

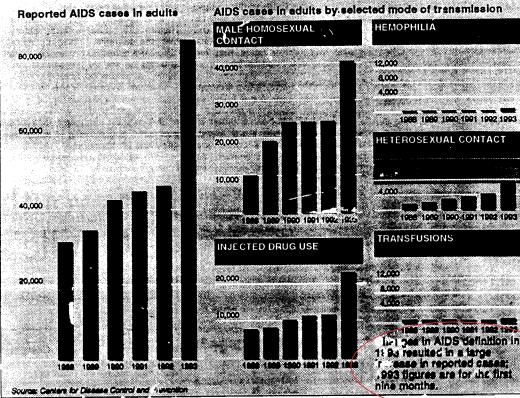
Misleading Graphs

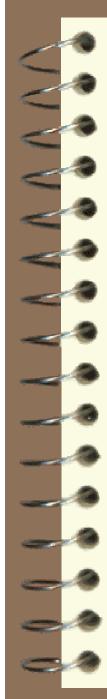
Examples
Compare unlike quantities
Truncate the *y*-axis
Improper scaling
"Chart Junk"
Impossible to interpret

Pretty Bleak Picture

The AIDS epidemic and its sub-epidemics

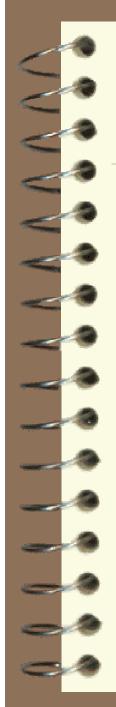
Epidemiologists are debating the scope of the AIDS epidemic, with a wide range of estimates for total cases. Different patterns are emerging in different sectors of the epidemic.





But Wait....!

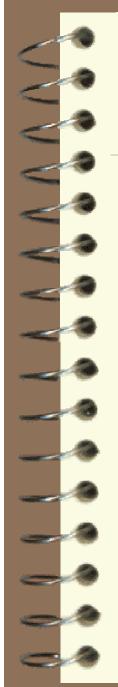
the test test test test test test Charges in AIDS definition in 1993 resulted in a large increase in reported cases; 1993 figures are for the first nine months.



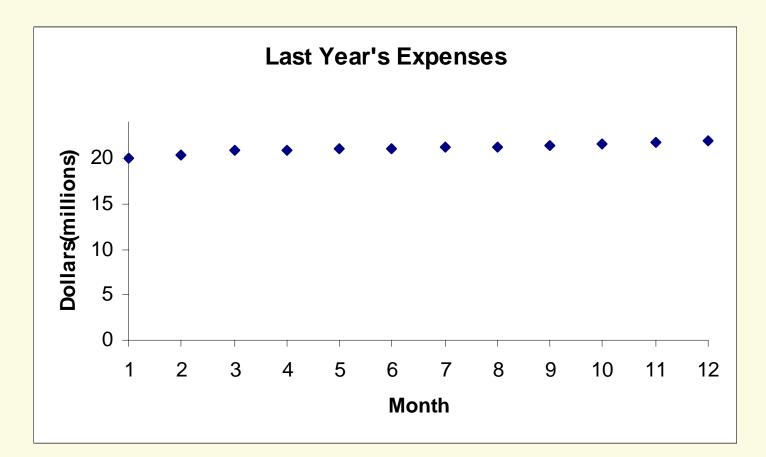
Turk Incorporated

Company report

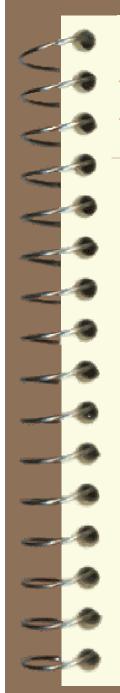
	Jan	Feb	Mar	Apr	May	Jun
•	20	20.4	20.8	20.9	21	21.1
mill						
	July	Aug	Sept	Oct	Nov	Dec
\$	21.2	21.2	21.4	21.6	21.8	22
mill						



