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Abstract: We investigate periodic and chaotic solutions of Hamiltonian systems inR
4

which arise in the study of stationary solutions of a class of bistable evolution equations.
Under very mild hypotheses, variational techniques are used to show that, in the presence
of two saddle-focus equilibria, minimizing solutions respect the topology of the config-
uration plane punctured at these points. By considering curves in appropriate covering
spaces of this doubly punctured plane, we prove that minimizers of every homotopy type
exist and characterize their topological properties.

1. Introduction

This work is a continuation of [?] where we developed a constrained minimization
method to study heteroclinic and homoclinic local minimizers of the action functional

JI [u] =
∫
I

j (u, u′, u′′) dt =
∫
I

[γ
2
|u′′|2+ β

2
|u′|2+ F(u)

]
dt, (1.1)

which are solutions of the equation

γ u′′′′ − βu′′ + F ′(u) = 0 (1.2)

with γ, β > 0. This equation with a double-well potentialF has been proposed in
connection with certain models of phase transitions. For brevity we will omit a detailed
background of this problem and refer only to those sources required in the proofs of the
results. A more extensive history and reference list are provided in [?], to which we refer
the interested reader.

The above equation is Hamiltonian with

H = −γ u′′′u′ + γ

2
|u′′|2+ β

2
|u′|2− F(u). (1.3)
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The configuration space of the system is the(u, u′)-plane, and solutions to(1.2) can be
represented as curves in this plane. Initially these curves do not appear to be restricted in
any way. However, the central idea presented here is that, when(±1,0) are saddle-foci,
the minimizers ofJ respect the topology of this plane punctured at these two points,
which allows for a rich set of minimizers to exist. Using the topology of the doubly-
punctured plane and its covering spaces, we describe the structure of all possible types
of minimizers, including those which are periodic and chaotic. Since the action of the
minimizers of these latter types is infinite, a different notion of minimizer is required
that is reminiscent of the minimizing (ClassA) geodesics of Morse [?]. Such minimizers
have been intensively studied in the context of geodesic flows on compact manifolds or
the Aubry–Mather theory (see e.g. [1] for an introduction). A crucial difference is that
we are dealing with a non-mechanical system on a non-compact space. Nevertheless,
we are able to emulate many of Morse’s original arguments about how the minimizers
can intersect with themselves and each other. For a precise statement of the main results
we refer to Theorem 3.2 and Theorem 5.8. For related work on mechanical Hamiltonian
systems we refer to [2,?] and the references therein.

Another important aspect of the techniques employed here and in [?] is the mildness of
the hypotheses. In particular, our approach requires no transversality or non-degeneracy
conditions, such as those found in other variational methods and dynamical systems
theory, see [?]. Specifically, we will assume the following hypothesis onF :

(H): F ∈ C2(R), F(±1) = F ′(±1) = 0, F ′′(±1) > 0, and F(u) > 0 for u 
= ±1.
Moreover there are constants c1 and c2 such that F(u) ≥ −c1+ c2u

2.

We will also assume for simplicity of the formulation thatF is even, but many analo-
gous results will hold for nonsymmetric potentials, cf. [?]. Finally, we assume that the
parametersγ andβ are such thatu = ±1 are saddle-foci, i.e. 4γ /β2 > 1/F ′′(±1). An
example of a nonlinearity satisfying these conditions isF(u) = (u2 − 1)2/4, in which
case (1.2) is the stationary version of the so-called extended Fisher–Kolmogorov (EFK)
equation.

In [?] we classify heteroclinic and homoclinic minimizers ofJ by a finite sequence
of even integers which represent the number of times a minimizer crossesu = ±1.
In order to classify more general minimizers we must consider infinite and bi-infinite
sequences, as we now describe.

A functionu : R → R can be represented as a curve in the(u, u′)−plane, and the
associated curve will be denoted by�(u). Removing the equilibrium points(±1,0) from
the (u, u′)−plane (the configuration space) creates a space with nontrivial topology,
denoted byP = R

2\{(±1,0)}. In P we can represent functionsu which have the
property thatu′ 
= 0 whenu = ±1, and various equivalence classes of curves can
be distinguished. For example, in [?] we considered classes of curves that terminate at
the equilibrium points(±1,0). Another important class consists of closed curves inP,
which represent periodic functions. We now give a systematic description of all classes
to be considered.

Definition 1.1. A type is a sequence g = (gi)i∈I with gi ∈ 2N∪ {∞}, where∞ acts as
a terminator. To be precise, g satisfies one of the following conditions:

i) I = Z, and g ∈ 2N
Z is referred to as a bi-infinite type.

ii) I = {0} ∪N, and g = (∞, g1, g2, . . . ) with gi ∈ 2N for all i ≥ 1, or I = −N∪ {0},
and g = (. . . , g−2, g−1,∞) with gi ∈ 2N for all i ≤ −1. In these cases g is referred
to as a semi-terminated type.
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iii) I = {0, . . . , N + 1} with N ≥ 0, and g = (∞, g1, . . . , gN ,∞) with gi ∈ 2N. In
this case g is referred to as a terminated type.

These types will define function classes using the vectorg to count the crossings of
u at the levelsu = ±1. Since there are two equilibrium points, we introduce the notion
of parity denoted byp, which will be equal to either 0 or 1.

Definition 1.2. A function u ∈ H 2
loc(R) is in the class M(g,p) if there are nonempty sets

{Ai}i∈I such that

i) u−1(±1) =⋃
i∈I Ai ,

ii) #Ai = gi for i ∈ I,
iii) max Ai < minAi+1,
iv) u(Ai) = (−1)i+p+1, and
v)

⋃
i∈I Ai consists of transverse crossings of ±1, i.e., u′(x) 
= 0 for x ∈ Ai .

Note that by Definition 1.1, a functionu in any classM(g,p) has infinitely many
crossings of±1. Definition 1.2 is similar to the definition of the classM(g) in [?]
except that here it is assumed that all crossings of±1 are transverse. Only finitely many
crossings are assumed to be transverse in [?] so that the classesM(g) would be open
subsets ofχ+H 2(R). Since we will not directly minimize overM(g,p), we now require
transversality of all crossings of±1 to guarantee that�(u) ∈ P. However, note that the
minimizers found in [?] are indeed contained in classesM(g,p) as defined above, where
the typesg are terminated.

The classesM(g,p) are nonempty for all pairs(g,p). Conversely, any function
u ∈ H 2

loc(R) is contained in the closure of some classM(g,p) with respect to the
complete metric onH 2

loc(R) given byρ(u, v) = ∑
i 2−i min{1, ‖u − v‖H2(−i,i)}, cf.

[?]. That is, if we defineM(g,p) := {u ∈ H 2
loc(R) | ∃un ∈ M(g,p), with un → u

in H 2
loc(R)}, thenH 2

loc(R) = ∪(g,p)M(g,p). Note that the functions in∂M(g,p) :=
M(g,p)\ int(M(g,p)) have tangencies atu = ±1 and thus are limit points of more than
one class. In the case of an infinite type, shifts ofg can give rise to the same function
class. Therefore certain infinite types need to be identified. Letσ be the shift map defined
byσ(g)i = gi+1 and the mapτ : {0,1} → {0,1} be defined byτ(p) = (p+1)mod 2=
|p−1|. Two infinite types(g,p) and(g′,p′) are equivalent ifg′ = σn(g) andp′ = τn(p)
for somen ∈ Z, and this impliesM(g,p) = M(g′,p′). A bi-infinite typeg is periodic
if there exists an integern such thatσn(g) = g.

When the domain of integration isR, the actionJ [u] given in (1.1) is well-defined
only for terminated typesg andu ∈ M(g,p) ∩ {χp + H 2(R)}, whereχp is a smooth
function from(−1)p+1 to (−1)p. For semi-terminated types or infinite types the action
J is infinite for everyu ∈ M(g,p). In Sect. 2, we will define an alternative notion
of minimizer in order to overcome this difficulty. The primary goal of this paper is to
prove the following theorem, but we also prove additional results about the structure and
relationships between various types of minimizers.

Theorem 1.3. If F satisfies Hypothesis (H) and is even, then for any type g and parity
p there exists a minimizer of J in M(g,p) in the sense of Definition 2.1. Moreover, if g
is periodic, then there exists a periodic minimizer in M(g,p).

