result in infy P({y < 0 < ux) < 1 — . The optimal method
would result in infy P(€y < 8 < ux)=1-a.

This paper will focus on particular methods of generating confidence intervals that satisfy

Blyth and Still’s {1983) three restrictions.

(1) Exact confidence intervals. This requirement states that inf, P(lx <0 <uy) >

1l —a.

(2) Equivariance. The family of binomial distributions is invariant under the transforma-
tion g(X) = n — X where §(0) = 1 — 6. The confidence intervals must be equivariant

under g(X) which requires £, =1—1,_,, z = 0,1,...,n. This requirement produces a



symmetry about § = .5 when one plots P({x <8 < y x). Also, one need only know the

lower endpoints to determine all n + 1 confidence intervals.

(3) Monotone in X. This requires interval ends to be strictly increasing in X such that

Cogr > £; and ueyq > ug.

Clopper-Pearson Intervals

One of the oldest and most widely employed sets of confidence intervals are the Clopper-
Pearson intervals (Clopper and Pearson, 1934). Thesg can be generated by the statistical
method (Casella and Berger, 1990). The statistical method states that for a discrete random
variable X with CDF Fy(z|8) = P(X < z|8), £x and ux can be defined in the following

manner. If Fx(z|f) is a decreasing function of § and 0 < & < 1 then, define £x and uy by
s Q‘ x Cx

The binomial CDF is a decreasing function of ¢ as is shown by the following:

Px(al0) = g} (:) 04(1 — aye-r
= =0+ (?11) O(L— 0y 4.+ (Z) 6°(1 — )=
= C%F x(@0) = —n(1—0)"" £ n(l—0)* " —nf(n—1)(1 - o)=-2 4 .
- (:c . 1) Flr—e )1~ o (:) 07 1(1 — gy
- (z) #°(n — z)(1 — g)~—=-1

= —nf(n—1)(1 - )2 4 . _ (w

n

. 1)ﬁ*’”*‘(n—x+ (1 - gy



Fala

+ (m i 1) 0" n — 2+ 1)1 — gy~ — (z) 0(n— )(1 — gy—e-t
= _ (:) 6 (n — z)(1 - o)1,

a
Thus %Fx(xlﬂ) < 0.

Reexpressing (3) one has

P(X <z —1)ty) :1_—55- and P(X < zfuy) = g-

Solving for [€y,u,),z = 1,2,...,n can be done by the use of the binomial distributions

relation to the beta distribution. Consider the random variable ¥ ~ Bin(n,8), then P(Y <

y) = P(B <1~ 8) where B ~ Beta(n — 5,y 4+ 1). This relationship leads to

P(BL<1~£,:)=1—g and P(BU<l~uI)=g

where
By ~ Beta(n — z + 1,z) and By ~ Beta(n — z,z + 1).

Now, the calculation of the confidence intervals can be done by noting that

1~ ¢, = Beta™(1 — g-,n —z+1,1)

1 —wu, = Beta"l(%,n —z,z+1)



where ¢ = Beta™'(p, a, f) means that

f (1 u)P-t _ e, B)
p:/ B ) du where B(a,f) = W.

It is also possible to obtain the confidence intervals by solving the following polynomials

0 - {gr 55 (’;)e;(;t ~ L)t =1 %}

=0

4y = { 3 (t) (L= )t = g} .

t=0
These two polynomials are a direct result of (3). The polynomial solution method was used
by Vollset (1993).
The computation of the Clopper-Pearson confidence intervals for o = .05 and n = 10 was

carried out in Matlab using the Beta™! function. They are as follows,

z |0 1 2 3 4 5 6 7 8 9 10

£ 10 0025 0252 .0667 .1216 .1871 .26%4 3475 4439 5550 6915

and ¥, = 1 ~ {,_,. The confidence intervals clearly satisfy restrictions (2) and (3). It is
conveniant to graph P({x <8 <uy) V0 c (0,1) to demonstrate that these are exact confi-
dence intervals and satisfy (1). Figure 1 was constructed by having 4 range from .001 to .999
in increments of .001 and then solving (2) for each value of 8. Although this method is
exact, it is not optinial. That is, infg P(fy < 0 < uyx) = .9610 at § = 3475 and 0 = 6525,
This implies that the confidence intervals may be shortened somewhat before one reaches
the 1 — a confidence level.

