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Math 221 Second Exam (1 April 2011)

Show all work (unless instructed otherwise). .
Good Luck! NAME

0. Circle True or False without explanation:

( T or F ) Any subspace in R? is the column space of some matrix.

( T or F ) There is a 3 x 3 matrix A with N(A) = C(A).

( T or F ) A subspace S and its orthogonal complement S+ intersect only at zero.
( T or F ) If v3 # v + v9 then the vectors vy, v9,v3 are independent.

(T or F)If Aand AB are invertible then B is also invertible*.

1. Consider a 3 x 3 matrix A given by the following (partly obliterated) product

e e
L A

a) Complete the missing entries above.
b) The rank of A must be ... (You do not need a) for this!)

¢) A basis of the column space C(A) is ...

2. Find the dimension and a basis of the subspace that consists of all 2 x 2 matrices of

the form A = l:—ab Ic)} (a,b, c are “free” scalars.)



3. You are given A and its row reduced form R

1 3 2 4 10 -1 1
A=12 1 -1 3 R=101 1 1

-11 2 0 , 00 0 O

Complete the blanks below.

a) Therank of Ais ...

b) The column space C(A) has dimension ... and a basis ...

¢) The row space C(AT) has dimension ... and a basis ...

d) Compute a basis for the null space N(A).

Show Work Here:

e) The dimension of N(AT)is......... and its basis is (-3,4,...)

Show Work:

f) State the condition on b = (b, b2, b3) guaranteeing that Az = b has a solution. (Use e).)



4. Let S be the plane spanned by the two vectors a = (1,1,1)7 and b = (1,1, 0)T.
a) Use the Gramm-Schmidt process to find an orthonormal basis of S.

1 1
b) Find the QR-decomposition of 4 = [1 1]
10

1
5. Consider A = [1

1
1
4 4

a) Find the z, in the row space C(AT) solving Az, = b for b= (7,6,26)T.

N O =

b) Given that (1,0, —1)7 is a basis of N(A), write out the complete solution to Az = b
(for the b as in a) above).
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6. Take A = . Its QR-decomposition has @ = %
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a) Compute the projection of b = (1,1,1,0)7 onto C(A).

b) Use Q and R to find the least squares solution to Ax = b.
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