
File: DISTIL 331901 . By:DS . Date:18:11:97 . Time:10:59 LOP8M. V8.0. Page 01:01
Codes: 3743 Signs: 1868 . Length: 50 pic 3 pts, 212 mm

Journal of Differential Equations � DE3319

journal of differential equations 141, 86�101 (1997)

Stability in a Semilinear Boundary Value
Problem via Invariant Conefields

Jaroslaw Kwapisz1

The Center for Dynamical Systems and Nonlinear Studies,
Georgia Institute of Technology, Atlanta, Georgia 30332-0190

Received October 31, 1996; revised May 1, 1997

We give a geometric proof of stability for spatially nonhomogeneous equilibria in
the singular perturbation problem ut==2uxx+f (x, u), t # R+, &1�u�1, with the
Neumann boundary conditions on x # [0, 1]. The nonlinearity is of the form
f (x, u) :=(1&u2)(u&c(x)), where c(x) is merely continuous with a finite number
of zeros. The strength of the method is in dealing with non-transversal zeros of c,
the case escaping the existing techniques of singular perturbations. The approach is
also used for showing existence of unstable equilibria with one transition layer.
� 1997 Academic Press

1. INTRODUCTION

The note concerns itself with the following much studied semilinear
boundary value problem

{ut==2uxx+f (x, u), x # [0, 1], t # R+,
&1�u�1, ux(0)=ux(1)=0,

(1)

where f (x, u) :=(1&u2)(u&c(x)) and c(x) is an arbitrary continuous func-
tion c: [0, 1] � (&1, 1) with a finite number of zeros. Observe that f (x, u)
is the negative gradient with respect to u of a function with two wells, and
the bottoms \1 are stable equilibria��in particular, u=\1 satisfy

=2uxx=&f (x, u), ux(0)=ux(1)=0, x # [0, 1]. (2)

The problem provides basic testing ground for phenomena occuring in a
bistable spatially distributed system: think of x # [0, 1] worth of agents, each
with a state variable u(x), evolving under the gradient flow ut=f (x, u) while
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being subject to small diffusive coupling. Without diffusion (==0), the
states of agents tend to \1 independently, thus accounting for uncountably
many stable equilibria. On the other extreme, if the preferences of all agents
coincide (i.e. c is constant), even small diffusion makes all stable equilibria
spatially homogeneous (equal to \1). Less apparent is the birth of non-
homogeneous stable equilibria under even the slightest nonhomogeneity of
the preferences. A number of papers put this phenomenon on a rigorous
ground: [11, 12, 9, 2, 1, 14, 7], to name the most closely related; and
Section 2.6 in [5] or 4.3 in [4] should be consulted for a broader introduc-
tion with an overview of the results and some proofs. In showing stability,
all these works invoke a rather involved and delicate singular perturbation
analysis. Our main goal is to achieve an elementary and geometrically clear
treatment of this issue. While at present the scope of the approach is dwarfed
by that of asymptotic techniques (c.f. [7]), certain advantages make it
worthwhile. Most notably, it does not require any transversality conditions
on c; and, due to its non-perturbative character, it easily reflects the effects
vanishing to all orders in =.

To proceed more systematically, we set off with a result from [1] (see
also Fig. 1).

Theorem 1 [1]. For small =>0, if `1<`2< } } } <`k are zeros of c along
which c changes sign in an alternating fashion (i.e. c(`i+0+) } c(`i+1+0&)>0,
i=1, ..., k&1), then (1) has an equilibrium u( } ) with values u(x) close to \1
except for x in the vicinity of the `i 's, where u( } ) makes a transition between
\1 in the direction going against the change of sign incurred by c (c. f. HUd

in Section 2).

The proof amounts to constructing appropriate upper and lower solu-
tions for (1); the equilibrium is trapped between the two (Fig. 2). Note that
neither monotonicity of transition layers nor stability are asserted, as both
are established in [1] only under the assumption of transversality of zeros
of c. Also, the more general methods of [7], which yield existence, shape,
and stability at the same time, require transversality.