Due to the discrete nature of the family of binomial distributions, there are a number
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Figure 1: Grapl of the coverage probabilities for Clopper-Pearson confidence intervals for n = 10.
of discontinuities in the function Pty <9< ux). In general, there are exactly 2(n + 1)
discontinuities. These occur where § — £y or § = u, for some z € {0,1,...,n}. When

the value of 4 changes such that it moves into or out of a particular confidence interval a

discontinuity results.
Crow Intervals

Crow (1956) approched the problem of computing confidence intervals by first computing
acceptance regions and then inverting them. For a given hypothesis § = §, there is an

acceptance region [fy,,ug,| such that one accepts the hypothesis if, for an observed x, £, <



T < ug,. After aset of acceptance regions has been calculated for a finite number of 4, € (0, 1)

they can be inverted to yield confidence intervals. This can be summarized as follows
{‘EI S 60 S ur} A {Eﬂo S X S u&,}-

An example from Blyth and Stilt (1983) illustrates Crows method very well. Consider the
case where n =8 and 1 — o = .95. For 8, = .3145 the shortest acceptance region possible is
0 < ‘X <5 where P0< X < 516,) > .95. But, for 4, = .3155 through 8, = .3995 there are
two shortest acceptance regions possible, 0 < X < 5 and 1 < X <£6. For 8, = .4005 there
is again only one shortest acceptance region 1 < X S 6. Crow was faced with choosing a
0, € [.3155,.3995] at which to stop using the acceptance region 0 < X < 5 and start using
1 < X < 6. When there was a choice to be made, he always chose the acceptance region
farthest to the right, 1 < X < 6 for this example. That 15, he chose 1 < X < 6 as the
acceptance region for all 8, € [.3155,.3995].

Crow’s confidence intervals were constructed using the criterion Pll, < X < ug,) >
1 — a which ensures compliance with restriction (1). He also constructed all acceptance
regions for §, € (0,.5] then by symmetry he constructed the rest for 8, € (.5,1). The
acceplance regions were then inverted to obtain the confidence intervals. The construction
method leads to confidence intervals that satisfy £z = 1 — u,_, (restriction (2)). There
are cases however, where Crow’s confidence intervals do not satisfy restriction (3). That is,
the interval endpoints are not strictly increasing in X. For example, using Crow’s {1956)
tables, the 95% confidence intervals corresponding to n = 14, g = 6, and z = 7 are

[-206,.688] and [.206, 794}, respectively. The endpoint ¢y is nonincreasing in X.
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Figure 2: Graph of the coverage probabilities for Crow confidence intervals for n = 10.

Crow’s confidence intervals may not always meet restriction (3), but they do have another
very desirable quality. Crow (1956) proved that a set of n + 1 confidence intervals generated
by inverting minimum-length acceptance regions results in a set of minimum length intervals.
That is the sum of the lengths of these confidence intervals is as small as posible. For certain
f, more than one minium-length acceptance region is possible. Because of the different
minimum-length acceptance regions one may choose, there is a family of confidence intervals
with the property that the sum of their lengths is as small as possible.

The graph of coverage probabilities for Crow confidence intervals, where n = 10 and o =
.03, is presented in figure 2 for comparison tothe Clopper-Pearson graph. The Crow confi-

o dence intervals actually attain the 1 — a confidence level for a countable number of 6.

=1
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Blyth-Still Intervals

As shown in the previous example; where 7 = § and 1 — o = -95 there were two shortest
acceptance regions for 4, € [.3155,.3995], namely 0 < X <5and 1 £ X < 6. Crow’s
method of choosing which acceptance region to use was to choose the one farthest to the
right, that is choose 1 < X < 6. This results in ug = .3155 and & = .3155. Blyth and Still
(1983) point out that this choice creates shorter confidence intervals for X near 0 or n and
long;:r confidence intervals for X near n /2. Even though the sum of the lengths of Crow’s
confidence intervals is minimized, they may contain a certain confidence interval which is
unnecessarily long. The reason being that confidence intervals near X — n/2 are already
longer than for other choices of X,

Blyth and Still considered choosing minimum acceptance regions farthest to the left
when there was a choice to be made at a.pa,rticula,r G,. In the previous example, for
8, € [.3155,.3995) one would choose acceptance region 0 < X < 5. This method lengthens
confidence intervals for X near 0 or n and shortens them for X near - This approach has the
desirable property of minimizing the length of the longest confidence interval. One downfall
to this method is that there are more numerous and extreme violations of restriction (3).