In Sects. 5 and 6 we show that other properties of the symbol sequences, such as sym-
metry, are reflected in the corresponding minimizers. The classification of minimizers by
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symbol sequences has other properties in common with symbolic dynamics; for exam-
ple, if a type is asymptotically periodic in both directions, then there exists a minimizer
of that type which is a heteroclinic connection between two periodic minimizers.

The minimizers discussed here all lie in the 3-dimensional “energy-manifold”M0 =
{(u, u′, u′′, u′′′) | H((u, u′, u′′, u′′′) = 0}. Exploiting certain properties of minimizers
that are established in this paper, we can deduce various linking and knotting character-
istics when they are represented as smooth curves inM0 [?,?]. The minimizers found
in this paper are also used in [?] to construct stable patterns for the evolutionary EFK
equation on a bounded interval, and the dynamics of the evolutionary EFK is discussed
in [?].

Some notation used in this paper was previously introduced in [?]. While we have
attempted to present a self-contained analysis, we have avoided reproducing details
(particularly in Sect. 5.1) which are not central to the ideas presented here, and which
are thoroughly explained in [?].

2. Definition of Minimizer

For every compact intervalI ⊂ R the restricted actionJI is well-defined for all types.
When we restrictu to an intervalI , we can define itstype and parity relative to I , which
we denote by(g(u|I ),p(u|I )). Namely, letu ∈ M(g,p). It is clear that(u, u′)|∂I 
∈
(±1,0) for any bounded intervalI . Theng(u|I ) is defined to be the finite-dimensional
vector which counts the consecutive instances ofu|I = ±1, andp(u|I ) is defined such
that the first timeu|I = ±1 in I happens at(−1)p+1. Note that the components ofg(u|I )
are not necessarily all even, since the first and the last entries may be odd. We are now
ready to state the definition of a (global) minimizer inM(g,p).

Definition 2.1. A function u ∈ M(g,p) is called a minimizer for J over M(g,p) if
and only if for every compact interval I the number JI [u|I ] minimizes JI ′ [v|I ′ ] over all
functions v ∈ M(g,p) and all compact intervals I ′ such that (v, v′)|∂I ′ = (u, u′)|∂I
and (g(v|I ′),p(v|I ′)) = (g(u|I ),p(u|I )).

The pair(g(u|I ),p(u|I )) defines a homotopy class of curves inP with fixed end
points (u, u′)|∂I . The above definition says that a functionu, represented as a curve
�(u) in P, is a minimizer if and only if for any two pointsP1 andP2 on �(u), the
segment�(P1, P2) ⊂ �(u) connectingP1 andP2 is the mostJ -efficient among all
connections̃�(P1, P2) betweenP1 andP2 that are induced by a functionv and are of
the same homotopy type as�(P1, P2), regardless of the length of the interval needed to
parametrize the curvẽ�(P1, P2). As we mentioned in the introduction, this is analogous
to the length minimizing geodesics of Morse and Hedlund and the minimizers in the
Aubry–Mather theory. The set of all (global) minimizers inM(g,p) will be denoted by
CM(g,p).

Lemma 2.2. Let u ∈ M(g,p) be a minimizer, then u ∈ C4(R) and u satisfies Eq. (1.2).
Moreover, u satisfies the relation H(u, u′, u′′, u′′′) = 0, i.e. the associated orbit lies on
the energy level H = 0.

Proof. From the definition ofM(g,p), on any bounded intervalI ⊂ R there exists
ε0(I ) > 0 sufficiently small such thatu + φ ∈ M(g,p) for all φ ∈ H 2

0 (I ), with
‖φ‖H2 < ε ≤ ε0. ThereforeJI [u+ φ] ≥ JI [u] for all such functionsφ, which implies
thatdJI [u] = 0 for any bounded intervalI ⊂ R, and thusu satisfies (1.2).
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To prove the second statement we argue as follows. Sinceu ∈ M(g,p), there exists a
bounded intervalI such thatu′|∂I = 0. Introducing the rescaled variables = t/T with
T = |I | andv(s) = u(t), we have

JI [u] = J [T , v] ≡
∫ 1

0

[
1

T 3

γ

2
|v′′|2+ 1

T

β

2
|v′|2+ T F(v)

]
ds, (2.1)

which decouplesu andT . Sinceu′|∂I = 0 we see from Definition 2.1 thatJ [T ±
ε, v] ≥ JT [u] = J [T , v]. The smoothness ofJ in the variableT > 0 implies that
∂
∂τ
J [τ, v]

∣∣∣
τ=T= 0. Differentiating yields

∂

∂τ
J [τ, v] =

∫ 1

0

[
−τ−4 3

2
γ |v′′|2− τ−2β

2
|v′|2+ F(v)

]
ds

= τ−1
∫ τ

0

[
−3

2
γ |u′′|2− β

2
|u′|2+ F(u)

]
dt

= −τ−1
∫ τ

0
H(u, u′, u′′, u′′′)dt ≡ −E.

ThusE = 0, andH(u, u′, u′′, u′′′) = 0 for t ∈ I . This immediately implies thatH = 0
for all t ∈ R. ��
The minimizers forJ found in [?] also satisfy Definition 2.1, and we restate one of the
main results of [?].

Proposition 2.3. Suppose F is even and satisfies (H), and β, γ > 0 are chosen such that
u = ±1 are saddle-focus equilibria. Then for any terminated type g with parity either 0
or 1 there exists a minimizer u ∈ M(g,p) of J .

From Definition 1.2, the crossings ofu ∈ M(g,p) with±1 are transverse and hence
isolated.We adapt from [?], the notion of a normalized function with a few minor changes
to reflect the fact that we now require every crossing of±1 to be transverse.

Definition 2.4. A function u ∈ M(g,p) is normalized if, between each pair u(a) and
u(b) of consecutive crossings of ±1, the restriction u|(a,b) is either monotone or u|(a,b)
has exactly one local extremum.

Clearly, the case ofu|(a,b) being monotone can occur only between two crossings at
different levels±1, in which case we say thatu has atransition on [a, b].
Lemma 2.5. If u ∈ CM(g,p), then u is normalized.

Proof. Sinceu ∈ M(g,p), all crossings ofu = ±1 are transverse, i.e.u′ 
= 0. Thus for
any critical pointt0 ∈ R, u(t0) 
= ±1, and the Hamiltonian relation from Lemma 2.2
and (1.3) implies thatγ u′′(t0)2/2 = F(u(t0)) > 0. Thereforeu is a Morse function,
and between any two consecutive crossings of±1 there are only finitely many critical
points. Now on any interval between consecutive crossings whereu is not normalized,
the clipping lemmas of Sect. 3 in [?] can be applied to obtain a moreJ -efficient function,
which contradicts the fact thatu is a minimizer. ��
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3. Minimizers of Arbitrary Type

In this section we will introduce a notion of convergence of types which will be used in
Sect. 5.2 to establish the existence of minimizers in every classM(g,p) by building on
the results proved in [?].

Definition 3.1. Consider a sequence of types (gn,pn) = (
(gni )i∈In ,pn

)
and a type

(g,p) = (
(gi)i∈I ,p

)
. The sequence (gn,pn) limits to the type (g,p) if and only if

there exist numbers Nn ∈ 2Z such that gni+Nn+pn−p → gi for all i ∈ I as n→∞. We
will abuse notation and write (gn,pn)→ (g,p).

We should point out that a sequence of types can limit to more than one type. For
example the sequence(gn,0) = (

(∞,2,2, n,4,4,4,4, n,2,2,2, . . . ),0
)

limits to the
types

(
(∞,2,2,∞),0

)
,
(
(∞,4,4,4,4,∞),1

)
and

(
(∞,2,2,2, . . . ),0

)
.

Theorem 3.2. Let (gn,pn) → (g,p) and un ∈ CM(gn,pn) with ‖un‖1,∞ ≤ C for
all n. Then there exists a subsequence unk such that unk → û ∈ M(g,p) in C4

loc(R),
and û is a minimizer in the sense of Definition 2.1, i.e. û ∈ CM(g,p).

Proof. This proof requires arguments developed in [?] to which the reader is referred
for certain details. The idea is to take the limit ofun restricted to bounded intervals.
We define the numbersNn as in Definition 3.1, and we denote the convex hull ofAi

by Ii = conv(Ai). Due to translation invariance we can pin the functionsun so that
un(0) = (−1)p+1, which is the beginning of the transition betweenInNn+pn−p and
In1+Nn+pn−p. Due to the assumed a priori bound and interpolation estimates which can
be found in the appendix to [?], there is enough regularity to yield a limit function̂u
as aC4

loc–limit of un, after perhaps passing to a subsequence. Moreoverû satisfies the
differential equation (1.2) onR. The question that remains is whetherû ∈ M(g,p).