Fig. 1. Stable equilibrium with two transition layers, each associated with a zero of the
preference c.
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Fig. 2. Existence. Interpret the ODE (2) as describing a point mass in a potential well
with walls of height difference 4c�3. For the upper solution (the dotted graph on the left), hold
the mass just right from the top of the left wall until x increases to near ` and c(x)>0, let
it swing to the opposite side and break at the right summit before c turns negative. For the
lower solution, invert the orientation of u and the time x.

Theorem 2. The equilibria in Theorem 1 have monotone transition layers
and are exponentially stable with respect to (1).

By general results of Matano [10], the stability already implies uniqueness
of an equilibrium satisfying the properties in Theorem 1. This enables one
to enumerate stable equilibria of (1) for small = by considering all suitable
sets of zeros of c��see [1] for details.

Our argument is essentially a phase portrait analysis of the ODE for
the equilibria, (2). The stability of u( } ) is inferred from the rotation of
the direction tangent to the initial condition manifold [ux=0] under the
variational flow 9x: T(u(0), ux(0)) R

2 � T(u(x), ux(x))R
2, x # [0, 1]. This method

goes back to Pru� fer in the beginning of this century and more recently was
used in [3, 6, 13, 8]. Following Th. 4.3.13 in [4], one identifies all the
tangent planes making up T(u, ux)R2 with a copy of R2 equipped with polar
coordinates (%, r) so that %(���u)=0 and %(���ux)=?�2. The total rotation
2% :=%(91(���u)) is positive exactly when the equilibrium is exponentially
stable. (Furthermore, hyperbolic equilibrium with d-dimensional unstable
manifold is characterized by 2% # (&d?, (&d+1) ?).)

Direct estimation of 2% may be a daunting task and the novel part of
our approach comes in tying it up with the natural geometry of the
problem. In the autonomous (or piecewise autonomous [14]) case, there
is the foliation into the phase curves of (2)��which is gone once we pass
to the nonautonomous (and nonintegrable) setting. What persists though
is preservation by the variational flow of a certain cone-field��just about
enough to lock control over %. This is elucidated by the change of coor-
dinates described below.

Let g(u) :=u(1&u2) and '(u) :=1&u2 so that

f (x, u)=g(u)&c(x) '(u). (3)

Map u # (&1, 1) to a new coordinate v # (&�, �) with the Jacobian
du�dv=1&u2='(u) and u=0 corresponding to v=0. (Here conveniently
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u=tanh(v), but the method works with no modifications for any f
admitting (3).) Then the ODE for equilibria (2) becomes

vyy=u(2v2
y&1)+c(x), vy(0)=vy(1�=)=0, (4)

where y=x�=, y # [0, 1�=], is the fast time (as opposed to the slow time x).2

The point is that, if q, p are the variations of v and vy respectively, then
they obey equations with no explicit dependence on time:

d
dy \

q
p+=\ 0

(2v2
y&1) '

1
4vyu+\

q
p+ . (5)

Moreover, the signs of the entries in the above matrix reveal that the
positive cone [( p, q): p, q>0] is preserved by the variational flow in the
region where |vy |�- 1�2��which exactly corresponds to the outside of
the heteroclinic loop for the autonomous flow with c=0. (The rotation
inside of the loop clearly precludes any cone preservation there.) The
stability is established by showing that the trajectory of the equilibrium is
mostly contained in this region. To illustrate the situation, the case of one
transition layer is depicted in Fig. 3 in Section 3. The scenario that unfolds
as x runs through [0, 1] is as follows. Before x reaches L0��where c>0
only to vanish at `, Fig. 2��we have v�&O(1�=) so that |'|�O(exp(&1�=))
and ���u suffers virtually no rotation under (5). Over L0 , c>0 makes vy

quickly raise above - 1�2 and into the realms of the cone preservation,
with the subsequent drop below - 1�2 a priori prohibited as long as c>0,
that is for x<`. For x>`, all this applies with the time run backwards
(and the complementary cones), which completes the description��c.f. Fig. 4
in Section 4.

