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1 Abstract

~ This article briefly reviews the major transformation methods in
statistical regression. Both Maximum Likelihood Estimation and
Bayesian Methods in Box-Cox transformation are explained in
detail. One example is given for demonstration.

2 Introduction

In linear model analysis, the following assumptions usually are
required:
(a) Additivity — error terms are added to the main effect to
“explain” observation.
(b)Constant variance (homogeneity) — error terms are treated as
homogeneous. |
(c)Normality — observations are normally distributed.
(d)Independence — observations are independent of each other.

In practice, one or more of above assumptions may be violated.
- Statisticians have several options for analysis. One is to transform
the data so that those assumptions are tenable.

One common method to satisfy homogeneity assumption is
based on the empirical relation between the variance and the mean.
The theory behind this is as follows. For function f(y), if the first
order derivative f/'(y) is continuous and the second order derivative
f"(y) is finite, we can apply the Taylor series expansion and get
S0 = fm) =f'(m) ¥i - m) , where n; = E(y). Introducing o;(77)
to be a function of E(y;), 62(7;) = E[y; -E()]%, then write var (1))
as 6;°(7; ). Now squaring both sides and taking expectations, we
willhave - . . . - 7 ' '



var (f) ~(f () o”.
Therefore, in order to keep var (1)) approximately constant, we
need to find a proper transformation fy;) .

var (f(y;)) = constant
— ‘ f,'(ﬂi) ci(m) =c¢
> - [ (m) =c/ oi(m)
- f () = [ lcloi(m)] dn;

Integrate the right-hand-side and f(7,) is the transformation
formula. ' ,

Let’s look at éeveral examples. For the binomial distribution,
the pmf is p(Y=y|n,p) = (Iyl)py(l-p)“'y, EY = np, VarY = np(l-p).
Let n=EY, VarY = n(1-n/n).

f7(m) (VarY)"? =c
f(m)=cx [n(1l-nm)]"?
f(m)=lex [n(1-nn)] " dn
f(n)= ¢ arc sin [sqri(7/n) ]

RN

Here we treat 77 as a continuous variable. It is a good approximate

as n —o0. This is called the Angular transformation and further
discussions are continued in section 3.4.

If we have o(7) = 71, then (1) = | [c/o(n)]dn = len? dn =c*/77 :
This 1s the reciprocal transformation.

If o(np)= 77” 2 similarly, we can get (1) = 77” 2 which is square
root transformation. More details about it are listed in section 3.3.



3 Some Commonly Used Transformations
This part focuses on dependent variable transformation.
3.1  Power transformation and some alternative versions:

Turkey (1957) introduced a family of power transformation:
=1yt a0, 1)
| log y, A=0.

Box and Cox (1964) made some improvement so that this function
is continuous at 4=0.

yP= 10" 11, 120 )
L log y, A=0.

The model here is y(’v =( ylm) , yz(’v I yn(’l) ) =XpB+¢e,Pisa
vector of unknown parameters and £ ~MVN (0, o’l,) is the error
term.

However, the above transformation can only be made when
y; > 0 . With negative observations, the following form may be
used: ’

YW= T{p+) M -1}/ 4, 4=0; 3)
L log (3+4,), 4,=0.

The transformation introduced by Manly in 1976 is capable not
only of taking care of negative observations, but also of changing
skewed unimodal distributions into nearly symmetric normal-like
distributions:

YW= [ (e?-1)/ A, 40, | @)
 y, A=0. | -



For nearly symmetric distributions, John & Draper (1980)
suggested the modulus transformation:

y? = [ sign(y) * {*F1)/4, 120, (5)
' L logy, A=0.

In order to include those distributions of y™ with unbounded -
support, Bickel & Doksum (1981) suggested: )

= | Vi 1 sign(y;) —1 for 2>0.
A

We should note that range of (1) (2) 3) & (5) 1s restricted. So
the transformed values do not cover the entire range (-oo, + 00).
Accordingly, only approximate normality is possible.