Blyth and Still (1983) decided to use an intermediate method for computing confidence
intervals. The rule they followed for choosing acceptance regions for each 8, < % is “take
each confidence interval endpoint to be the midpoint of the interval of possibilities.” Refering
back to the example for 8, € [.3155, 3995} they would choose acceptance region 0 < X < §
for all 9, € [.3155,.3575) and choose acceptance region 1 < X <6 for all 8, € [.3575, .3995].

This results in u, = .3575 and #; = .3575. Blyth and Still’s confidence intervals retain the
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Figure 3: Graph of the coverage probabilities for Blyth-Still confidence intervals for n = 10.

property of minimizing the sum of the n + 1 possible lengths. All the confidence intervals
they calculated for 1 —e = 95,99 andn =1,2,...,30 satisfy all three restrictions. Figure 3 is
a graph of the coverage probabilities of the Blyth-Still published intervals for n = 10. Notice
that the graph is not symmetric about 9 — -5 and it also dips below the 95% confidence
level. These aberations are artifacts. Blyth and Still (1983) only tabulated their confidence

intervals to two decimal places. Greater accuracy in the published tables would result in -

symmetric coverage that does not dip below 95%.
Casella Intervals

Casella (1986} presents an algorithm which, when applied, improves upon any set of
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equivariant confidence intervals that have minimum coverage probability greater than or
equal to 1 — o Let C' = {[£,,u,),z = 0,1, «yn} be a set of equivariant confidence intervals.
Let C* = {{€;,uz],z = 0,1,...,n} be the set of improved equivariant confidence intervals
which result when the algorithm is applied to C. An improved set of confidence intervals
satisfys u) — 02 < w, — £, Vz € {0,1,...,n} All confidence intervals generated are to be
closed, of the form [€x,ux]. But, in calculating coverage probabilities, Casella considers the
conhdeuce intervals to be half open, of the form (€x,ux], where the coverage probability is
given by
P(fx < 0 < ux)= z:j] Cj) 0°(1 = Y~ Iq, 4 1(9).

The algorithm is as follows:

For each k = n,n — 1, ..., 1 increase £, (simultaneously decrease Unt = 1 — ;. by the same

amount ) until one of the following occurs:
(a) Pty <l <ux)=1-a.
(b) & = u; for some ;.

If (@) occurs first, set & = &, decrement k, and start again. If (b) occurs first, check if
P(lx < b < ux)>1—a. If this inequality holds, continue increasing £, until (@) or (&)
oceurs again. If this inequality does not hold, set €% = u; and move to the next value of .
Whenever a £ is defined, a U, is defined.

The new set of confidence intervals (* has uniformly shorter length than . All of the
confidence interval lengths, Uy — €%, are at least as small as the origional lengths u% — &,

that is u} — €7 <« — € for & = 0, L,...,n. This is easily shown using the fact that C* is

10



equivariant and the algorithm increases the lower endpoints:
G- =1-0  —<1-¢,_,— s =ty — .

Casella also proved that the sum of the lengths of the .+ 1 confidence intervals in C* for a
given 1 — o confidence level is minimized.

ane C* is produced by the algorithm, an entire family of equivariant confidence intervals
can .-i)e generated. This family is complete (Casella and Berger,1990). That is, any ¢ not
in this family can be dominated by a C* in this farrﬁiy. The family contains more than one
menber because of the properties of a certain set of éndpoints which Casella refers to as
coincidental endpoints. Specifically, & is a coincidental endpoint if & = u* for some m.
Consider a particular C* where £} is a coincidental endpoint. Denote the common value of
{; and u;, by r. The coverage probabilities of {; and wj, are given by

k-1
P(!?X << f}: < Hx) = Z (Z) 7.«3?(1 — r)ﬂr—-;g

I=1tn

P(tx <ul <uy)= i (:) (1 — 7)i=s,

z=m-+41
The two coverage probabilities are not equal because of the half open confidence intervals.
Now define

m(r) = min{P(lx < £ < ux), P(ly < u}, <uy)}.