Since one of the main strengths of our method is its elementary character,
we assumed a rather detailed style of exposition with concrete inequalities
preferred over compactness arguments. All the estimation is very robust
and often much better kept track of by drawing the phase portraits. The
multiple transition layer case reduces to that with a single layer by cutting u
at critical points found between any two consecutive layers��see Section 5.
Section 3 spells out the features of the shape of one such layer (a lap)
in preparation for analysis of the variational flow carried out in Section 4.
Finally, the geometry lying behind our arguments should help to deal with
other aspects of PDE (1). To illustrate this point, in the last section, we
find an unstable equilibrium of index one via a simple shooting procedure
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(Fig. 5). In this case the trajectory stays between \- 1�2, where the clock-
wise rotation of the variational flow makes unstability totally apparent.

2. TECHNICAL FORMULATIONS

To formally describe the class of equilibria u( } ) of interest here, along
with the sequence `1<`2< } } } <`k of alternating zeros of c (see Theorem 1),
we will fix d>0, small, and a sequence of open intervals Ui/[0, 1] such
that �k

i=1 |Ui |�1&d and 0 # U0<`1<U1<`2<U2< } } } <`k<Uk % 1.
(See Fig. 1.) We will use the following hypothesis, which describes u( } )
from Theorem 1 somewhat more precisely.

(HU)d . u| Ui # Bd (\1) and the sign of u over Ui is opposite to that
of c(`i+0+) and c(`i+1+0&).

As explained in the introduction, the stability assertion in Theorem 2
follows via Pru� fer's method from the following result.

Theorem 3 (Main result). There are d, =0>0 with the following
property. If u satisfies (HU)d and solves (2) with =<=0 , then the time one map
91 of the variational flow along u maps the positive cone [t(���u)+s(���ux):
t, s>0] at (u(0), 0) to the corresponding cone at (u(1), 0) with zero total
rotation.

As mentioned before, the discussion of the equilibria u( } ) satisfying
(HU)d is simplified by considering the consecutive ``transitions'' between
\1 separately. Specifically, u( } ) must have a critical point ai between any
two zeros, and, for small d, one can require that ai # Ui , i=0, ..., k.
(Actually, ai sits well inside Ui ��see Section 5 for technicalities.) The
restrictions of u to [ai , ai+1] will be referred to as laps3 of u. Upon rescaling
of its domain back to [0, 1], a lap can be thought of as equilibrium given
by Theorem 1 for a single zero of the appropriate restriction of c (see Fig. 2).
From now on, we assume that u is such an equilibrium corresponding to a zero
` of c (see Fig. 2). Also, without loss of generality we can take c(`+0&)>0.
Note that the time one map 91 of the variational flow for any multi-trans-
ition equilibrium is a composition of the corresponding maps for the laps.
If those maps preserve the cone with zero total rotation so does 91. Hence,
to establish Theorem 3, it indeed suffices to argue for one lap only.

We will extract the basic characteristics of a lap u( } ) in explicit depen-
dence on some quantitative features of c. Particularly useful will be 2,
| # (0, 1) for which the following hypothesis holds.
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(HC)2, | . The function c: [0, 1] � (&1, 1) is continuous with a finite
number of zeros, and

(i) 1&|c(x)|�2 for x # [0, 1] and

(ii) c|L0
�| and c| R0

�&| for certain intervals L0 , R0 in [0, 1]
such that L0/U0 , R0/U1 , L0<`<R0 , and |L0|, |R0|�2.

Different laps correspond to different c's, but they all will share uniform 2
and |.

3. SHAPE OF A LAP

The flow generated by (4) in the (v, vy)-plane is easy to grasp, and we use
it here to verify the form of a lap suggested by Fig. 2 and Fig. 3. In particular,
we establish the monotonicity of the transition layer asserted in Theorem 2.
Recall that x==y and vx=vy�==ux } ', where '(u)=1&u2=1�cosh2(v).

Lemma 1 (Shape of a lap, see Fig. 3). For any 0<2, |<1, there are =0 ,
d >0 such that if c( } ) satisfies (HC)2, | , u( } ) satisfies (HU)d and solves (2)
with =<=0 , then ux(x)>0 for 0<x<1 and u is monotonically increasing.

Moreover, there are intervals L, R, I/[0, 1], L<`<R, L _ R/I, that
depend only on 2 and |, such that

(i) vy�- 1�2 for x # I ;

(ii) vy�- 1�2+|�4 for x # L _ R;

(iii) v|L�&|L|�(100=) and v|R�|R|�(100=).