3.2 Reciprocal Transformation:
A

This can reduce skewness. When y ™' has a physical meaning,
and we needn’t worry about zero or negative values, this method is
suitable.

3.3 Square Root and Cube Root Transformation:
W = ) 2|

When observations follow a Poisson distribution, then the
square root transformation is used. Anscombe (1948) showed
A=3/8 will give the best result if we want to get constant-variance.

Later, Kihlberg, Herson and Schotz (1967) concluded 4=0.386 is
the best.

Freeman & Tukey (1950) suggested the Chordal transformation
for the Poisson distribution if the expectation is small, then



y =sqrt( y; ) + sqrt (v +1).

When y; obeys a x «) distribution with v degrees of freedom, then
y® =sqrt (2 ;) is used. Fisher (1925) showed that the
transformed distribution is approximately N( sqrt(2 1-1), 1). For the
same distribution, Wilson & Hilferty (193 1) used the cube root
transformation: ‘

W = /v 13
which is approxnnately N( 1 -2/(9v),;2/(9v) ). And for v’ ) » 1S
better than the previous one.

3.4 Binomial Distribution:

The Angular transformation is considered the best. It was first
mentioned by Fisher (1954). Eisenhert, Hastay and Wellis refined
it later:

yi™ = arc sin {sqrt [(yi+A1) / (n+A2) 1} -

Early users used 4,=4,=0, Bartlett (1936) suggested 14,=0.5,
A,=0. Anscombe (1948) preferred 4,=0.375, 4,=0.75.

Fisher (1922, 1930) also gave:
yi(x) =arcsin (y;) .
which is known as Arc Sin transformation. However, it quite

depends on sample size and is unstable for variance.

For a negative binomial, the following transformation was first
introduced by Beall in 1942:

i = arc sinh {sqrt [(+20) / (k+22) 1} -
He recommended zero for both A values. Anscombe (1948)
suggested 4,=0.375, 1,=-0.75. Additionally, he further simplified it
to 3, = log (y;+0.5k) which is as good as Beall’s.



3.5 Normal Scores and Exponential Scores:

In psychological preferences, usually only the order of data is
known. Those data can be replaced with their corresponding
expected values by applying order statistics to a size n standard

normal distribution. This was first introduced by Fisher and Yates
(1938).

Exponential scores are basically the same, except that this
method uses the unit exponential distribution. And thus we can
calculate the usual exponential theory test statistics. This was
developed by Cox (1964).

4 Parameter Estimation

- The assumption here is that y(’i) = Xf+¢, where &~ N(O,O‘Z); X
is a known matrix and fis the parameter vector that needs to be

evaluated. Here are some methods to find out 4 and its confidence
interval.

One of them is power (Box-Cox) transformation, of which the
simplest form is (2). Box and Cox have done a lot of analysis on it
(See reference 1). We assume y™? is normally distributed, A is
unknown, the likelihood in relation to these original observations
y is:

Q)™ exp{-2c %" ¢-Xp'¢™-XP)} JHAsp)
(6)

where JOy) =TI" [dy® 7dy; | = Ty
is called Jacobian.



There are two ways to get the inference about the parameter A in
formula (6). ©® “orthodox” large-sample maximum-likelihood
theory. This will lead to point estimates of parameters and chi-
squared distribution of confidence intervals. @ Bayes’s theorem.
Here prior distribution of fand logo are assumed uniformly
distributed in the region where likelihood is appreciable. The

posterior distribution of A can be found by integrating over the
parameters.

4.1 MLE method: _
In the first method, the MLE can be found in two steps:

(1) For given A, (6) is the likelihood for a standard least-squares
problem. Thus the estimator of ¢*,is o*(4).

| o=y (@H) y¥ I n=S(2) /n,
where H is the perpendicular projection operator onto the column
space of X. Thatis H=X(X'X) X'.

Let L(p, o2, y) be the log likelihood evaluated at 8,62, and 4.