To simplify notation we will now assume thatNn = 0 andpn = p = 0. Fixing
a smallδ > 0, we defineIni (δ) ⊃ Ini as the smallest interval containingIni such that
u|∂Ini (δ) = (−1)i+1 − (−1)i+1δ (if g is a (semi-)terminated type thenIni (δ) may be
a half-line). The interval of transition betweenIni (δ) andIni+1(δ) is denoted byLn

i (δ).
To see that̂u ∈ M(g,p), one has to to eliminate the two possibilities that a priori may
lead to the loss or creation of crossings in the limit so thatû 
∈ M(g,p): the distance
between two consecutive crossings inun could grow without bound or̂u could possess
tangencies atu = ±1.

Due to the a priori estimates inW1,∞ we have the following bounds onJ :

J [un|Ini (δ)] ≤ C and J [un|Ln
i (δ)
] ≤ C′, (3.1)

whereC andC′ are independent ofn and i. Indeed, note that forn large enough the
homotopy type ofun on the intervalsIni (δ) is constant by the definition of convergence
of types. Since the functionsun are minimizers,J [un|Ini (δ)] is less than the action of any
test function of this homotopy type satisfying the a priori bounds onu andu′ on∂Ini (δ)
(see [?, Sect. 6] for a similar test function argument). The estimate|Ln

i (δ)| ≤ C(δ)

is immediately clear from Lemma 5.1 of [?]. We now need to show that the distance
between two crossings of(−1)i+1 within the intervalIni (δ) cannot tend to infinity.

First we will deal with the case whengni is finite for alln. Suppose that the distance
between consecutive crossings of(−1)i+1 in Ini (δ) tends to infinity asn → ∞. Due
to Inequality (3.1) and Lemma 2.5, minimizers have exactly one extremum between
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crossings of(−1)i+1 for any ε > 0, and hence there exist subintervalsKn ⊂ Ini (δ)

with |Kn| → ∞, such that 0< |un − (−1)qn | < ε on Kn, whereqn ∈ {0,1}, and
|u′|∂Kn | < ε. Taking a subsequence we may assume thatqn is constant.

We begin by considering the case whereqn = i + 1. Now ε can be chosen small
enough, so that the local theory in [?] is applicable inKn. If |Kn| becomes too large then
un can be replaced by a function with lower action and with many crossings of(−1)i+1.
Subsequently, redundant crossings can be clipped out, thereby lowering the action. This
implies thatun is not a minimizer in the sense of Definition 2.1, a contradiction.

The case whereqn = i must be dealt with in a different manner. First, there are
unique pointstn ∈ Kn such thatu′n(tn) = 0, and for these pointsun(tn) → (−1)i as
|Kn| → ∞. Let un(sn) be the first crossing of(−1)i+1 to the left ofKn. Taking the
limit (along subsequences) ofun(t− sn) we obtain a limit functioñu which is a solution
of (1.2). If |tn − sn| is bounded theñu has a tangency tou = (−1)i at somet∗ ∈ R. All
un lie in {H = 0} (see (1.3)) and so does̃u, hencẽu′′(t∗) = 0. Moreover̃u′′′(t∗) = 0,
becausẽu(t∗) is an extremum. By uniqueness of the initial value problem this implies
thatũ ≡ (−1)i , contradicting the fact that̃u(0) = (−1)i+1. If |tn − sn| → ∞, thenũ is
a monotone function on[0,∞), tending to(−1)i asx →∞, and its derivatives tend to
zero (see Lemma 3 in [14] or Lemma 1, Part (ii) in [?] for details). This contradicts the
saddle-focus nature of the equilibrium point.

In the case thatgni = ∞ we remark that (3.1) also holds whenIni is a half-line.
It follows from the estimates in Lemma 5.1 in [?] that uni → (−1)i+1 asx → ∞ or
x →−∞ (whichever is applicable). From the local theory in Sect. 4 of [?] and the fact
thatun is a minimizer, it follows that the derivatives ofun tend to zero. The analysis
above concerning the intervalsKn and the clipping of redundant oscillations now goes
on unchanged.

We have shown that the distance between two crossings of±1 is bounded from above.
Next we have to show that the limit function has only transverse crossings of±1. This
ensures that no crossings are lost in the limit. Ifû were tangent to(−1)i+1 in Ii , then
we could construct a function inv ∈ M(g,p) in the same way as demonstrated in [?]
by replacing tangent pieces by moreJ -efficient local minimizers and by clipping. The
functionv still has a lower action than̂u on a slightly larger interval (the limit function
û also obeys (3.1), so that the above clipping arguments still apply). Sinceun → û in
C4

loc it follows thatJI [un] → JI [u] on bounded intervalsI . This then implies that forn
large enough the functionun is not a minimizer in the sense of Definition 2.1, which is
a contradiction.

The limit functionû could also be tangent to(−1)i for somet0 ∈ Ii . As before, such
tangencies satisfŷu(t0) − (−1)i = û′(t0) = û′′(t0) = û′′′(t0) = 0, which leads to a
contradiction of the uniqueness of the initial value problem.

Finally, crossings ofu = ±1 cannot accumulate since this would imply that at the
accumulation point all derivatives would be zero, leading to the same contradiction as
above. In particular, ifgni → ∞ for somei, then|Ini | → ∞ and the crossings inAn

j

for j > i move off to infinity and do not show in̂u, which is compatabile with the
convergence of types.

We have now proved that̂u ∈ M(g,p) and, sincêu is theC4
loc–limit of minimizers,

û is also a minimizer in the sense of Definition 2.1.��

Remark 3.3. It follows from the estimates in Theorem 3 of [?] that in the theorem above
we in fact only need anL∞-bound on the sequenceun.
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Remark 3.4. It follows from the proof of Theorem 3.2 that there exists a constantδ0 > 0
such that for all uniformly bounded minimizersu(t) it holds that|u(t)− (−1)i+p| > δ

for all t ∈ Ii and alli ∈ I. This means that the uniform separation property discussed
in [?] is uniformly satisfied by all minimizers.

4. Periodic Minimizers

A bi-infinite type g is periodic if there exists an integern such thatσn(g) = g. The
(natural) definition of the period ofg is min{n ∈ 2N | σn(g) = g}. We will write g = 〈r〉,
wherer = (g1, . . . , gn) andn is even. Cyclic permutations ofr with possibly a flip of
p give rise to the same function classM(〈r〉,p). In reference to the type〈r〉 with parity
p we will use the notation(r,p). Any such type pair(r,p) can formally be associated
with a homotopy class inπ1(P, 0) in the following way. Lete0 ande1 be the clockwise
oriented circles of radius one centered at(1,0) and(−1,0) respectively, so that[e0]
and [e1] are generators forπ1(P, 0). Defining θ(r,p) = e

rn/2
τn(p) · . . . · er1/2p , the map

θ : ∪k≥12N
2k × {0,1} → π1(P, 0) is an injection, and we defineπ+1 (P, 0) to be

the image ofθ in π1(P, 0). Powers of a type pair(r,p)k for k ≥ 1 are defined by
concatenation ofr with itself k times, which is equivalent to(r,p)k = θ−1((θ(r,p))k).

Definition 4.1. Two pairs (r,p) and (̂r, p̂) are equivalent if there are numbers p, q ∈ N

such that (r,p)p = (̂r, p̂)q up to cyclic permutations. This relation, (r,p) ∼ (̂r, p̂), is
an equivalence relation.

Example. If (r,p) = (
(2,4,2,4),0

)
and(̂r, p̂) = (

(4,2,4,2,4,2),1
)
, thenθ(r,p)3 =

θ (̂r, p̂)2. The equivalence class of(r,p) is denoted by[r,p]. A type(r,p) is a minimal
representative for[r,p] if for each(̂r, p̂) ∈ [r,p] there isk ≥ 1 such that(̂r, p̂) = (r,p)k

up to cyclic permutations. A minimal representative is unique up to cyclic permutations.
It is clear that in the representation of a periodic typeg = 〈r〉, the typer is minimal if
the length ofr is the minimal period. Due to the above equivalences we now have that

M(〈r〉,p) = M(〈̂r〉, p̂), ∀ (̂r, p̂) ∈ [r,p].
It is not a priori clear that minimizers inM(〈r〉,p) are periodic. However, we will see
that among these minimizers, periodic minimizers can always be found.