Remark 1 (Symmetry). Note that our assumptions and conclusions
are unchanged if we replace u, c, x by &u, &c, &x. Thus we will provide
only arguments for c>0 most of the time.

Fig. 3. On the left, the stable one transition layer equilibrium (a lap) from Fig. 2 with the
rotation of the initial vector ���u. On the right, the same lap in the preferred coordinate; some
of the x-independent features of the vectorfield are indicated.
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Proof of Lemma 1. (ii). On the line vy=0 we have vyy=&u+c. For
small d, d<2�2; and, by (HU)d , u(x)<&1+d for x # U0 , hence vyy(x)�
&(&1+d )&(1&2)�2�2>0 there. Since, vy(0)=0 this shows that
vy>0 over U0 . Moreover, for x # L0 , we additionally have c(x)�| by (ii)
of (HC)2, | , so vy grows there with a definite4 y-speed vyy�(2v2

y&1) u+
|�|�2, if only 2v2

y&1�|�2, i.e. vy�- 1�2+|�4. Thus, after fixing any
subinterval L/int(L0), we may find =0 so that vy(x)�- 1�2+|�4, x # L,
as there is O(1�=) worth of y-time in [inf L0 , inf L] for vy to grow.
Analogous arguments, with the time run backwards, give vy(x)>0, for
x # U1 , and vy(x)�- 1�2+|�4, for x # R, where R/int(R0).

(i). Set I=[inf L, sup R]. For x # L _ R, we already have vy(x)>
- 1�2 by (ii). As long as x # [sup L, `), c(x)>0, so vy(x) can not cross
below vy=- 1�2 where vyy(x)=c(x)>0. Analogously, as long as x #
(`, inf R], c<0, so vy can not cross below - 1�2 with the time run back-
wards��(i) is proved.

Monotonicity of u. In the proof of (ii) we saw that vy>0 on U0 and U1 ,
which put together with (i) implies that vy>0 for all x # (0, 1).

(iii). We will adjust L, R to get (iii) with (i) and (ii) left intact. First
check that E :=[(v, vy): u�1�2, vy�2] is invariant under the flow so that
(v(x), vy(x)) � E because clearly (v(1), vy(1)) � E. As a consequence any
interval J/L such that u|J>0 is short, i.e. of order O(=). Indeed, if x # J,
then vy(x)�- 1�2 and vyy(x)�(2v2

y&1) u+c�c�| by (ii) of (HC)2, | .
Thus, for x0=sup J, we have v(x0)�- 1�2 |J |�= and vy(x0)�| |J |�=. This
implies |J |=O(=) for otherwise we hit E. In this way, by shrinking L and
R a bit (of order =), we can get v|L�0 and v| R�0. Because v moves fast
over L, R, namely vy�- 1�2, further shrinking of L and R by 1�50 of their
length yields (iii). K

The complement of L _ R in [0, 1] consists of three intervals: the central
piece C :=I"(L _ R) and the two fringes F& :=[0, inf L] and F+ :=
[sup R, 1]. By monotonicity, the partition of the x-time interval [0, 1]
into F& _ L _ C _ R _ F+ maps via x [ v(x) to a partition of R into
v(F&) _ v(L) _ v(C ) _ v(R) _ v(F+). We need some rough understanding
of v over the fringes F\��c.f. Fig. 3.

Lemma 2 (Fringe addendum). The following assertions can be added to
Lemma 1:

(i) vy(x)�min[2y�2, - 2�4] for x # F&,

92 JAROSLAW KWAPISZ
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(ii) vy(x)�min[2(=&1&y)�2, - 2�4] for x # F+ ,

(iii) |vy(x)|�10 for x � C, i.e. x # F& _ L _ R _ F+.

Proof of Lemma 2. We show (i); use the mirror argument for (ii). Since
\ :=&(1&2�2)�(1&2�8)> &1, from (iii) of Lemma 1, we see that
&1<u(x)�min[\, &1�2], for x # L, =0 small; and this is still true for
x # F& _ L by monotonicity of u. As long as vy(x)�- 2�4 and x # F& _ L,
we have

vyy(x)=(2v2
y&1) u+c�(2�8&1)(&(1&2�2)�(1&2�8))&(1&2)=2�2.