That is
LB Ay) ,
=20 0-XpY (X - 0.5n In(o )+ In ().

Let S, , and o ,12 be the maximizors of L for fixed A. That is,

Br=(X'X) X y? and & 2= y? (I-H) y™¥ In, where H is defined as
above.

Denote L(f5,, o ,102,/10| y) by L.x(Ag). That is,
Lunax(A0) =-0.5n - 0.5n log (& 3,%) + In J(Aep).



(2) Now we can get the maximizor A by plotting D(Ay) vs A,
where D(Ag) = 2 Lyax(A) - 2 Liax(Ao). The minimum value of D(Ag)
corresponding to 4. A large sample 95% confidence interval for A

can be-obtained by solving 2 L.x(1) - 2 L. (Ag) = 3.84.

. . .
‘We can also calculate 4 precisely by setting the derivative with
respect to A to. zero. With transformation (2), we can get =

AL = ¥ u® + n + Tlogy, =0.  (7)
d A y(7g) "(I-H) y(7») y ‘ »
Now, solve for A.

Here u(/) is the vector of {1 y"logy;}. In (7), the numerator is

the residual sum of products from the analysis of covariance of yo‘)

and u®.

If we use normalized transformation, z = yo‘)/ {JAp)"™ then
Luax(A) = -0.5 n log 6%(A;2)
and
XAz =M @-H) 1 1 n=SAz)/ n

S(A;z) is called the residual sum of squares of z*. Because the
maximized likelihood is proportional to {S(4;z)}™, so the MLE is
gained by minimizing S(A4;z)with respect to A.

For the transformation in (2), zM=3""'/ 2 m(»)"", where
m(y)"! is the geometric mean of y’s.

For the transformation with shifted location, (3),

@= {t)M-1} 1 A {gmO+)}hT
where gm(y+4,) is the sample geometric mean of (y+4,)’s.

- 10



4.2 Bayesian Method:

Now let’s focus on the second method, Bayesian analysis. Use
v=n—rank(X) to represent the degrees of freedom for residual.
When conducting an analysis of variance on y™ , use

sHh=y @/ y*. /v
to represent the residual mean square. Given: ,B o, A, the
conditional pdf of likelihood is

pv| 6,64,7)=

Q@n" 6™ exp{-20%)" * [vs'i+ (Br- HYXX(Br- B} JAp) -
where [, is the least-square estimator of £ for a certain A.

Let m(y) be the geométric mean: m(y) = ([T; »)"". Then
J,A) =m@)"*"P. Box and Cox (1964) suggest the following prior
density for f,0,4 is

W(B,0,2) = po(A) | om(p) Y, |
where £ 1s the dimension of £. This is an “empirical Bayes” type
prior, because it is a function of the data.

The joint distribution of y, B, o, 1 is

p0.B.0,0) =p| B0, %) h(B,6,A)

= 2™ Vexp{-207) % [vsA) + (Br- HYXXBr- A}
xpo(Am(y)"* .

To obtain the posterior distribution of A given y, first find the
joint marginal distribution of y and A.

pw.A)=p) [o 12 p@.fo2) dBdo

11



=P W0 @ne?y " X X exp - 1871207} m(p) ™ do
This is obtained by integrating with regard to S. Next, it is
= 25 P RXT m ) po(D 0 QY exp - 18,1207} dor

- Now make change of variable: w=1/(20°)
—o=Qw)™"?
> do=-Qu)ydw

—p(r,A) = 225 X P CUpy () expl-a(1,0)} @ do

= 222X X P m(y) P Vpo(4) (v8, 2 2 T(V2)

Therefor the posterior conditional distribution of A is

p(Ay)=p®.2) / p(y) = Km®)** py() (,°)"7,
where K 1s a constant.

Let z¥ = y()‘)/m(y)o”'l) , Then s,* = $*(y; 4) = m(y)m'l) s’(z;4) and

p(A y) = Kpo(2) [s": AT
The constant, K, must be chosen so that
[ 7o Kpo(D) [SAm AT da=1.