Then, & can take on any value such that r, < & < r* where
ro=min{r: m(r) > 1 —a} and r* = maz{r:m(r) > 1 —al.

11
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Figure 4: Graph of the coverage probabilities for Casella confidence intervals for n = 10,

The Blyth-Still intervals are members of the famj ly of Casella intervals. They are obtained
by setting the coincidental points equal to the midpoints of their range. The Crow intervals
can be approximated by chosing all coincidental lower endpoints to have their minimum
value. The Crow intervals agree with the family of Casella intervals on all noncoincidental
endy_;oints. Theré are some Crow interval endpoints that do not fall within the range of
the Casella coincidental endpoints. Even though some sets of Crow intervals fall within the
Casella intervals, Crow intervals in general cannot be considered members of the family of
Casella intervals because, as it was shown, they violate the monotonicity condition. The
Crow intervals coverage probability equals 1 — o for at least one 8 and the sum of the lengths

of the intervals is minimized and equal to the sum of the lengths of the Casella intervals.

12



To illustrate a complete family of equivariant confidence intervals using the above calcu-
lations, let n = 10 and 1 — o = .95. then, the following table gives the complete family of

confidence intervals:

z 1 2 3 4 5 6 7 8 9 10

¢ |.005 .037 .087 .150 .922 281 £.022 381 .444 + 049 1—fs 1-—4

The upper endpoints are calculated byus, =1—£,_,, and £, = 0. The coincidental endpoints
oceir at z = 6,8,9,10. The table shows all the possible values these coincidental endpoints
may take. Figure 4 illustrates the coverage probabilites of the above set of confidence intervals
where the coincidental endpoints are chosen such that fs = .303 and €5 = .493. If one has a
set of confidence intervals that are not in Casella’s complete family of confidence intervals,
they can be improved upon by using the algorithm. The resultant set, of intervals will then
be in Casella’s complete family. So, if one considers the loss function to be the sum of the
confidence intervals, one can do no better than to use a set of confidence intervals tabled by

Casella (1986).
Comparisons

All of the procedures discussed satisly restrictions one through three, some actually attain
the 1 — o confidence level for particular ¢. The casella intervals were shown to be superior
in that the sum of the lengths of the n 4 1 confidence intervals is as small as or smaller than
any other method. Are the improvements over the initial set of confidence intervals given
by Clopper and Pearson nontrivial? Is it worthwile to use updated tables to find confidence
intervais? The following calculations help answer these questions.

One comparison that has been discussed is the length of confidence intervals. For a set of

13



confidence intervals (£;,u—z},z = 0,1, ..., n define the length L(X) to be L(z) = u,— b, z =
0,1,...,n. One can take the expected value of L(X) and use it to compare different sets of

confidence intervals. The expected value of LX) is defined to be

ELL(X)l0) Z_; L(z) (;‘) 6°(1 — o).

Figqre 9 18 a graph of the expected lengths of the Clopper-Pearson, Crow, Biyth-Still, and
two E}articular sets of the Casella confidence intervals for n = 10 and I —a=.95 Th¢ set
of Casella. Max. intervals was chosen by setting the coincidental endpoints equal to their
maximum value and the set of Casella Min. intervals was chosen by setting the coincidental
endpoints equal to their minimum value. In figure 5, for # = .5, the Casella Max intervals
are represented by the lower solid line and the Casellﬁ, Min. intervals by the upper solid line.
It is interesting to notice that the graphs of the Casella intervals completely bracket the
graphs of the Blyth-Still and Crow intervals. Depending upon prior knowledge, one would
be inclined to choose a different set of confidence intervals for different circumstances. If one
knew & to be near .5 then one should choose the Casella Max. intervals. If 4 is thought to lie
near 0 or 1 then one should use the Casella Min. intervals. The Blyth-Still intervals would
be used if there was no prior knowledge about 8. It is interesting to note that the sum of
the lengths of the Clopper-Pearson intervals, forn = 10 and 1 — o = .95, is 5.59 and the
sum of the lengths for the other three, though minimal, is only 6.39% shorter. This is not a
significant improvement.