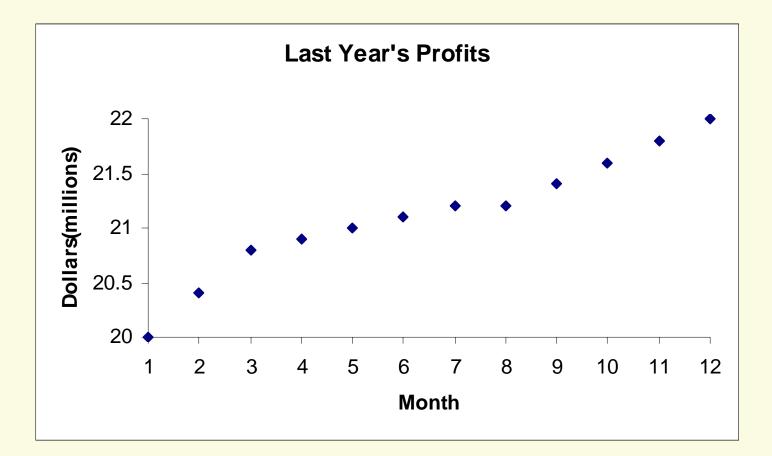
Last Year's Expenses



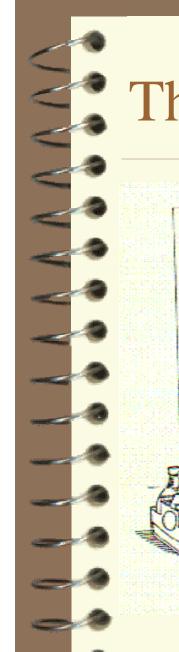
5



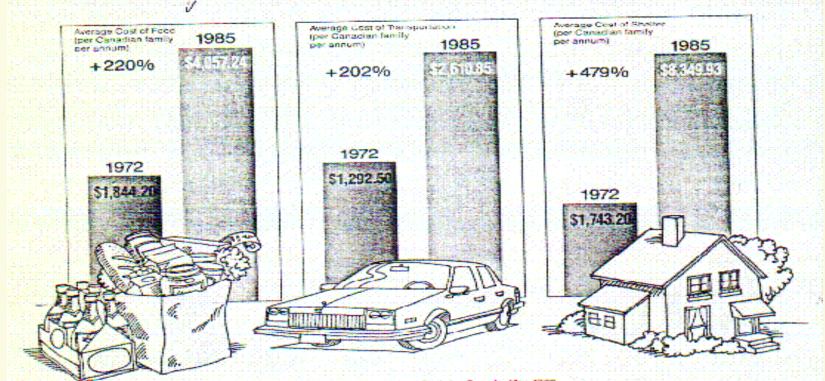
Last Year's Profits



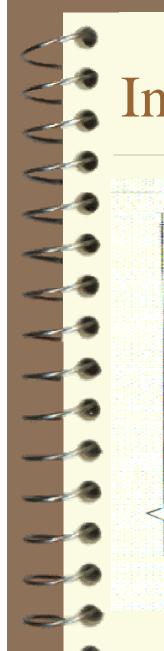
6



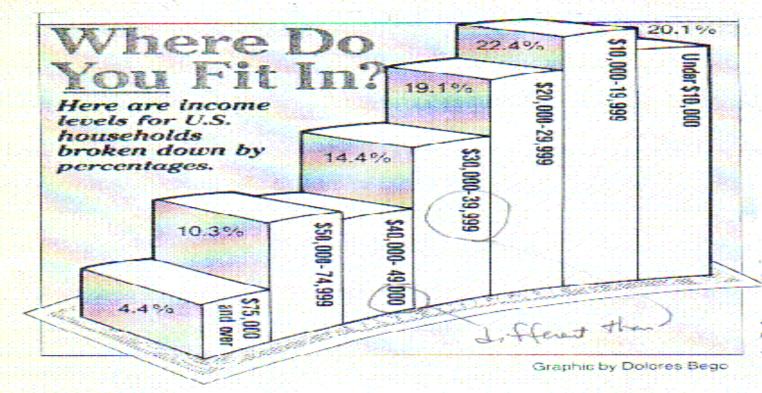
The Cost of Living

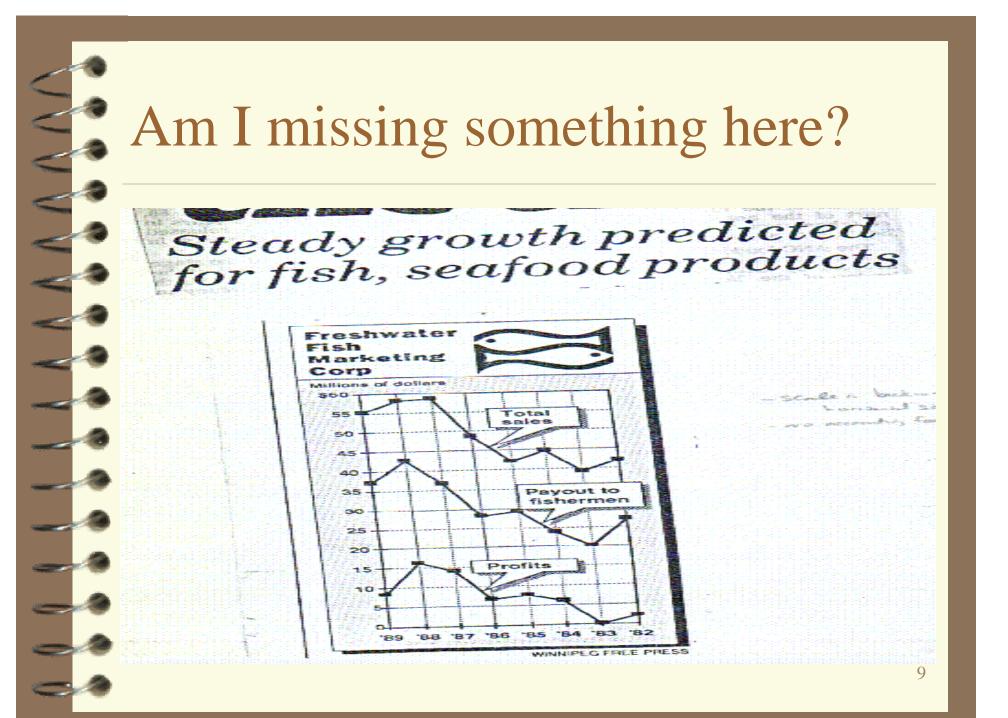


Statistical data quotes nara observed from Statistics Canada, May 1098



Income Levels



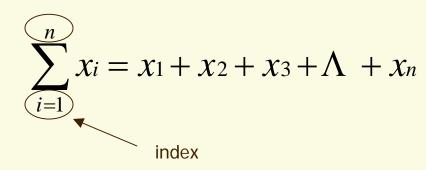


Wanted Dead or Alive

Bad Graphs
All media are fair game
Reward? Coffee, extra credit, enhanced self worth,...

Review of Summation Notation

Letters such as *x*, *y*,and *z* denote variables
We use the subscript *i* to represent the *i*th observation of the variable *n* is the sample size