For example, take po(1) to be uniform, then,
p(y)=K/[s*@GH]".

Now use numerical integration to find K, plot the posterior

density function, p(A y) to A. The A value corresponding to the
peak is what we want.

Find L and U such that

Ep(Ay)da=0.95.
Then (L,U) is a 95% Bayesian Confidence interval.

12



- 5 Example: A Biological Experiment using a 3x4 Factorial
Design with Replication.

Box and Cox (1964) included the following example and
analyzed it. This experiment is a 3x4. The factors are (a) three
poisons and (b) 4 treatments. Each cell is randomly assigned 4
animals. Table 1 shows their survival times.-

Table 1: Survival times(unit, 10 hr) of animals

Treatment

~ Poison - -
A B C D
1 031 082 043 045
045 1.10 045 071
046 088 063 0.66
043 072 076 0.62
2 036 092 044 056
029 061 035 1.02
040 049 031 071
023 124 040 0238
3 022 030 023 030

021 037 025 036
0.18 038 024 031
023 029 022 033

The residual is obtained by reducing the row and column effect
from the original data. No interactions should be included. Then
the model is: y5=pu+ 5+ g+ g;, Where i=1,2,3,4; j?—l,2,3. The

13



maximum likelihood and posterior distribution are functions of the
residual sum of squares for 7 which is denoted by s°(z; 1), where
7" is the standardized Box-Cox transformation.

Table 2 contains s*(z;4), D(4o) and p(/ﬂ »). The appendix
contains the SAS codeto calculate these three values. K in Kpy(A)
[sz(z;}»)]'w2 = p(A y) is a constant, which equals the reciprocal of
the area underthe curve V' = [sz(z;l)]'wz, because it is reasonable to
select po(4) as a Uniform distribution.

The enclosed Matlab code will calculate K value, the maximizor

A, and the exact lower and upper confidence limits. Here 1 = -
0.7502, and the Cl is (-1.1675,-0.3220). I got 8.7136E-11 for X,
which is a little different with the value Box and Cox got: 8.66E-
11. I chose the former one to do my other calculations and I think
the Box-Cox result is not as accurate as mine.

By plotting D(4,) and p(ﬂ] y) vs A, it yields that in maximized
likelihood method, the optimal value is about -0.75. According to

D(Ag) = 2L pax(A) = 2L pax(A) < 3.84, the approximate 95%
confidence interval is (-1.16, -0.33). In Bayes’s method, the

posterior distribution p(/ﬂ y) is approximately normal: N(-0.75,
0.22). The 95% confidence interval is (-1.17, -0.32).

14



Table 2

A S@A) D) A S D)
1.0 1.0509 56.76 -1.0°  0.3331 1.61
0.5 0.6345 32.51 -1.2 0.3586 5.14

0.0 0.4239 13.08 -1.4 0.4007 10.49
- -0.2 0.3752 7.30 -1.6 0.4625 17.39
-0.4 0.3431 3.05 -2.0 0.6639 34.71
-0.6 0.3258. 0.57 -2.5 1.1331 60.52
-0.8 0.3225 0.06 -3.0 2.0489 88._82
) p(Ay) A ply)

0.0 0.01 -0.8 1.82

-0.1 0.02 -0.9 1.42

-0.2 0.08 -1.0 0.92

-0.3 0.26 -1.1 0.47

-0.4 0.49 -1.2 0.19

-0.5 0.94 -1.3 0.07

-0.6 1.46 -1.5 0.01

-0.7 1.82

15 -



Lambda Value vs Difference of L value

14
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7 Appendix

*kkkk SAS code *kkkk

title1 "Likelihood E_valuation of SSM";
title2 "Using different lamda values: -3.0 to 1.0";
options Is=76 ps=66;

data one;
do poison='aaa’, 'bbb’, 'ccc’;
do treat="a’, 'b’, ‘c', 'd";
do repeat=1 to 4;
input survtime @@;
output;
end;
end;
end;

cards;

