Math 221 Second Exam (1 April 2011)

Show all work (unless instructed otherwise). NAME:

0. Circle **True** or **False** without explanation:

(${f T}$ or ${f F}$) Any subspace in ${f R}^3$ is the column space of some matrix.

(T or F) There is a 3×3 matrix A with N(A) = C(A).

(T or F) A subspace S and its orthogonal complement S^{\perp} intersect only at zero.

(T or F) If $v_3 \neq v_1 + v_2$ then the vectors v_1, v_2, v_3 are independent.

(${f T}$ or ${f F}$) If A and AB are invertible then B is also invertible*.

1. Consider a 3×3 matrix A given by the following (partly obliterated) product

$$A = \begin{bmatrix} 1 & \dots & \dots \\ 2 & \dots & \dots \\ 3 & \dots & \dots \end{bmatrix} = \begin{bmatrix} \dots \\ \dots \\ \dots \end{bmatrix} \begin{bmatrix} 1, & 2, & 3 \end{bmatrix}$$

a) Complete the missing entries above.

b) The rank of A must be ... (You do not need a) for this!)

c) A basis of the column space C(A) is ...

2. Find the dimension and a basis of the subspace that consists of all 2×2 matrices of the form $A = \begin{bmatrix} a & b \\ -b & c \end{bmatrix}$ (a, b, c are "free" scalars.)

3. You are given A and its row reduced form R

$$A = \begin{bmatrix} 1 & 3 & 2 & 4 \\ 2 & 1 & -1 & 3 \\ -1 & 1 & 2 & 0 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Complete the blanks below.

- a) The rank of A is ...
- b) The column space C(A) has dimension ... and a basis ...
- c) The row space $C(A^T)$ has dimension ... and a basis ...
- d) Compute a basis for the null space N(A). Show Work Here:

e) The dimension of $N(A^T)$ is and its basis is (-3, 4, ...) Show Work:

f) State the condition on $b = (b_1, b_2, b_3)$ guaranteeing that Ax = b has a solution. (Use e).)

4. Let S be the plane spanned by the two vectors $a = (1,1,1)^T$ and $b = (1,1,0)^T$.

a) Use the Gramm-Schmidt process to find an orthonormal basis of S.

b) Find the QR-decomposition of $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$

5. Consider
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 4 & 2 & 4 \end{bmatrix}$$

a) Find the x_r in the row space $C(A^T)$ solving $Ax_r = b$ for $b = (7,6,26)^T$.

b) Given that $(1,0,-1)^T$ is a basis of N(A), write out the <u>complete solution</u> to Ax = b (for the b as in a) above).

6. Take
$$A=\begin{bmatrix}1&1\\1&0\\1&1\\1&0\end{bmatrix}$$
. Its QR -decomposition has $Q=\frac{1}{2}\begin{bmatrix}1&1\\1&-1\\1&1\\1&-1\end{bmatrix}$, $R=\begin{bmatrix}2&1\\0&1\end{bmatrix}$.

a) Compute the projection of $b = (1, 1, 1, \mathbf{0})^T$ onto C(A).

b) Use Q and R to find the least squares solution to Ax = b.

#1
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 [1 2 3]; rank = 1; bosis $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

#2
$$\begin{bmatrix} a & b \\ -b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 These three matrices (without the coeff. in front eastitute a basis. Dim is 3.

#3.
$$rank = \#of piroh = 2$$
; $dim C(A) = 2$ with bosis $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$. $C(A^T)$'s bosis $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 \end{bmatrix}$ and dim is 2.

dim
$$N(A) = 4-2=2$$

$$x_1 - x_3 + x_4 = 0$$

$$x_2 + x_3 + x_4 = 0$$

$$yree$$

$$d_{N}(A^{T}) = 3 - 2 = 1 \text{ and } -3 \text{ row}_{1} + 4 \text{ row}_{2} = (5, -5, -10, 0) = -5 \text{ row}_{3} \text{ so } (-3, 4, 5)$$

$$4x - 6 \text{ has sol iff } 6 + N(A^{T}) \text{ which is } -36 + 46 + 56 = 0$$

$$Ax = b$$
 has sol iff $b \perp N(A^{T})$ which is $-3b_1 + 4b_2 + 5b_3 = 0$.

#4
$$q_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
; $q_2 = \text{nonmakized } (b - q_1^T b \cdot q_1) = \text{nonm.} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \text{norm.} \begin{pmatrix} 1/3 \\ 1/3 \\ -1/3 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 1/3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1/3 \end{bmatrix} = \frac{1}$

#6
$$p = QQ^T l = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 \\ 0 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 3 \\ 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1/2 \\ 1/2 \end{bmatrix}$$

$$QR\hat{X} = \hat{k}$$
 so $\hat{X} = R^{-1}Q^{T}\hat{k} = \frac{1}{2}\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$

#5:
$$x_r = t[1,1,1] + s[1,0,1] = [t+s,t,t+s]$$
 plugged into $Ax_r = b$ gives $(t+s) + t + (t+s) = 7$. We get $3t + 2s = 7$ so $t = 1$ so $s = 2$ giving $x_r = [3,1,3]$. $= 26$

$$X = X_{1} + X_{1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} + a \cdot \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
 where a is a "free" scolar.