It follows that vy(x)�2�2 } y before it reaches the cutoff - 2�4.
Part (iii) is more crude. As noted above, u(x)<&1�2 for x # F& _ L.

So, along the line vy = 10, we have vyy = (2v2
y & 1) u + c � (200&1) }

(&1�2)�&99. This makes it impossible for vy(x) to climb over vy=10
while x # F& _ L. The argument for R _ F+ is analogous. K

4. THE PROJECTIVE ACTION

As in the introduction, identify the tangent bundle to the (v, vy) plane
with R2_R2 via coordinate (v, vy , p, q), where q, p are the variations of v
and vy correspondingly. The variational flow is given by (5), and the signs
of the entries on the right side immediately reveal the following properties
of the fundamental solution 8( y, y0) # Gl(R2), y, y0 # [0, 1�=]:

(P1) if |vy| [ y0 , y]|>- 1�2, then 8( y, y0) transforms the standard
cone 1=[(q, p): pq>0] strictly into itself ;

(P2) if |vy( y0)|<- 1�2, then 8( y, y0) moves the vector (1, 0) clock-
wise outside of 1 for small y&y0>0;

(P3) 8( y, y0) moves (0, 1) clockwise inside 1 for small y&y0>0.

In fact, (P1) is the prevailing mechanism (along a lap) as expressed by
the following proposition.

Proposition 1. For any 0<2, |<1 and $>0, there are d, =0>0 such
that, if c( } ) satisfies (HC)2, | and u( } ) satisfying (HU)d solves (2) with
=<=0 , then 8( y, 0) 1 is contained in the $ ( projective) neighborhood of 1
for y # [0, `�=]. Moreover, 8(`�=, 0) maps 1 strictly into 1 with zero total
rotation (in particular, any vector is rotated by less than ?�2).

Proof of Theorem 3 from Proposition 1. From Proposition 1, 1 + :=
8(`�=, 0) 1/1 with zero rotation. The mirror version of the proposition
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Fig. 4. The cones along a lap. The cone 1, while not preserved by the variational flow
at all times, is preserved by the (slow) time-one-map. Indeed, we show that 1 and 1 c (its
complement and dual under time inversion) have non-overlapping images at c=0.

gives5 1 & :=(8(1�=, `�=))&1 1 c/1 c with zero rotation, and so 8(1�=, `�=)
(1 &)c=1 with zero rotation. Since 1 +/1/(1 &)c, we can pipeline as
follows, see Fig. 4,

8(1�=, 0) 1=8(1�=, `�=)(8(`�=, 0) 1 )

=8(1�=, `�=)(1 +)/8(1�=, `�=)(1 &)c=1.

The inclusion is strict and the total rotation is zero. K

Proof of Proposition 1. One has to look at the boundary of the cone.
It suffices to prove that 8( y, 0)(1, 0) stays in the $-neighborhood of 1 and
that 8(`�=, 0)(1, 0) sits strictly inside 1. The analogous conclusions for
(0, 1) are then immediate from (P3). Clearly only the projective action of
8 is relevant so we consider the slope s :=p�q, q>0, for which (5) means

sy=V(s, y) :=&s2+4vyu } s+(2v2
y&1) ', (6)

with the initial condition s(0)=0, which is the slope of (1, 0).6

Before we go on let us outline the argument. Observe that '(u(x))=
1�cosh2(v(x)), although increasing along L _ F& , is extremely small there
(of order 1�cosh2(=&1)) by (iii) of Lemma 1, and so is b :=(2v2

y&1) '
because of Lemma 2, (iii). On the other hand a :=&4vyu is a definite
positive quantity over L, by Lemma 1, (i) and (iii). The vectorfield in (6)
has a stable nearly stationary point near b�a closely followed by s, which
must then stay extremely close to 0 over F& and eventually get positive
over L, where b>0. The following claim formalizes this description.

94 JAROSLAW KWAPISZ
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Claim 1. We have, for small enough d, =0>0, that

(i) s(x)�&1000 } '(u(inf L))�- 2, x # F&;

(ii) the above bound extends to x # (sup F& , `) and s(`)>0.

Moreover, the right side in (i) tends to 0 as = shrinks to 0.