0.31 0.45 0.46 0.43 0.82 1.10 0.88 0.72
0.43 0.45 0.63 0.76 0.45 0.71 0.66 0.62
0.36 0.29 0.40 0.23 0.92 0.61 0.49 1.24
0.44 0.35 0.31 0.40 0.56 1.02 0.71 0.38
0.22 0.21 0.18 0.23 0.30 0.37 0.38 0.29
0.23 0.25 0.24 0.22 0.30 0.36 0.31 0.33

run;

proc iml;
I* Input X matrix. */
X={11001000,
01000,

cocococoo000O0O0O
o
o
-
o
e



000001,
000001,

11
11
11
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

- S =S OO0
== =N =N === =]

10010010,

10010001,

10010001,

10010001,

10010001 };
G = ginv(t(X)*X); /* Calculate generalized inverse*/
GX = G*t(X); /* To save calculation. */
invK = 0;

RESET AUTONAME )
USE one;

READ ALL INTO DATA;
survtime=DATA(|,2|);

[* Calculate the Jacobian. */
logy = log(survtime);’

20



jacobian = exp(sum(logy)/48);

I* Following calculate L value under maximizor -0.75 */
z0 = (survtime##(-0.75)-1)/(-0.75*jacobian##(-1.75));
beta0 = GX * z0;

SSEO0 = SSQ(z0 - X*beta0);
Lmax0 = -24 * log(SSE0)+92.91; /* n=48 */

doi=1to 41,
lamda = (|-31)I10
if lamda=0 then z_i=logy* jacoblan
else z_i = (survtime##lamda-1 )I(Iamda jacoblan##(lamda-1 ));
[* Calculate SSE here. */
beta_i = GX * z_j;
SSE_i = SSQ(z_i - X*beta_i);
Lmax_i = -24 * log(SSE_i)+92.91; /* n=48 */
I* number of independent component is 42 */
D_i = 2*( Lmax0 - Lmax_i); /* calculate the difference */
pu_i = 0.871*10**(~10)*(SSE_i)**(-21); /* It is p(lamda given y). */
I* 1 used K value from Matlab programming here. */
print, "Value of SSE ", lamda SSE_i D_i pu_i ;
end;
quit;

run;

***** Matlab code ****
## Drawing the two plots:
## Drawing 'Lambda Value vs Difference of L value' plot:

const=0;

lamhat=fmin('pdf_bayes',-3,3,options,|_H,y,G,nu,const)

Lmax=log(-pdf_bayes(lamhat,|_H,y,G,nu,const));

lamb=[-1.5:.01:0]";

unit=lamb.”0;

D=[]; -

for j=1:length(lamb)-
lam=lamb(j);
d=2*(Lmax-log(-pdf_bayes(lamb(j),|_H,y,G,nu,const)));
D=[D;d];

end

c=[-1.5,0, -1, 14];

yrange = [-1:.1:3.84]";

21



unit2 = yrange.”0;
plot(iamb,unit*3.84,"-" lamb,D,'-',unit2*(-1.16),yrange,'-',unit2*(- 0.33),yrange,'-')
axis(c)
xlabel(‘Lambda value')
ylabel('Difference of L")
gtext('3.84")
gtext(’-1.16")
- gtext("-0.33")
title('Lambda Value vs Difference of L value')

##t To construct the pdf plot:

const=new_const;

lamb=[-1.5:.01:0]';

D=[]; -

for j=1:length(lamb)
lam=lamb(j);
d=-pdf_baye(lamb(j),|_H,y,G,nu,const);
D=[D;d];

end

‘yrange33 = [0:.1:.5]";

unit33 = yrange33.70;

plot(unit33.*(-1.17),yrange33,'-',lamb,D,"'-",unit33.*(-0.32),yrange33,"-")

xlabel('Lambda value')

ylabel('P_u’)

gtext('-1.17")

gtext(*-0.32")

title('Lambda Value vs P_u Value')

gtext('.025")

gtext('.025')