To compare the methods on coverage probabilitics, one can calculate the the area under

the function P({x < 0 < uy) for 4 ¢ (0,1). A method that has (1 — a)100% coverage

14
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Figure 5: Graph of the expected lengths of the confidence intervals of Casella Max. and Min. (solid lines),
Blyth-Still (dash dot line), Crow (dot line), and Clopper-Pearson (dash line), for n — 10 and 1 — & — .95,

probability for all § has area 1 — «. For the above methods, which satisfy inf, Plex <9<

ux) 2 1 — @, one can subtract 1 — « from the area calculations. For o = .05, the areas are

calculated as follows:

n

A = /1 (> (:)8"‘(1—9)"“’“'![@1.“,](6)—.95]&

r=0

T

n ux Hx(l__g)n-—a:
- Bla+1,n—2 f 0.
;(3) (z+1,n :L—l-l)f B(ﬂ:+1,n—x—1—1)d 95

_ M\ ) (n—-z+1) 7
N Z(x) I‘(m—:c-{-1+:~:+1)EfJCX(;EIE)M_h'95

- n! ot — W
- Z% (a:!(n — 3_.)')( (i + 1)!) )[f_x(a:w)dg — 95

x=0
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1 2
= - — .95
7+ 1;5/ Fx (3;'9)({6 99,

where Sx(z]8) is the pdf of Beta(z + 1,n —z 4 1).

Areas were calculated for the four methods for 7 — 10 and 1 — & = .95. They are

Clopper | Crow | Blyth | Casella Max. | Casella Min.

0338 | .0214 | .0221 0220 L0208

where the coincidental endpoints were chosen at there maximum values of ¢ = .303 and
€y = .493 for Casella Max. and chosen at their minimum values of 45 = .259 and g = .381
for Casella Min. The Casella Min. intervals have the smallest area. If one considered the
loss function to be the area, then the Casella Mig. mtervals would be superior to the other

methods for this example.

Example-

The following example (Steel and Torrie, 1960} illustrates the different confidence interval
procedures. A class in taxonomy near Itheca, NY studied Dentaria, a flowering plant. The
students observed 26 plants and noted which flowered and which did not to estimate the
proportion of flowering plants. They found that § flowered and 20 did not. The students
were interested in generating exact 95% confidence intervals for the proportion of flowering

plants. For n = 26 and z = 6, the confidence intervals for the four intervals described are

Clopper Crow Blyth | Casella Max. | Casella Min.

(-0897,.4365) | (.106, .421) | (.11,.42) | (.106,.436) (106, .406)

where the values were quoted from each authors published tables. Notice that the Clopper-

Pearson interval is the longest, the Crow and Blyth-Still intervals are essentially the same
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length, and the Casella interval is either the shortest or the second longest. By choosing the
upper coincidental endpoint to be as small as possible (Casella Min.), the Casella interval
is shorter than the rest. But, by choosing the upper coincidental endpoint to be as large as
possible (Casella Max.) one obtains a confidence interval longer than Crow’s or Blyth’s. So,

it would be to the students advantage to choose the Casella Min. interval in this case.
Conclusion

The Clopper-Pearson intervals are still probabily the most widely used tabled set of exact
confidence intervals. It was shown that the sum of lengths of the confidence intervals (for a
particular n and a} for the other three methods discussed was shorter than for the Clopper-
Pearson intervals. However, this difference in sum of lengths is not very substantjal. If
possible, one should choose confidence intervals from the family of Casella intervals. This
ot only guarentees that the interval selected js from the family of confidence intervals with
the shortest sum of lengths (for a particular » and o) but, also affords the experimenter some
flexibility due to the coincidenta] endpoints. As demonstrated in the preceeding example, if
ones confidence interval contains a coinc; dental endpoint, it is possible to choose the endpoint
that yields the shortest interval. This choice has to be made before the data are observed. For
example, if one believed that 8 lies near 1, then one could choose the coincidental endpoints
to yield shorter intervals for larger X (Casella, 1986).

There is an interesting result in the graph of the expected lengths (figure 5). There are
two points at approximately § = .2 and 0 — .8 where the expected lengths of the Crow,
Blyth-Still and Casella method converge. Why do these two points exist, and do they exist

for all n? These questions and the importance of these two points are the subjects of possible
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future research.
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