For a given periodic type〈r〉we consider the subset of periodic functions inM(〈r〉,p),

Mper(〈r〉,p) = {u ∈ M(〈r〉,p) | u is periodic}.
For anyu ∈ Mper(〈r〉,p) and a periodT of u, �(u|[0,T ]) is a closed loop inP whose
homotopy type corresponds to a nontrivial element ofπ+1 (P, 0). In this correspondence
there is no natural choice of a basepoint. For specificity, we will describe how to make
the correspondence with the origin as the basepoint and thereafter omit it from the
notation. Translateu so thatu(0) = 0. Let γ : [0,1] → P be the line from0 to
(0, u′(0)), and letγ ∗(t) = γ (1 − t). Then �̃(u|[0,T ]) = γ ∗ ◦ �(u|[0,T ]) ◦ γ , and[
�̃(u|[0,T ])

] ∈ π+1 (P, 0). Now define
[
�(u|[0,T ])

] ≡ [
�̃(u|[0,T ])

]
. Thus there exists a

pairθ−1
[
�(u|[0,T ])

] = (̂r, p̂) ∈ [r,p], with r̂ = rk for somek ≥ 1. Therefore we define
for any (̂r, p̂) ∈ [r,p],
Mper(̂r, p̂) = {

u ∈ Mper(〈r〉,p) | [�(u|[0,T ])] ∼ θ (̂r, p̂) ∈ π1(P) for a periodT of u
}
.
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The typêr = g(u|[0,T ]), with g = 〈r〉, is the homotopy type ofu relative to a period
T . This type has an even number of entries. It follows thatMper(r,p) ⊂ Mper(̂r, p̂)
for all (̂r, p̂) = (r,p)k, k ≥ 1. FurthermoreMper(〈r〉 ,p) = ∪(̂r,̂p)∈[r,p]Mper(̂r, p̂). In
order to get a better understanding of periodic minimizers inM(〈r〉,p) we consider the
following minimization problem:

Jper(r,p) = inf
u∈Mper(r,p)

JT [u] = inf
MT

per(r,p)

T ∈R+

JT [u], (4.1)

whereJT is action given in (1.1) integrated over one period of lengthT , andMT
per(r,p)

is the set ofT -periodic functionsu ∈ Mper(r,p) for which g(u|[0,T ]) = r. Note thatT
is not necessarily the minimal period, unlessr is a minimal representative for[r]. It is
clear that forγ, β > 0 the infimaJper(r,p) are well-defined and are nonnegative for
any homotopy typer. At this point it is not clear, however, that the infimaJper(r,p) are
attained for all homotopy typesr. We will prove in Sect. 5 that existence of minimizers
for (4.1) can be obtained using the existence of homoclinic and heteroclinic minimizers
already established in [?].

Lemma 4.2. If Jper(r,p) is attained for some u ∈ Mper(r,p), then u ∈ C4(R) and
satisfies (1.2). Moreover, sinceu is minimal with respect toT we haveH(u, u′, u′′, u′′′) =
0, i.e. the associated periodic orbit lies in the energy surface H = 0.

Proof. SinceJper(r,p) is attained by someu ∈ Mper(r,p) for some periodT , we have
thatJT [u+ φ] − JT [u] ≥ 0 for all φ ∈ H 2(S1, T ) with ‖φ‖H2 ≤ ε, sufficiently small.
This implies thatdJT [u] = 0, and thusu satisfies (1.2). The second part of this proof is
analogous to the proof of Lemma 2.2.��

We now introduce the following notation:

CM(〈r〉,p) = {u ∈ M(〈r〉,p) | u is a minimizer according to Definition 2.1},
CMper(〈r〉,p) = {u ∈ CM(〈r〉,p) | u is periodic},
CMper(r,p) = {u ∈ Mper(r,p) | u is a minimizer forJper(r,p)}.

4.1. Existence of periodic minimizers of type r = (2,2)k . If we seek periodic minimizers
of type r = (2,2)k, the uniform separation property for minimizing sequences (see
Sect. 5 in [?]) is satisfied in the classMper(r). Note that the parity is omitted because it
does not distinguish different homotopy types here. The uniform separation property as
defined in [?] prevents minimizing sequences from crossing the boundary of the given
homotopy class. For any other periodic type the uniform separation property is not a
priori satisfied. For the sake of simplicity we begin with periodic minimizers of type
(2,2) and minimizeJ in the classMper((2,2)).

Minimizing sequences can be chosen to be normalized due to the following lemma,
which we state without proof. The proof is analogous to Lemma 3.5 in [?].

Lemma 4.3. Let u ∈ Mper((2,2)) and T be a period of u. Then for every ε > 0
there exists a normalized function w ∈ Mper((2,2)) with period T ′ ≤ T such that
JT ′ [w] ≤ JT [u] + ε.
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The goal of this subsection is to prove that whenF satisfies (H) andβ, γ > 0 are
such thatu = ±1 are saddle-foci, thenJper((2,2)) is attained, by Theorem 4.5 below.
The proof relies on the local structure of the saddle-focus equilibriau = ±1 and is
a modification of arguments in [?]; hence we will provide only a brief argument. The
reader is referred to [?] for further details.

In preparation for the proof of Theorem 4.5, we fixτ0 > 0, ε0 > 0, and δ >

0 so that the conclusion of Theorem 4.2 of [?] holds, i.e. the characterization of the
oscillatory behavior of solutions near the saddle-focus equilibriau = ±1 holds. Let
u ∈ MT

per((2,2)) be normalized, and lett0 be such thatu(t0) = 0. Thent0 is part of a
transition from∓1 to±1. Assume without loss of generality that this transition is from
−1 to 1. Definet− = sup{t < t0 : |u(t)+1| < δ} andt+ = inf {t > t0 : |u(t)−1| < δ}.
Then letS(u) = {t : |u(t)±1| < δ} andB[u, T ] = |S(u)∩ [t+, t−+T ]|, and note that
[t0, t0 + T ] = {

S(u) ∩ [t+, t− + T ]} ∪ {
S(u)c ∩ [t0, t0 + T ]}. With these definitions

we can establish the following estimate (cf. Lemma 5.4 in [?]). For allu ∈ Mper((2,2))
with JT [u] ≤ Jper((2,2))+ ε0,

‖u‖2
H2 ≤ C(1+ Jper((2,2))+ B[u, T ]). (4.2)

First,‖u′‖2
H1 ≤ C(Jper((2,2))+ε0), and second if|u±1| > δ, thenF(u) ≥ η2u2, which

implies that‖u‖2
L2 ≤ 1/η2

∫ t0+T
t0

F(u) dt + (1+ δ)2B[u, T ] ≤ C(JT [u] + B[u, T ]).
Combining these two estimates proves (4.2).

For functionsu ∈ MT
per((2,2)) that satisfyJT [u] ≤ Jper((2,2)) + 1, it follows

from Lemma 5.1 of [?] that there exist (uniform inu) constantsT1 andT2 such that
T2 ≥ |S(u)c ∩ [t0, t0 + T ]| ≥ T1 > 0 and thusT > T1. The next step is to give an a
priori upper bound onT by considering the minimization problem (cf. Sect. 5 in [?])

Bε = inf {B[u, T ] | u ∈ MT
per((2,2)) normalized, T ∈ R

+,
andJT [u] ≤ Jper((2,2))+ ε}.

Lemma 4.4. There exists a constant K = K(τ0) > 0 such that Bε ≤ K for all 0 <

ε < ε0. Moreover, if T0 ≡ K + T2, then for any 0 < ε < ε0, there is a normalized
u ∈ MT

per((2,2)) with JT [u] ≤ Jper((2,2))+ 2ε and T1 < T ≤ T0.