## To calculate K value, lambda_hat, am_j confidence interval:
## program find_k.m

y =[0.31 0.45 0.46 0.43 0.82 1.10 0.88 0.72 0.43 0.45 0.63 0.76 ...
0.45 0.71 0.66 0.62 0.36 0.29 0.40 0.23 0.92 0.61 0.49 1.24 0.44 ...
0.35 0.31 0.40 0.56 1.02 0.71 0.38 0.22 0.21 0.18 0.23 0.30 0.37 ...
0.38 0.29 0.23 0.25 0.24 0.22 0.30 0.36 0.31 0.33];
G=exp(sum(log(y))/48); _

b=kron(ones(3,1),kron([1 2 3 4]',ones(4,1)));

a=kron([1 2 3]',ones(16,1));

n=length(y); :

22



X=[ones(n,1) dummyvar(a) dummyvar(b)];

% For a model with interaction, use
% X=dummyvar((a-1)*4+b);
%

H = X*pinv(X"X)*X";

I_H = speye(n)-sparse(H);

nu=n-rank(full(X));

options=foptions;

const=0;
lamhat=fmin("pdf_baye',-3,3,options,|_H,y,G,nu,const)

## lamhat =

#H -0.7502

const=pdf_baye(lamhat,|_H,y,G,nu,const);
const=-log(-const);
Tol=[1.e-10 0]’;
for a=5:5
K=-1 .lquad8('pdf_baye',Iamhat-a,lamhat+a,ToI,[],I_H,y,G,nu,const);
new_const=const+log(K);
disp([‘'Limits of Intergration are'])
disp([lamhat-a lamhat+a})
disp(['Value of K is"])
disp(exp(new_const))
end;

## Limits of Intergration are
#  -5.7502 4.2498

## Value of K is
## 8.7136e-011

const=new_const;
Hi=fmin(‘"Cl_bayes',lamhat,lamhat+1,options,|_H,y,G,nu,const,lamhat,.975)

## -0.3682 0.9603

23



01321 0.9974
05141 0.8622
0.2528 0.9883
10.2067 0.9809
0.3069 0.9787
0.3303 0.9728 | g
0.3222 0.9750
0.3215 0.9751
0.3220 0.9750
0.3221 0.9750

-0.3220 0.9750

Eﬁﬁﬁﬁ#iﬁﬁﬁ#ﬁ

-0.3220 0.9750

## Hi=

#H -0.3220

Low=fmin("Cl_bayes’,lamhat-1,lamhat,options,|_H,y,G,nu,const,lamhat,.025)

-1.3682 0.0021
-1.1321 0.0362
-0.9862 0.1318
-1.2460 0.0102

1.1306 0.0367

P ¥ OE & E %

1.1839 0.0209



-1.2076  0.0160
-1.1745 0.0232
-1.1583  0.0276
-1.1680 0.0249
-1.1678 0.0249
-1.1674  0.0250 .
-1.1675 0.0250
-1.1675 0.0250

-1.1675 0.0250

¥ OE OE OE E E E

I
3+

Low =

$
H:

11675

## Program pdf_baye.m (Only 8 chac is permitted in name).

function pdf=pdf_baye(lam,|_H,y,G,nu,const)
n=length(y);

pdf=[];

m=length(lam);

for j=1:m

if lam(j) ==

z = log(y) * G;

else z = ((y.*lam(j)-1)/(lam(j)*G*(lam(j)-1)));
end

s2= (z"I_H*z);

Inpdf=-nu/2*log(s2) + const;

pdf=[pdf; -exp(Inpdf)];

end

#t Program Cl_bayes.m
function P = Cl_bayes(upper_limit,|_H,y,G,nu,const,lamhat,p)

Tol=[1.e-10 0]';
‘options=foptions;
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t=-quad8('pdf_bayes',lamhat-5,upper_limit,Tol,[],I_H,y,G,nu,const);
disp([upper_limit t])
P=(t-p)"2;
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