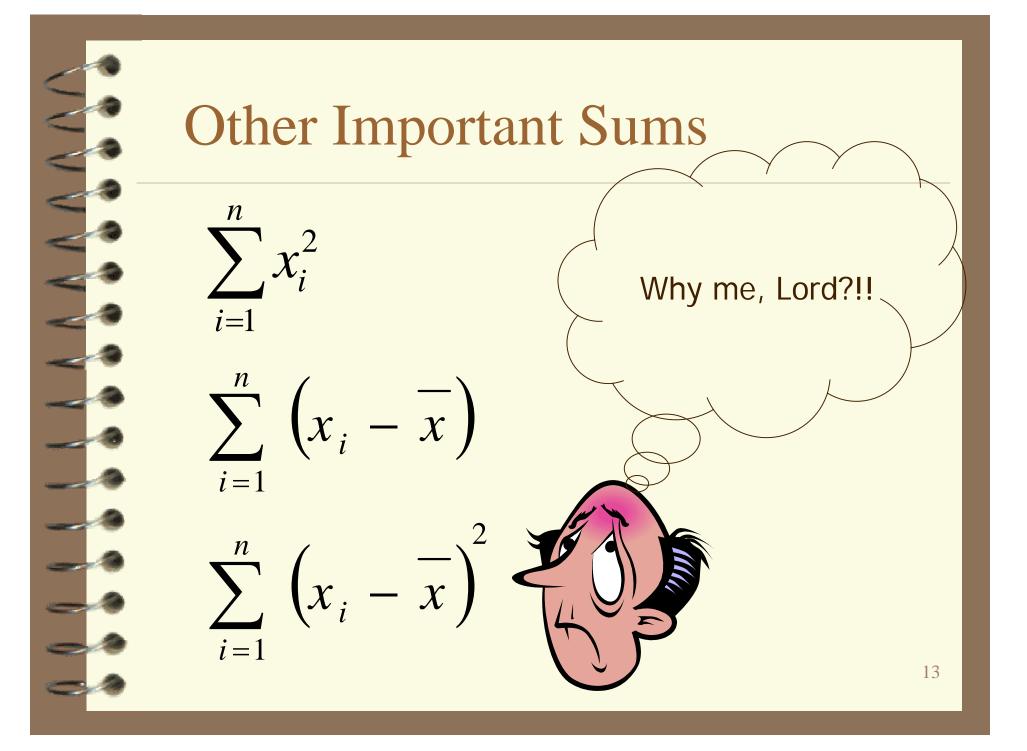
Example of Using Summation Notation

The total number of cars I saw turning right onto Babcock (out of the Molly parking lot) during a week a few years back.

I saw 2 on Monday, none on Wednesday, and 4 on Friday $x_1 = 2; x_2 = 0; x_3 = 4$

 $x_i = 2 + 0 + 4 = 6$

i=1



Measures of Central Tendency

Descriptive measures that indicate where the center or most typical value of a data set lies, a.k.a. "averages"

- . Mean
- Median
- Mode

Mean – arithmetic average

Mean of a Data Set

The *mean* of a data set is the sum of the observations divided by the number of observations.

Notation for the Mean

The mean is simply the average value of the observations.

For a variable, the mean of the observations is denoted: $\sum_{r=1}^{\infty} \frac{r}{r} + \frac{r}{r} + r$

$$\overline{x} = \frac{\sum x_i}{n} = \frac{x_i + x_i + \dots + x_i}{n}$$

16

Median – Middle Value

Arrange the data in increasing order.

- If the number of observations is odd, then the *median* is the observation exactly in the middle of the ordered list.
- If the number of observations is even, then the *median* is the mean of the two middle observations in the ordered list.

In both cases, if we let *n* denote the number of observations, then the median is at position (n + 1)/2 in the ordered list.

Mode – most common value

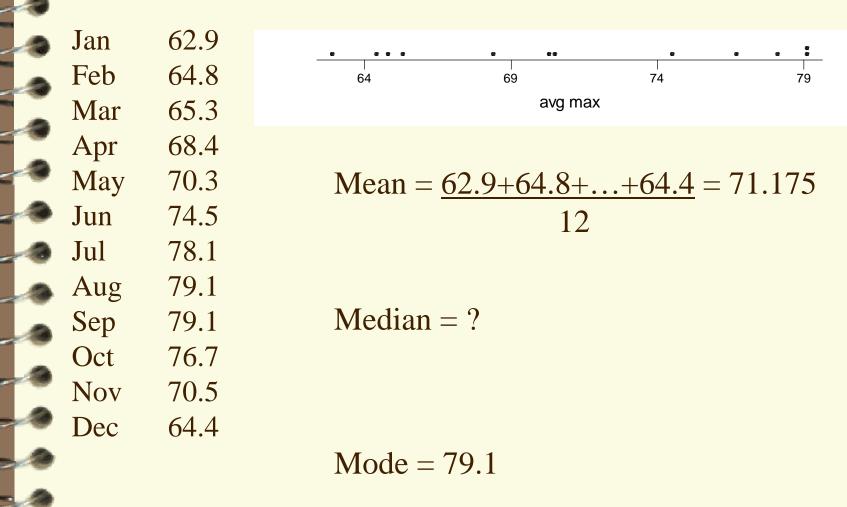
Mode of a Data Set

(S)

Obtain the frequency of occurrence of each value and note the greatest frequency.