Proof. Let (un, Tn) ∈ M
Tn
per((2,2))×R

+ be a minimizing sequence forBε , with normal-
ized functionsun.As in the proof of Theorem 5.5 of [?], in the weak limit this yields a pair
(̂u, T̂ ) such thatB [̂u, T̂ ] ≤ Bε . We now defineK((2,2), τ0) = 8((2τ0 + 2)+ 2). This
gives two possibilities forB [̂u, T̂ ], eitherB [̂u, T̂ ] > K orB [̂u, T̂ ] ≤ K. If the former is
true then we can construct (see Theorem 5.5 of [?]) a pair (̂v, T̂ ′) ∈ MT̂ ′

per((2,2))×R
+,

with v̂ normalized, such that

JT̂ ′ [̂v] < JT̂ [̂u] ≤ Jper((2,2))+ ε and B [̂v, T̂ ′] < B [̂u, T̂ ] ≤ Bε,

which is a contradiction excluding the first possibility. In the second case, where
B [̂u, T̂ ] ≤ K, we can construct a pair(̂v, T̂ ′) with v̂ normalized such that

JT̂ ′ [̂v] < JT̂ [̂u] + ε ≤ Jper((2,2))+ 2ε, and B [̂v, T̂ ′] < B [̂u, T̂ ] ≤ K,

which implies thatT1 < T̂ ′ < T̂ ≤ K + T2 = T0 and concludes the proof. For details
concerning these constructions, see Theorem 5.5 in [?]. ��
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Theorem 4.5. Suppose that F satisfies (H) and β, γ > 0 are such that u = ±1 are
saddle-foci, then Jper((2,2)k) is attained for any k ≥ 1. Moreover, the projection of any
minimizer in CMper((2,2)) onto the (u, u′)–plane is a simple closed curve.

Proof. By Lemma 4.4, we can choose a minimizing sequence(un, Tn) ∈ M
Tn
per((2,2))×

R
+, with un normalized and with the additional properties that‖un‖H2 ≤ C andT1 <

Tn ≤ T0. Since the uniform separation property is satisfied for the type(2,2) this leads
to a minimizing pair(̂u, T̂ ) for (4.1) by following the proof of Theorem 2.2 in [?]. As for
the existence of periodic minimizers of typer = (2,2)k the uniform separation property
is automatically satisfied and the above steps are identical.

Lemma 2.5 yields that minimizers are normalized functions and the projection of a
normalized function inMper((2,2)) is a simple closed curve in the(u, u′)–plane. ��

We would like to have the same theorem for arbitrary periodic types〈r〉. For homotopy
types that satisfy the uniform separation property the analogue of Theorem 4.5 can be
proved. However, in Sect. 5 we will prove a more general result using the information
about the minimizers with terminated types (homoclinic and heteroclinic minimizers)
which was obtained in [?].

Remark 4.6. The existence of a(2,2)-type minimizer is proved here in order to obtain a
prioriW1,∞-estimates for all minimizers (Sect. 5). However, ifF satisfies the additional
hypothesis thatF(u) ∼ |u|s , s > 2 as|u| → ∞, then such estimates are automatic (cf.
[?,?]). In that case the existence of a minimizer of type(2,2) follows from Theorem
4.14 below. To prove existence of minimizers of arbitrary typer we will use an analogue
of Theorem 4.14 (see Lemma 5.7 and Theorem 5.8 below).

4.2. Characterization of minimizers of type g = 〈(2,2)〉. Periodic minimizers associ-
ated with[e0] or [e1] are the constant solutionsu = −1 andu = 1 respectively. The sim-
plest nontrivial periodic minimizers are those of typer = (2,2)k, i.e.r ∈ [(2,2)]. These
minimizers are crucial to the further analysis of the general case. The typer = (2,2) is
a minimal type (associated with[e1e0]), and we want to investigate the relation between
minimizers inM(〈(2,2)〉) and periodic minimizers of type(2,2)k.

Considering curves in the configuration spaceP is a convenient method for studying
minimizers of type(2,2). For example, minimizers inCM(〈(2,2)〉) andCMper((2,2))
all satisfy the property that they do not intersect the line segmentL = (−1,1)×{0} in P.
If other homotopy typesr are considered, i.e.r 
∈ [(2,2)], then minimizers represented
as curves inP necessarily have self-intersections and they must intersect the segmentL,
which makes their comparison more complicated. We will come back to this problem in
Sect. 5. Note that for aC1-functionu the associated curve�(u) is a closed loop if and
only if u is a periodic function.

Lemma 4.7. For any non-periodic minimizer u ∈ CM(〈(2,2)〉) and any bounded in-
terval I the curve �[u|I ] has only a finite number of self-intersections. For periodic
minimizers u ∈ CMper(〈(2,2)〉) this property holds when the length of I is smaller than
the minimal period.

Proof. Fix a time intervalI = [0, T ]. If u is periodic,T should be chosen smaller than
the minimal period ofu. LetP = (u0, u

′
0) be an accumulation point of self-intersections

of u|I . ThenP is a self intersection point, and there exists a monotone sequence of times
τn ∈ I converging tot0 such that�(u(τn)) are self-intersection points and�(u(t0)) = P .
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Also there exists a corresponding sequenceσn ∈ I with σn 
= τn such that�(u(τn)) =
�(u(σn)). Choosing a subsequence if necessary,σn → s0 monotonically. Sinceu is a
minimizer inCM(〈(2,2)〉), the intervals[σn, τn] must contain a transition, and hence
|τn − σn| > T0 > 0. Therefore,s0 
= t0, and we will assume thats0 < t0 (otherwise
change labels). The homotopy type of�(u|[s0,t0]) is (2,2)k for somek ≥ 1 (sinceI is
bounded).

Assume thatσn and τn are increasing; the other case is similar. Using the times
σn < s0 < τn < t0, the curve�∗ = �[u|[σn−δ,t0+δ]], for δ sufficiently small, can be
decomposed as�1 = a◦γ2◦γ ◦γ1◦b, whereb = �(u|[σn−δ,σn]),γ1 = �(u|[σn,s0]), γ =
�(u|[s0,τn]), γ2 = �(u|[τn,t0]), anda = �(u|[t0,t0+δ]). Forn sufficiently large,γ1 andγ2
have the same homotopy type, andγ1 
= γ2, since otherwiseu would be periodic with
period smaller thant0 − σn < T . We can now construct two more paths

�1 = a ◦ γ1 ◦ γ ◦ γ1 ◦ b and �2 = a ◦ γ2 ◦ γ ◦ γ2 ◦ b

which have the same homotopy type forn sufficiently large. SinceJ [�∗] is minimal,
J [�1] ≥ J [�∗] andJ [�2] ≥ J [�∗], and thusJ [γ1] ≥ J [γ2] andJ [γ2] ≥ J [γ1] which
implies thatJ [γ1] = J [γ2]. ThereforeJ [�∗] = J [�1] = J [�2], and�1, �2 and�∗
are all distinct minimizers with the same homotopy type and same boundary conditions.
Since these curves all coincide alongγ , the uniqueness of the initial value problem is
contradicted. An argument very similar to the one above is also used in the proof of
Lemma 4.12 and is demonstrated in Fig. 4.1.��
Lemma 4.8. If r = (2,2)k with k > 1, then CMper(r) = CMper((2,2)) and Jper(r) =
k · Jper((2,2)).

Proof. Let u ∈ CMper(r) with r = (2,2)k for k > 1, and letT be the period1 such
that the associated curve inP, �(u|[0,T ]), has the homotopy class ofθ((2,2)k). First
we will prove that�(u|[0,T ]) is a simple closed curve inP, and henceu ∈ Mper((2,2)).
Suppose not, then by Lemma 4.7 the curve�(u|[0,T ]) can be fully decomposed into
k distinct simple closed curves�i for i = 1, . . . , k (just call the inner loop�1, cut
it out, and call the new inner loop�2, and so on). Denote byJi the action associated
with loop �i , then

∑
i Ji = JT [u]. Let vi ∈ Mper((2,2)k) be the function obtained

by pasting togetherk copies ofu restricted to the loop�i . If vi were a minimizer in
Mper((2,2)k), then by Lemma 4.2 the functionsu andvi would be distinct solutions to
the differential equation(1.2)which coincide over an interval. This would contradict the
uniqueness of solutions of the initial value problem, and hencevi is not a minimizer, i.e.
JT̂ [vi] = k · Ji > Jper((2,2)k). ConsequentlyJper((2,2)k) = ∑

i Ji > Jper((2,2)k),
which is a contradiction. Thusu ∈ Mper((2,2)) and�(u|[0,T ]) is a simple loop traversed
k times.