The following technical lemma is proved in the end of this section.

Lemma 3 (Comparison). Suppose z(0)=0 and dz�dy=&az+z2&b,
y�0. If a( y)�0 and |b( y)|�; with ; so small that

2 - ; } min[ y, ( inf
t�y

a(t))&1]<1, (7)

then

z( y)�2; min[ y, ( inf
t�y

a(t))&1], y�0. (8)

Proof of the claim, (i). Set z :=&s, a=&4vyu and b :=(2v2
y&1) '. For

sufficiently small =0 and x # F& , we have u(x)<&1
2 by (iii) of Lemma 1,

and a(x)�4vy(x) } 1
2�2 min[2y�2, - 2�4] by (i) of Lemma 2. Part (iii)

of Lemma 2, yields |b(x)|�|(2vy(x)2&1) '(u(x))|�200 } '(u(inf L))=200�
cosh2(v(inf L))=: ;, also for x # F&.

In this way, for x=y= # F& , we have

min[ y, ( inf
t�y

a(t))&1]�min[ y, min[2y, - 2�2]&1]�2�- 2 ,

where we verify the second inequality by inspecting the cases y�1�(2 - 2 )
and y�1�(2 - 2 ). To satisfy the conditions of Lemma 3 we confirm that
2 - ; } 2�- 2 <1. Indeed, v(inf L) � &� as =0 � 0 by (iii) of Lemma 1, so
also ; � 0. Now, (i) is a consequence of (8) in Lemma 3:

&s(x)�2; min[ y, ( inf
t�y

a(t))&1]�2; } 2�- 2 , x # F&. K

Proof of the claim, (ii). Factor V(s, y)=(s&s&)(s+&s) where &a=s++
s&=4uvy and &b=s+s&=&(2v2

y&1) '. As in (i), for sufficiently small =0 and
all x # L, one has

u(x)<&1�2, '(u(x))�0.0001 - 2 �0.0001

by (iii) of Lemma 1, and

- 1�2+|�4�vy�10
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by (ii) of Lemma 1 and (iii) of Lemma 2. Hence,

'|�2�b�200'and2 - 1�2=&4(&1�2) - 1�2�a�&4 } (&1) 10=40.

Because '<0.0001 we see that b�a�a and s&<0<s+ , so:

s&=&a&s+�&a�&2 - 1�2, s+=&b�s&�b�a�a�40,

s&=&a&s+�&2a�&80, s+=&b�s&�b�2a�
'|�2

80
='|�160.

Thus, if x # L and s(x) # 0 :=[&1000 } '(u(inf L))�- 2 , 0], then the first
and the last inequality yield

sy(x)�(&1000 } '(u(inf L))�- 2 +2 - 1�2)(s+&0)�- 1�2 } '|�160.

Since sup F&=inf L, s(inf L) # 0 by the already proved (i). From the
above estimate, s(x) increases and leaves 0 by becoming positive and the
amount of y-time it needs for that is at most

1000 } '(u(inf L))�- 2

- 1�2 } '(u(inf L)) |�160
�160000�(- 1�2 |2).

In this way, if only =0 is small enough to make the right side above
dominated by |L|�=, s exits 0 through 0 and s(x0)>0 for some x0 # L.
Because vy(x)>- 1�2, for x # [x0 , `], the property (P1) implies that s(x)
stays positive for those x; in particular, s(`)>0. K

Proof of Lemma 3. We compare z( } ) to #( } ) that solves #y=&a#+2;,
#(0)=0 and begin with showing that

#( y)�2; min[ y, (inf[a(t): y�t])&1], y�0. (9)

First, #( } )�0 because #y=2;>0 when #=0. Hence #y�2; and
#( y)�2;y, y�0. Still, (9) could fail on some interval ( y0 , y1) in that
#| ( y0 , y1)>2;�inf[a(t): y0�t�y1]. Consider such an interval maximal with
respect to inclusion. From the differential equation, #y( y)<0 for all
y # ( y0 , y1), and so #( y)�#( y0) there. But then (9) holds at y # ( y0 , y1)
because the right side of (9) is non-decreasing in y and (9) holds at y0 by
the maximality of ( y0 , y1). This is a contradiction.