- If the greatest frequency is 1 (i.e., no value occurs more than once), then the data set has no mode.
- If the greatest frequency is 2 or greater, then any value that occurs with that greatest frequency is called a *mode* of the data set.

Example – Average Daily Maximum Temperatures in San Luis Obispo, CA



What about the median average?

62.9 64.4 64.8 65.3 68.4 70.3 70.5 74.5 76.7 78.1 79.1 79.1

Avg = 70.4

Location = between 6th and 7th values
Value = 70.4

Example – SRS of n = 15 Swiss doctors

Mean

41.3 hysterectomies done per year Median

34 hysterectomies done per year Why are these measures of center so different?

Example continued

The median uses the *location*, not median=34 the value, and will be more *resistant* to extreme observations

> The mean will be pulled up by the two high values, i.e. in the direction of the skewness

Resistant = value is insensitive to outliers; median - yes; mean - no A fix? - trimmed mean = 36.7

Which is the right answer?

Depends!

- Mean is generally preferred when histogram is bell shaped and symmetric
- Median is often preferred for skewed data
- Median is used to represent a typical value
- Mean is used to represent average of *all* values
- Mode may not be near the center

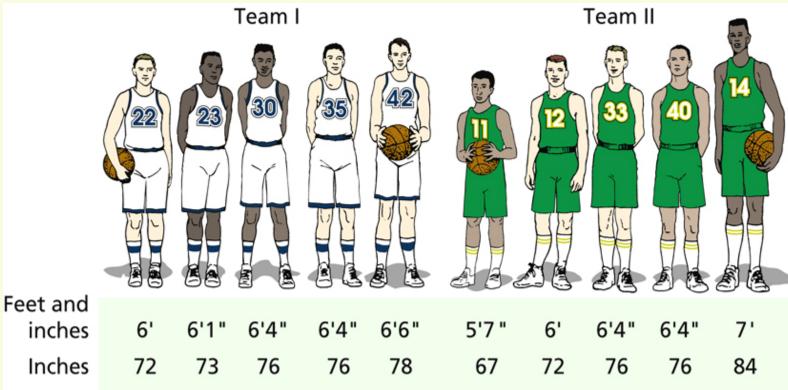
Must look at graph and question asked to decide which is appropriate

Measures of Variation (Spread)

Range

Sample Standard DeviationInterquartile Range

Example

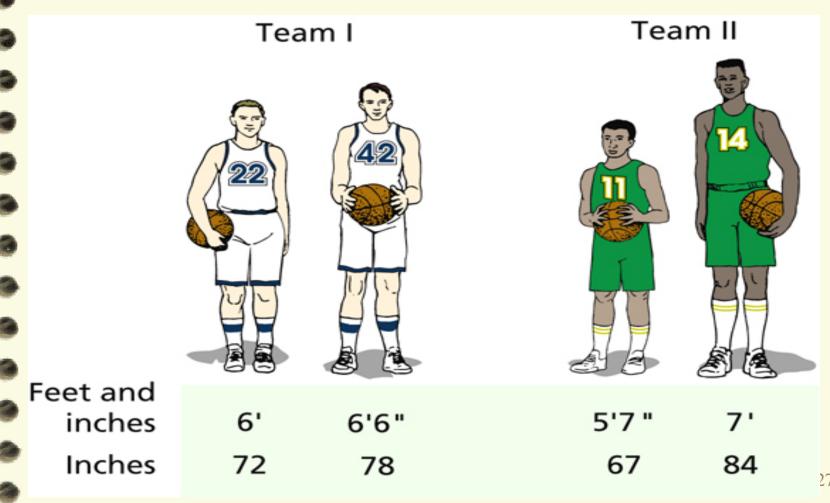


Range of a Data Set

The range of a data set is equal to the maximum observed value minus the minimum observed value

Disadvantage? Information from other observations is ignored!

Example: What are the ranges?



27

The Sample Standard Deviation

Sample Standard Deviation

For a variable x, the standard deviation of the observations for a sample is called a *sample standard deviation*. It is denoted s_x or, when no confusion will arise, simply s. We have

$$s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}},$$

where *n* is the sample size.