Now we will show thatu ∈ CMper((2,2)). Since�(u) is the projection of a func-
tion into the(u, u′)–plane,u traverses the loop once over the interval[0, T /k], and
Jper((2,2)k) = k · JT/k[u]. SupposeJT/k > Jper((2,2)). Then we can construct a
function inMper((2,2)k) with action less thanJ [u] = Jper((2,2)k) by gluing together
k copies of a minimizer inMper((2,2)), which is a contradiction. ��

Lemma 4.9. For any k ≥ 1, CMper((2,2)k) = CMper((2,2)) = CMper(〈(2,2)〉).
1 One may assume without loss of generality that� is a minimal period.
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Proof. We have already shown in Lemma 4.8 thatCMper((2,2)k) = CMper((2,2)).
We first prove thatCMper((2,2)) ⊂ CMper(〈(2,2)〉). Let u ∈ CMper((2,2)) have
periodT . Supposeu 
∈ CMper(〈(2,2)〉). Then there exist two points�(u(t1)) = P1 and
�(u(t2)) = P2 on�(u) such that the curveγ betweenP1 andP2 obtained by following
�(u) is not minimal. Replacingγ by a curve with smaller action and the same homotopy
type yields a functionv ∈ Mper(〈(2,2)〉) for whichJ[t1,t2][v] ≤ J[t1,t2][u]. Choosek ≥ 0
such thatkT > t2− t1. Thenu is a minimizer inCMper((2,2)k) = CMper((2,2))which
is a contradiction.

To finish the proof of the lemma we show thatCMper(〈(2,2)〉) ⊂ CMper((2,2)).
Let u ∈ CMper(〈(2,2)〉) have periodT . Let �(u|[0,T ]) be the associated closed curve
in P andω its winding number with respect to the segmentL. SupposeJT [u] >

Jper((2,2)ω) = ω·Jper(2,2). This implies the existence of a functionv ∈ Mper((2,2)ω)
and a period̂T such thatJT̂ [v] < JT [u]. Choose a timet0 ∈ [0, T ] such thatu(t0) = 1
andu′(t0) > 0. LetP0 = (1, u′(t0)) ∈ P. There exists aδ > 0 sufficiently small such
thatu(t0 ± δ) > 0, u′(t0 ± δ) > 0, andu does not cross±1 in [t0 − δ, t0 + δ] except
at t0. LetP1 andP2 denote the points(u(t0∓ δ), u′(t0∓ δ)) respectively. Letγ denote
the piece of the curve�(u) from P1 to P2 andγ ∗ the curve tracing�(u) backward in
time fromP2 to P1. Now choose a pointP3 on�(v) for which v = 1 andv′ > 0. We
can easily construct cubic polynomialsp1 andp2 for which the curve�(p1) connects
P1 to P3 and the curve�(p2) connectsP3 to P2 in P. These curves�(pi) are mono-
tone functions, and hence the loop�(p1) ◦ �(p2) ◦ γ ∗ has trivial homotopy type inP.
Therefore�(u|[0,T ])k ◦ γ ∼ �(p2) ◦ �(v|[0,T̂ ])k ◦ �(p1) in P for anyk ≥ 1, and from
Definition 2.1J [�(u|[0,T ])k ◦ γ ] ≤ J [�(p2) ◦ �(v|[0,T̂ ])k ◦ �(p1)]. Thus,

k · JT [u] + J [γ ] ≤ J [p1] + J [p2] + k · JT̂ [v],
which implies

0 ≤ k(JT [u] − JT̂ [v]) ≤ J [p1] + J [p2] − J [γ ].
These estimates lead to a contradiction fork sufficiently large. ��
Lemma 4.10. For any two distinct minimizersu1 andu2 inCMper((2,2)), the associated
curves �(ui) do not intersect.

Proof. Suppose�(u1) and�(u2) intersect at a pointP ∈ P. Translateu1 andu2 so
that�(u1(0)) = �(u2(0)) = P. Define the functionu ∈ Mper((2,2)2) as the periodic
extension of

u(t) =
{
u1(t) for t ∈ [0, T1],
u2(t − T1) for t ∈ [T1, T1+ T2],

whereTi is the minimal period ofui . ThenJT1+T2[u] = 2Jper((2,2)) = Jper((2,2)2).
By Lemma 4.8 we haveu ∈ CMper((2,2)), which contradicts the fact thatu1 andu2
are distinct minimizers with�(u1) 
= �(u2). ��

As a direct consequence of this lemma, the periodic orbits inMper((2,2)) are ordered
in the sense that�(u1) lies either strictly inside or outside the region enclosed by�(u2).
The ordering will be denoted by>.

Theorem 4.11. There exists a largest and a smallest periodic orbit in CMper((2,2)) in
the sense of the above ordering, which we will denote by umax and umin respectively.
Moreover 1 < ‖umin‖1,∞ ≤ ‖umax‖1,∞ ≤ C0, and umin < u < umax for every
u ∈ CMper((2,2)). In particular the set CMper((2,2)) is compact.
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Proof. Either the number of periodic minimizers is finite, in which case there is nothing
to prove, or the set of minimizers is infinite. LetU =⋃{�(u) |u ∈ CMper((2,2))} ⊂ P,
and letA = U ∩ {(u, u′) | u′ = 0, u > 0}. Every minimizer inCMper((2,2)) intersects
the positiveu–axis transversely exactly once. Moreover distinct minimizers cross this
axis at distinct points by Lemma 4.10. Thus we can useA as an index set and label the
minimizers asuα for α ∈ A. Due to the a priori upper bound on minimizers (Lemma
5.1 in [?]), A is a bounded set. The setA is contained in theu-axis and hence has an
ordering induced by the real numbers. This order corresponds to the order on minimizers,
i.e.α < β in A if and only if uα < uβ as minimizers.

Supposeα∗ is an accumulation point ofA. Then there exists a sequenceαn converging
to α∗. From Theorem 3.2 (the a prioriL∞-bound onuαn is sufficient by Remark 3.3)
we see that there existŝu ∈ CM(〈(2,2)〉) which is a solution to Eq.(1.2) such that
uαn → û in C1

loc(R). Sinceuαn is periodic and theC1
loc–limit of a sequence of periodic

functions with uniformly bounded periods (compare with the proof of Theorem 3.2 to
find a uniform bound on the periods) is periodic,û ∈ CMper(〈(2,2)〉). By Lemma
4.9, û ∈ CMper((2,2)). Furthermorêu corresponds touα∗ , and henceA is compact.
ConsequentlyA contains maximal and minimal elements. Letumax andumin be the
periodic minimizers through the maximal and minimal points ofA respectively. This
proves the theorem.��

The above lemmas characterize periodic minimizers inCM(〈(2,2)〉). Now we turn
our attention to non-periodic minimizers. We conclude this subsection with a theorem
that gives a complete description of the setCM(〈(2,2)〉).

Let u ∈ CM(〈(2,2)〉) be non-periodic. Suppose thatP is a self-intersection point of
�(u). Then there exist timest1 < t2 such that�(u(t1)) = �(u(t2)) = P , and�(u|[t1,t2])
is a closed loop. By Lemma 4.7 there are only finitely many self-intersections on[t1, t2].
Without loss of generality we may therefore assume thatγ is a simple closed loop, i.e,
we need only consider the case whereP = �(u(t1)) = �(u(t2)) and�(u|[t1,t2]) is a
simple closed loop. We now define�+ = �(u|(t1,∞)) and�− = �(u|(−∞,t2)). We will
refer to�± as the forward and backward orbits ofu relative toP .

Lemma 4.12. Let u ∈ CM(〈(2,2)〉) be a non-periodic minimizer with at least one self-
intersection. Let P and �± be defined as above. Then the forward and backward orbits
�± relative to P do not intersect themselves. Furthermore, P and �± are unique, and
the curve �(u) passes through any point in P at most twice.