We finish by proving that z�#. If E :=[ y: z( y)>#( y)] is nonempty we
take y

*
:=inf E. Clearly z( y

*
)=#( y

*
) and, also at y

*
, 0�#y&zy�;&#2,

i.e. #�- ; . In view of (9), this contradicts the assumption on ;. K
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5. THE LAP DECOMPOSITION

In the introduction we promised to show that any equilibrium u( } )
satisfying hypothesis (HU)d can be decomposed into laps. For the decom-
position we need to know that u( } ) has a critical point inside each Ui

between two zeros `i and `i+1. To be specific assume that u|Ui�1&d. We
actually need to know that the critical point is in a definite distance from
the endpoints of Ui because we want the resulting laps to satisfy the
(HC)2, | assumption on c with uniform 2 and |. Suppose that a suitable
critical point does not exist. Then u would have to be monotone, say
increasing, on most of (`i , `i+1) only to drop very sharply in the vicinity
of `i+1. The following lemma shows that this is impossible: it takes O(1)
stretch of x before u drops back to mere 1&d.

Lemma 4. For any 0<2<1, there are r, C>0 with the following
property for all sufficiently small d, =>0 and c satisfying (i) of (HC)2, | . If
u solves (2) and u(x)�1&d with ux(x)>0 for all x in some interval [a, b],
then u| [b, b+r]�1&d or b&a�C=.

Proof of Lemma 4. For small enough d, ur1 over [a, b], so one can
find }>0 such that (2}2&1) u+(1&2)�&2�2 over [a, b]. Consider
J� :=[a, b&(b&a)�10]. There are two cases.

Case 1. vy(x0)<} for some x0 # J� . For x with 0�vy<}, we have vyy�
(2}2&1) u+c�&2�2, so vy decreases from vy(x0) to reach vy(x1)=0 for
some x1>x0 with x1&x0�=}�(2�2). Since x1 � [a, b], it follows that
(b&a)�10�2}=�2, that is b&a�C= for C=20}�2. We may assume that
(b&a)�C= from now on.

Case 2. vy |J� �}. Then v(b)�v(a)+}0.9(b&a)�=. Let x1>b be maxi-
mal such that u| [b, x1]�1&d so that r=x1&b. Clearly u(b)>u(a)�
1&d=u(x1), so v(b)&v(x1)�v(b)&v(a) and consequently (x1&b) &�
}0.9(b&a)�=, with & :=sup[ |vy(x)|: b<x<x1]. Hence, =&r�(b&a) }0.9.
The lemma follows once we observe that &�2. For x # [b, x1], we have
u�1&d �1�2 and, as in the proof of (iii) of Lemma 1, vy�2 must hold
or otherwise vy�2 forever��which is a contradiction. K
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6. SHOOTING FOR UNSTABLE LAPS

To give another application of our approach to a problem beyond the
grasp of present singular perturbation methods, we will exhibit an unstable
equilibrium to (1) that changes sign in the same direction as c. Existence
of such equilibria under transversality conditions has been established in
[7]. We assume a rather informal style and restrict to the case of c with
one zero. More detailed arguments, similar to those in the previous sections,
would be needed for extension to the many lap case.

Proposition 2. Suppose that c( } ) has only one zero `, c| [0, `)<0, and
c| (`, 1]>0. For sufficiently small =>0, the problem (1) has an increasing
exponentially unstable equilibrium u( } ).

A key fact is that, for u of interest, the velocity ux has to change sign at
its zeros.

Lemma 5 (No libration). Suppose that c( } ) has only one zero ` and
c| [0, `)<0 and c| (`, 1]>0. For sufficiently small d, =>0, if u( } ) solves (2)
with u(0)<&1+d and ux(x)�0 for all x # [0, 1], then ux does not vanish
except possibly at x=0, 1.

Consider for a moment c( } ) constant and equal to c # [&1+2, 1&2].
Then the vector-field Xc=(vy , u(2v2

y&1)+c), u=tanh(v), whose flow ,y

in the (v, vy) plane generates solutions to (4) and (2), has only one rest
point pc at vy=0, u=c. This is an elliptic point and the variational equa-
tion (5) yields the fundamental solution of the linearized flow:

exp \y } \ 0
&'

1
0++ , '=1&c2, y # [0, 1�=].

