Math 221 Second Exam (31 March 2010)

Show all work (unless instructed otherwise). NAME: Good Luck!

0. Circle True or False without explanation:

(T or F) If vectors u and v are in a subspace then so is u + 2v.

(T or F) There is a 2×2 matrix A with N(A) = C(A).

(\mathbf{T} or \mathbf{F}) Two planes can be orthogonal in \mathbf{R}^4 , but not in \mathbf{R}^3 .

(T or F) If $2v_1 + 3v_2 + 4v_3 = 0$ then the vectors v_1, v_2, v_3 are dependent.

(T or F) If A is 4×3 and B is 3×4 , then C = AB cannot be invertible.

1. The matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

can be written as uv^T for some vectors u, v.

- a) Complete: The rank of A must be
- b) Find the vectors u, v.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix} = \begin{bmatrix} \dots \\ \dots \\ \dots \end{bmatrix} \begin{bmatrix} \dots, & \dots, & \dots \end{bmatrix}$$

2. Find the dimension and a basis of the subspace that consists of all 2×2 matrices of the form $A = \begin{bmatrix} a & a \\ b & c \end{bmatrix}$ (a, b, c are scalars.)

3. You are given A and its row reduced form R:

$$A = \begin{bmatrix} 1 & 2 & 1 & 5 \\ 1 & -2 & -1 & -1 \\ 2 & -2 & -1 & 1 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) Complete: The rank of A is ...
- b) Complete: the column space C(A) has dimension ... and a basis ...

list basis

- c) Complete: the row space $C(A^T)$ has dimension ... and a basis ...
- d) Compute a basis for the null space N(A). Show Work Here:

e) Complete: The dimension of $N(A^T)$ is and its basis is $(1,3,\ldots)$ Show Work:

f) State the condition on $b=(b_1,b_2,b_3)$ guaranteeing that Ax=b has a solution. (Use e).)

- 4. Consider u = (1, 1, 1), v = (1, 1, 0), and b = (1, 0, 1).
- a) Verify by a computation that b is not in the plane spanned by u, v.

b) Find the QR-decomposition of the matrix $A=\begin{bmatrix}1&1\\1&1\\1&0\end{bmatrix}$ with columns u,v.

c) Compute the projection of b onto the plane of u, v. (Use the columns of Q.)

d) Find the least squares solution to Ax = b.

5. For

$$A = \begin{bmatrix} 1 & -2 \\ 2 & -4 \\ 3 & -6 \end{bmatrix}$$

a) Find the x_r in the row space $C(A^T)$ solving $Ax_r = b$ for b = (9, 18, 27).

b) Find the complete solution to Ax = b.