Proof. We will prove the result for�+; the argument for�− is similar. Suppose that�+
has self-intersections. Define

t∗ = min{t > t1 |�(u(t)) = �(u(τ)) for someτ ∈ (t1, t)}.
The minimumt∗ is attained by Lemma 4.7, andt∗ > t2 sinceγ ≡ �(u|[t1,t2]) is a
simple closed loop. Lett0 ∈ (t1, t∗) be the point such that�(u(t0)) = �(u(t∗)). This
point is unique by the definition oft∗, and γ̃ ≡ �(u|[t0,t∗]) is a simple closed loop.
For small positiveδ we defineQ = �(u(t∗)), B = �(u(t1 − δ)), E = �(u(t∗ + δ))

and�∗ = �(u|[t1−δ,t∗+δ]), see Fig. 4.1. We can decompose this curve into five parts;
�∗ = σ3 ◦ γ̃ ◦ σ2 ◦ γ ◦ σ1, whereσ1 joinsB toP , σ2 joinsP toQ, σ3 joinsQ toE, and
γ andγ̃ are simple closed loops based atP andQ respectively, see Fig. 4.1. The simple
closed curvesγ andγ̃ go aroundL exactly once and thus have the same homotopy type.
Moreover,γ 
= γ̃ sinceu is non-periodic.
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Besides�∗ we can construct two other distinct paths fromB toE:

�1 = σ3 ◦ σ2 ◦ γ ◦ γ ◦ σ1 and �2 = σ3 ◦ γ̃ ◦ γ̃ ◦ σ2 ◦ σ1.

It is not difficult to see that�1,�2 and�∗ all have the same homotopy type. SinceJ [�∗]
is minimal in the sense of Definition 2.1 we have, by the same reasoning as in Lemma
4.7, thatJ [�1] ≥ J [�∗] andJ [�2] ≥ J [�∗], which implies thatJ [γ̃ ] ≥ J [γ ] and
J [γ ] ≥ J [γ̃ ]. HenceJ [γ ] = J [γ̃ ]. ThereforeJ [�1] = J [�2] = J [�∗] which gives
that�1, �2 and�∗ are all distinct minimizers of the same type as curves joiningB to
E. Since these curves all contain the pathsσ1, σ2 andσ3, and are solutions to (1.2), the
uniqueness to the initial value problem is contradicted.

Finally, the curve�(u) can pass through a point at most twice because it is a union of
�+ and�−, each visiting a point at most once. Moreover, points in�(u|(t1,t2)), common
to both�+ and�−, are passed exactly once. It now follows that if there is another self-
intersection besidesP , say atR = �(u(s1)) = �(u(s2)), thens1 < t1 andt2 < s2. We
conclude that the curve�(u|(s1,s2)) contains�(u|[t1,t2]) and therefore it is not a simple
closed curve. ThusP is a unique self-intersection that cuts off a simple loop.��

(�1; 0) (1; 0)



~

P

E

L

�1B

Q

�2

�3

Fig. 4.1. The forward orbit�+ starting atP with a self-intersection at the pointQ Lemma 4.12 implies that
this cannot happen for non-periodicu ∈ CM(〈(2,2)〉)

Lemma 4.13. Let u ∈ CM(〈(2,2)〉) be non-periodic. Suppose that u ∈ L∞(R). Then
u is a connecting orbit between two periodic minimizers u−, u+ ∈ CMper((2,2)), i.e.
there are sequences t−n , t+n →∞ such that u(t − t−n )→ u−(t) and u(t + t+n )→ u+(t)
in C4

loc(R).

Proof. Lemma 4.12 implies that�+ is a spiral which intersects the positiveu–axis at a
bounded, monotone sequence of points(αn,0) in P converging to a point(α∗,0). Let
tn be the sequence of consecutive times such thatu(tn) = αn, andn′(tn) = 0. Consider
the sequence of minimizers inCM(〈(2,2)〉) defined byun(t) = u(t + tn). By Theorem
3.2 there exist aC1

loc–limit u+ ∈ CM(〈(2,2)〉). If u+ is periodic, there is nothing more
to prove. Thus supposeu+ is non-periodic. Then the curve�(u+) crosses theu–axis
infinitely many times. On the other hand, from theC1

loc convergence�(u+) crosses
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this axis only atα∗. By Lemma 4.12,�(u+) can intersectα∗ at most twice, which is a
contradiction. TheC4

loc–convergence follows from regularity (as in the proof of Theorem
4.2). The proof of the existence ofu− is similar. ��
Theorem 4.14. Let u ∈ CM(〈(2,2)〉). Either u is unbounded, u is periodic and u ∈
CMper((2,2)), or u is a connecting orbit between periodic minimizers inCMper((2,2)).

Proof. Let u ∈ CM(〈(2,2)〉) be bounded, thenu is either periodic or non-periodic. In
the case thatu is periodic it follows from Lemma 4.9 thatu ∈ CMper((2,2)). Otherwise
if u is not periodic it follows from Lemma 4.13 thatu is a connecting orbit between two
minimizersu−, u+ ∈ CMper((2,2)). ��
In Sect. 5.2 we give analogues of the above theorems for arbitrary homotopy typesr.
Notice that the option ofu ∈ CM(〈(2,2)〉) being unbounded in the above theorem does
not occur whenF(u) ∼ |u|s , s > 2 as|u| → ∞.

5. Properties of Minimizers

In Sect. 4, we proved the existence of minimizers inMper((2,2)), which will provide a
priori bounds on the minimizers of arbitrary type. These bounds and Theorem 3.2 will
establish the existence of such minimizers. In this section we will also prove that certain
properties of a typeg are often reflected in the associated minimizers. The most important
examples are the periodic typesg = 〈r〉. Although there are minimizers in every class
M(〈r〉,p), it is not clear a priori that among these minimizers there are also periodic
minimizers. In order to prove existence of periodic minimizers for every periodic type
〈r〉 we use the theory of covering spaces.

5.1. Existence. The periodic minimizers of type(2,2) are special for the following
reason. For a normalizedu ∈ Mper((2,2)), defineD(u) to be the closed disk inR2 such
that∂D(u) = �(u).

Theorem 5.1. i) If u ∈ CM(〈r〉 ,p), then �(u) ⊂ D(umin) for any periodic type 〈r〉 
=
〈(2,2)〉.

ii) If u ∈ CM(g,p), then �(u) ⊂ D(umin) for any terminated type g.

Proof. i) If 〈r〉 
= 〈(2,2)〉 then everyu ∈ CM(〈r〉 ,p) has the property that�(u)
intersects theu-axis betweenu = ±1. Suppose that�(u) does not lie insideD(umin).
Then�(u)must intersect�(umin) at least twice, and letP1 andP2 be distinct intersection
points with the property that the curve�1 obtained by following�(u) fromP1 toP2 lies
entirely outside ofD(umin). Let �2 ⊂ �(umin) be the curve fromP1 to P2 following
umin, such that�1 and�2 are homotopic (traversing the loop�(umin) as many times
as necessary) and thusJ [�1] = J [�2] is minimal. Replacing�1 by �2 leads to a
minimizer inCM(〈r〉 ,p)which partially agrees withu. This contradicts the uniqueness
of the initial value problem for (1.2).

ii) As in the previous case the associated curve�(u) either intersects�(umin) at least
twice or lies completely insideD(umin), and the proof is identical.��
Corollary 5.2. For all minimizers in the above theorem, ‖u‖1,∞ ≤ ‖umin‖1,∞ ≤ C0.

In order to prove existence of minimizers in every class we now use the above theorem
in combination with an existence result from [?].
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Theorem 5.3. For any given type g and parity p there exists a (bounded) minimizer
u ∈ CM(g,p). Moreover ‖u‖1,∞ ≤ C0, independent of (g,p).

Proof. Given a typeg we can construct a sequencegn of terminated types such thatgn →
g asn→∞. For any terminated typegn there exists a minimizerun ∈ CM(gn,p) by
Proposition 2.3 (Theorem 1.3 of [?]). Clearly such a sequenceun satisfies‖un‖1,∞ ≤ C

by Corollary 5.2. Applying Theorem 3.2 completes the proof.��

5.2. Covering spaces and the action of the fundamental group. The fundamental group
of P is isomorphic to the free group on two generatorse0 and e1 which represent
loops (traversed clockwise) around(1,0) and(−1,0) respectively with basepoint(0,0).
Indeed,P is homotopic to a bouquet of two circlesX = S1∨S1. The universal covering
of X denoted bỹX can be represented by an infinite tree whose edges cover eithere0 or
e1 in X, see Fig. 5.1. The universal covering ofP, denoted by℘ : P̃ → P, can then be
viewed by thickening the treẽX so thatP̃ is homeomorphic to an open disk inR2.