The vectorfield Xc is integrable so one has a neighborhood Vc of pc that is
an elliptic island��meaning that:

(i) Vc is a union of closed trajectories of Xc ;

(ii) for any p # Vc , the angle of the ray from pc to , y( p) increases, and
its y-derivative is greater than - '�C where C>1 is a constant accounting
for the eccentricity of the orbits.

Now, obtain a fast annulus Ac from the elliptic island Vc by cutting out
its center, i.e. remove from Vc one of the orbits and take for Ac the component
that does not contain the center pc (see Fig. 5). It is clear that one can do
this construction continuously in c; in particular, the size and the rotation
speed of Ac are uniform in c as long as c # [&1+2, 1&2].
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Fig. 5. Our trajectories start far from the fast annulus Ac , which spins rapidly while drifting
slowly to the right. Only inside Ac could vy=0 without changing sign; and, on traversing Ac

radially, vy would have to change sign many times.

Sketch of proof of Lemma 5. For small d, v(0) is so close to &� that
(v(0), vy(0)) � Vc for any c # [&1+2, 1&2]. On the other hand, since
all the time vy�0, if vy(x0)=0 then vyy(x0)=0, and (v(x0), vy(x0))=
pc(x0) # Uc(x0) from the equation. In this way, continuity forces existence of
x

*
# (0, x0) such that (v(x

*
), vy(x

*
)) # Ac(x

*
) . If c were fixed and equal to

c(x
*

), this would lead to a contradiction because the motion within Ac is
a fast rotation leading to vy<0 in O(1) of y-time. Actually c drifts very
slowly in y-time, |dc�dy|=O(=), and we still get a contradiction for small
enough =. How small = must be taken does not depend on u( } ) but only on
the properties of our fast annuli��these are uniform. K

Sketch of proof of Proposition 2. Let v( } ) be a solution of (4) with
initial data v(0)=v0 and vy(0)=0. We will use shooting to find v0 such
that vy(1)=0 and vy(x)>0 for x # (0, 1). Observe that, as long as c<0, vy

can not climb over - 1�2. Similarly, once vy>- 1�2 and c>0, it stays that
way.

Claim 1. For any fixed small =>0, vy does not vanish except at x=0 for
all initial conditions v0 sufficiently close to &�. Let x1 be maximal such
that vy | [0, x1)�- 1�2. As observed, vanishing of vy can happen only on
[0, x1]. For v0�&- 1�2 } O(1�=2), we clearly have v(x1)�&O(1�=) so that
u(x1)�&1+2�2 and consequently u| [0, x1]�&1+2�2. Therefore vy | (0, x1]

can not touch vy=0 because vyy=&u+c�2�2>0 there.

Claim 2. For any fixed v0r&�, vy | (0, 1] has a zero for all small enough
=>0. Pick b # (0, `) and look at vy over L :=[0, b] where vy�- 1�2 by the
earlier observation. At first vyy>2�2 and vy becomes definite positive;
however, we will argue that c<&| :=sup c|L<0 over L will soon force vy

to get back to 0. One of two things can happen a priori. Either the trajectory
of (v, vy) enters the fast annulus Ac , and then it gets rotated into vy=0, or
(v, vy) stays away from Ac and thus has definite vy>O(1)>0. This however
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gets (v, vy) into u>0 where vyy<c�&| quickly pushes vy down to vy=0
and beyond ��all that happening in O(1) of the y-time, that is still x # L,
if only the = was small.

Let v&
0 and v+

0 be the initial conditions provided by Claim 1 and Claim 2
respectively��see Fig. 5. Between v&

0 and v+
0 there must be the supremum

v
*

of those v0 for which vy is positive for all x>0. For the corresponding
u( } ), vy( } ), and thus also ux( } ), has a zero ��and it must be at x=1 by the
lemma. Hence, u( } ) is an equilibrium of (1).

From our first observation, 0�vy<- 1�2 for all times. Using (P2) of
Section 4, one immediately concludes that u( } ) is unstable via Pru� fer
method, as explained in the introduction. In fact, the unstable manifold of
u is one-dimensional. K
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