A measure of variation by indicating how far, on average, the observations are from the mean
 Do not confuse with the population standard deviation which we will discuss later on

Deviations from the Mean

The first step in calculating the sample standard deviation is to find how far each observation is from the mean.

Height x	Deviation from mean $x - \bar{x}$	Graphical display of the deviations from th mean (dots represent observations x		
72	-3	◄ -3		
73	-2			
76	1	← -21-→		
76	1			
78	3			
		72 73 74 75 76 77 78		

Deviations from the Mean

Problem: Taking an average deviation won't work. Do you know why?
Solution: We will square the deviations first, and then take the average. Thus, we now have a measure of average deviation from the mean for all the observations.

Squared Deviations from the Mean

to element on ment challes have barants (e.e.

Height x	Deviation from mean $x - \bar{x}$	Squared deviation $(x - \bar{x})^2$
72	-3	9
73	-2	4
76	1	1
76	1	1
78	3	9
		24
	$\sum_{i=1}^{n} \left(x_i - \overline{x} \right)$) ² a.k.a. "sum of squares"

31

The Sample Variance

$$S^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{n-1}$$

- Can be thought of as an average squared deviation.
- So what's up with the n 1?
- Two reasons neither are obvious!

The Sample Variance - Example -x24 2 i=1 $= 6 \text{ inches}^2$ 5 - 1n-133

The Sample Standard Deviation -Example

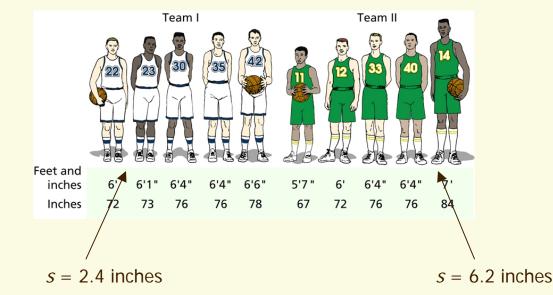
$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x)^2}{n - 1}} = \sqrt{6} = 2.4 \text{ inches}$$

On average, the heights of the players on Team I vary from the mean height of 75 inches by 2.4 inches (notice we ditched the "squared"!)

Get to know your calculator!

So What Does s Tell Us?

The more variation there is in a data set, the larger is its standard deviation



The Downside

s is not resistant: its value can be strongly affected by a few extreme observations
Can anyone tell me why? Hint: inspect the formula for *s*

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x)^2}{n - 1}}$$

Alternative Computing Formula for s

Computing Formula for a Sample Standard Deviation

A sample standard deviation can be computed using the formula

$$s = \sqrt{\frac{\Sigma x^2 - (\Sigma x)^2/n}{n-1}},$$

where *n* is the sample size.

We won't emphasize this formula

Rounding

Do not perform any rounding until the computation is complete; otherwise, substantial roundoff error can result.

Book: round final answers to one more decimal place than the raw data

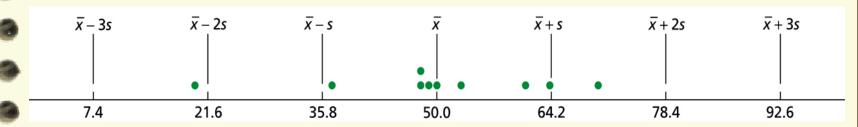
Me: round intermediate steps to four decimal places and the final answer to two decimal places

Further Interpretation of the Sample Standard Deviation – An Example

Data -> 20, 37, 48, 48, 49, 50, 53, 61, 64, 70

Sample Mean = 50.0

Sample Standard Deviation = 14.2



Three-Standard-Deviation Rule

- Almost all the observations in any data set lie within three standard deviations to either side of the mean
- What does "almost all" mean?
 - For all data sets, at least 89%
 - For bell-shaped data sets, about 99.7%

Properties of Standard Deviation

- s measures spread about the mean and should be used only when the mean is chosen as a measure of center
- s=0 only when there is NO spread. (all observations have the same value)
- As the observations become more spread out about their mean, s gets larger.
 - s, like the mean, is NOT resistant. A few ouliers can make s large.