O

g}

g

X
g

X�

e1

X

e0

} }�

0

O�

Fig. 5.1. The universal cover̃X of X is a tree. Its origin is denoted byO. Forθ = e0e1e0, the quotient space
X̃θ = X̃/ 〈θ〉 is also a covering space overX, andX̃θ ∼ S1

An important property of the universal covering is that the fundamental groupπ1(P)

induces a left group action oñP in a natural way, via the lifting of paths inP to paths in
P̃. This action will be denoted byθ ·p for θ ∈ π1(P) andp ∈ P̃. We will not reproduce
the construction of this action here, and the reader is referred to an introductory book
on algebraic topology such as [?]. However, we will utilize the structure of the quotient
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spaces of̃P obtained from this action, which are again coverings ofP. These quotient
spaces will be the natural spaces in which to consider the lifts of curves�(u) which lie
in more complicated homotopy classes than those in the case ofu ∈ Mper((2,2)).

A periodic typeg = 〈r〉 is generated by a finite typer, which together with the parity
p determines an element ofπ1(P) of the formθ(r) = e

r2n|p−1| · · · · · er1p . Since we only
consider curves inP which are of the form�(u) = (u(t), u′(t)), the numbersri are all
positive. The infinite cyclic subgroup generated by any such elementθ will be denoted
by 〈θ〉 ⊂ π1(P). The quotient spacẽPθ = P̃/ 〈θ〉 is obtained by identifying pointsp
andq in P̃ for whichq = θk · p for somek ∈ Z. The resulting spacẽPθ is homotopic
to an annulus, and℘θ : P̃θ → P is a covering space. Figure 5.1 illustrates the situation
for X, since it is easier to draw, and forP the reader should imagine that the edges in
the picture are thin strips. The lift of the pathθ = e0e1e0 to X̃ based atO is shown by
the dashed line. This piece of the tree becomes a circle in the quotient spaceX̃θ . Note
that infinitely many edges iñX are identified with this circle. The dashed lines in both
X̃ andX̃θ are strong deformation retracts of̃X andX̃θ respectively, and hencẽXθ is
homotopic to a circle. Thickening̃Xθ gives thatP̃θ is homotopic to an annulus. Thus
π1(P̃θ ) is a generated by a simple closed loop inP̃θ which will be denoted byζ(r). Note
that for convenience we suppress the dependence ofθ andζ on the parityp.

Remark 5.4. If we define the shift operatorσ on finite typesr to be a cyclic permutation,
thenMper(r,p) = Mper(σ

k(r), τ k(p)) for all k ∈ Z. Functions inMper(r,p) have a
unique lift to a simple closed curve iñPθ , θ = θ(r). However, functions in the shifted
classMper(σ

k(r), τ k(p)) are not simple closed curves iñPθ . In order for such functions
to be lifted to a unique simple closed curve we need to consider the covering spaceP̃θk ,
whereθk = θ(σ k(r), τ k(p)).

5.3. Characterization of minimizers of type 〈r〉. In Sect. 5.2 we characterized minimiz-
ers inCM(〈(2,2)〉) by studying the properties of their projections intoP. What was
special about the types(2,2)k was that the projected curves were a priori contained in
P \L, which is topologically an annulus. TheJ -efficiency of minimizing curves restricts
the possibilities for their self and mutual intersections. In particular, we showed that all
periodic minimizers inCM(〈(2,2)〉) project onto simple closed curves inP \ L and
that no two such minimizing curves intersect. These two properties, coupled with the
simple topology of the annulus, already force the minimizing periodic curves to have a
structure of a family of nested simple loops.

Such a simple picture in the configuration planeP cannot be expected for minimizers
in CM((〈r〉 ,p)) with r 
= (2,2). The simple intersection properties (of Lemma 5.9 and
5.11) no longer hold; in fact, periodic minimizing curves must have self-intersections
in P as do any curves inP representing the homotopy class of(〈r〉 ,p). However, by
lifting minimizing curves into the annulus̃Pθ , we can remove exactly these necessary
self-intersections and put us in a position to emulate the discussion for the types(2,2)k.
More precisely, for a minimal type(r,p), anyu ∈ Mper((r,p)k)with periodT such that
θ−1[�(u|[0,T ])] = (r,p)k, there are infinitely many lifts of the closed loop�(u|[0,T ])
into P̃θ (r) (see the above remark) but there is exactly one lift, denoted�θ(u|[0,T ]), that
is a closed loop homotopic toζ k(r) in P̃θ (r). We can repeat all of the arguments in
Sect. 4 by identifying intersections between the curves�θ(u|[0,T ]) in P̃θ (r) instead of
intersections between the curves�(u|[0,T ]) in P \ L. Of course, when gluing together
pieces of curves, the values ofu andu′ come from the projections intoP. In particular,
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the arguments of Lemma 4.9 show that�θ(u|[0,T ])must be a simple loop tracedk-times,
which leads to the following:

Lemma 5.5. For any periodic type 〈r〉 and any k ≥ 1 it holds that CMper((r,p)k) =
CMper(r,p) = CMper(〈r〉 ,p).

The proof of the next theorem is a slight modification of Theorem 4.11.

Theorem 5.6. For any periodic type 〈r〉 the set CMper(r,p) is compact and totally
ordered (in P̃θ ).

The following lemma is analogous to Lemma 4.13. Note however that by Theorem 5.1
we do not need to assume that the minimizer is uniformly bounded.

Lemma 5.7. Let u ∈ CM(〈r〉 ,p) for some periodic type 〈r〉 
= 〈(2,2)〉. Either u

is periodic and u ∈ CMper(r,p), or u is a connecting orbit between two periodic
minimizers u−, u+ ∈ CMper(r,p), i.e. there are sequences t−n , t+n → ∞ such that
u(t − t−n )→ u−(t) and u(t + t+n )→ u+(t) in C4

loc(R).

Combining Theorem 5.3 and Lemma 5.7 we obtain the existence of periodic min-
imizers in every class with a periodic type (this result can also be obtained in a way
analogous to Theorem 4.5).

Theorem 5.8. For any periodic type 〈r〉 the set CMper(r,p) is nonempty.

The classification of functions by type has some properties in common with symbolic
dynamics. For example, if a typeg is asymptotic to two different periodic types, i.e.
σn(g) → r+ andσ−n(g) → r− asn → ∞, with r+ 
= r−, then any minimizeru ∈
CM(g,p) is a connecting orbit between two periodic minimizersu− ∈ CMper(r−,p) and
u+ ∈ CMper(r+,p), i.e. there exist sequencest−n , t+n →∞ such thatu(t−t−n )→ u−(t)
andu(t+ t+n )→ u+(t) inC4

loc(R). This result follows from Cantor’s diagonal argument
using Theorems 3.2 and 5.7, and hence we have used the symbol sequences to conclude
the existence of heteroclinic and homoclinic orbits connecting any two types of periodic
orbits.

Symmetry properties of typesg are also often reflected in the corresponding mini-
mizers. For example, define the mapBi0 on infinite types byBi0(g) = (g2i0−i )i∈Z, and
consider types that satisfyBi0(g) = g for somei0. Moreover assume thatg is periodic.
In this case we can prove that the corresponding periodic minimizers are symmetric and
satisfy Neumann boundary conditions.

Theorem 5.9. Let g = 〈r〉 satisfy Bi0(〈r〉) = 〈r〉 for some i0. Then for any u ∈
CMper(r,p) there exists a shift τ such that uτ (x) = u(x − τ) satisfies

i) uτ (x) = uτ (T − x) for all x ∈ [0, T ] where T is the period of u,
ii) u′τ (0) = u′′′τ (0) = 0 and u′τ (T ) = u′′′τ (T ) = 0, and
iii) uτ is a local minimizer for the functional JT [u] on the Sobolev space H 2

n (0, T ) =
{u ∈ H 2(0, T ) | u′(0) = u′(T ) = 0}.

Proof. Without loss of generality we may assume thati0 = 1 andg = 〈(g1, . . . , gN)〉 for
someN ∈ 2N.We can choose a pointt0 in the convex hull ofA1 such thatu′(t0) = u′(t0+
T ) = 0 andg(u|[t0,t0+T ]) = (g1/2, g2, . . . , gN , g1/2).We now definev(t) = u(t0+T−
t). Then by the symmetry assumptions ong we have thatg(v|[t0,t0+T ]) = g(u|[t0,t0+T ]).
SinceJ[t0,t0+T ](v) = J[t0,t0+T ](u) and�(u(t0)) = �(u(t0+T )) = �(v(t0)) = �(v(t0+
T )), we conclude from the uniqueness of the initial value problem thatu(t) = v(t) for
all t ∈ [t0, t0 + T ], which proves the first statement. The second statement follows
immediately fromi). The third property follows from the definition of minimizer.��
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