Exam 1 Math 333 (11 Oct 2012)

Name:

<u>Show all work</u> (unless instructed otherwise). If you use a theorem indicate what it is. Good Luck!

0.[10pts] Circle **True** or **False** without explanation: Below, V and W are vector spaces of finite dimension, U and U' are subspaces of V, and $T: V \to W$ is linear.

- (**T** or **F**) dim(U + U') = dim(U) + dim(U') dim $(U \cap U')$.
- $(\mathbf{T} \text{ or } \mathbf{F}) U \subset V \text{ and } \dim(U) = \dim(V) \implies U = V.$
- (**T** or **F**) V is isomorphic to \mathbf{R}^n for some n.
- $(\mathbf{T} \text{ or } \mathbf{F}) T \text{ is one-to-one iff } \ker(T) = \{0\}.$
- (**T** or **F**) If $\{v_1, \ldots, v_n\}$ spans V then $\{Tv_1, \ldots, Tv_n\}$ spans range(T).

1.[10pts] In $\mathcal{M}_{2\times 2}$, the subspace W has basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \right\}$. a) Find the A with $[A]_{\mathcal{B}} = [1, 2, 3]$. (Indicate your method.)

 $A = \dots$

b) Show that $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ does not belong to W.

2.[10pts] Give a bullet-proof argument for independence of $\{1, \sin x, \cos x\}$ in \mathcal{F} .

3.[10pts] Let B be some fixed $n \times n$ matrix. Verify that

$$V = \{ A \in \mathcal{M}_{n \times n} : AB = BA \}$$

is a subspace of $\mathcal{M}_{n \times n}$.

4.[15pts] Consider linear $T : \mathcal{P}_2 \to \mathcal{P}_2$ given by (Tp)(x) = xp'(x). a) Find $[T]_{\mathcal{B} \leftarrow \mathcal{B}}$ when $\mathcal{B} = \{1, x + 1, x^2\}$. (Note that \mathcal{B} is non-standard!)

b) Describe ker(T) and find its basis.

c) Use the Rank Theorem to compute $\dim(\operatorname{range}(T))$. (Indicate the meaning of the numbers in your computation.)

5.[15pts] Consider $T: \mathcal{M}_{n \times n} \to \mathcal{M}_{n \times n}$ given by $T(A) := A - A^T$.

a) Carefully verify that T is linear.

b) Compute and simplify the formula for $T \circ T$:

 $T \circ T(A) = \dots$

6.[10pts] Let
$$\mathcal{B}_{st} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 and $\mathcal{C} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$.

Find the change of basis matrix $P_{\mathcal{C}\leftarrow\mathcal{B}_{st}}=\dots$

7.[10pts] A binary code encodes $x = (x_1, x_2)^T$ to $(b_1, b_2, b_3, b_4)^T := Gx$ where G is 4×2 matrix of rank **two** and with rows satisfying

$$r_1 + r_2 + r_3 = 0$$
 and $r_1 = r_4$.

Find the conditions for $(b_1, b_2, b_3, b_4)^T$ to be an uncorrupted message, that is b = Gx for some x. Explain your reasoning!

8.[10pts] Let $T: V \to W$ be a linear transformation. Argue that if $\{Tv_1, \ldots, Tv_n\}$ is independent then $\{v_1, \ldots, v_n\}$ is independent. Move by clear steps and justify each.