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Abstract. Motivated by the computations in the theory of cohomological
Conley indexcocyclic subshifts are the supports of locally constant matrix
cocycles on the full shift over a finite alphabet. They properly generalize
sofic systems and topological Markov chains; and, via the Wedderburn-Artin
theory of finite-dimensional algebras, admit a similar structure theory with
a spectral decomposition into mixing components. These components have
specification, which implies intrinsic ergodicity and entropy generation by
sequences of horseshoes. Also, a zeta-like generating function for cocyclic
subshifts leads to simple criteria for existence of a factor map onto the
full two-shift — which gives practical tools for detecting chaos in general
discrete dynamical systems.
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1 Introduction

An elementary question encapsulates the topic of this article: Given two
square matrice®y, ¥, what can one say about binary sequenges:

(o1, ..., 0p) for which the product®, = &, ...9,, is not zero? Concretely,
when does the numbet, of such sequences of lengthincrease expo-
nentially inn, i.e. h := lim,_, Ina,/n > 0? We give a sharp answer

in terms of certain algebras associated with the prodégis..®,,, . Our
approach leads through topological dynamics and yields results going far
beyond answering the question. Indeed, the numbean be interpreted

* Partially supported by grants ARO DAAH-0493G0199, NIST G-06-605.
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as the topological entropy of the shift map acting on the space of infinite
binary sequences for which any finite segment is as above. This space is an
example of what we call aocyclic subshift — a new kind of subshift that
generalizes topological Markov chains and sofic systems.

If only to justify the name (cocyclic subshifts), let us assume a broader
perspective for a moment. Given a mp X — X, one may consider
cocycles® with values in a semigroug with zero0. This is to say that
& : N x X — G satisfiesb(n + m,x) = @&(n,x) - ®(m, f"z),n,m € N,
and0 € Gissuchthal-g = g-0 = 0forall g € G. The support of
the cocycle &, X¢ := {x € X : &(n,z) # 0 forall n € N}, is forward
invariant underf, fXgs C Xg. Our problem is an instance of a general
guestion about the relation between the properti€sgénd those off and
P.

Thecocyclic subshiftsare, by definition (Sect. 2), the spacég obtained
from the shift mapf on X := {1,...m}Y, (fz); = z;,1, and from a
locally constart cocycle® into the semigrou = End(V) of all linear
transformations of a finite dimensional vector spEc€Our initial question
corresponds te» = 2 and® depending only om.) This should be viewed
as a generalization of [21], where B. Weiss introduced sofic systems by
taking forG any finite semigroup (c.f. Sect. 10).

Besides the broader class of subshifts considered, what sets our work
apart from the existing literature on sofic systems is the focus on the algebra
generated by the cocycle: the algebrais less structured and more regular than
the semigroup, thus allowing for more complete and constructive theory.
Most importantly, by exploiting the classical Wedderburn-Artin theory of
finitely-dimensional algebras, we are able to implement for cocycles the
ideas of reducible, irreducible, and aperiodic such that the corresponding
cocyclic subshifts have a structure very similar to that of topological Markov
chains defined by reducible, irreducible, and aperiodic matrices.

In particular, the mixing cocyclic subshifts are those definable by aperi-
odic irreducible (primitive) cocycles; and they satisfy the specification prop-
erty. Thisis the key result of the paper with a corollary (via Bowen’s theory)
that the topologically transitive cocyclic subshifts are intrinsically ergodic
(i.e. have a unique invariant probability measure of maximal entropy).

To reveal our motivation, we mention that our results are relevant to the
symbolic dynamics built around the Conley index for maps ([15,19,18, 20,
13]). While the reader may consult [18] for a formal exposition, let us give
a glimpse of how cocyclic subshifts enter the scene.

Roughly, the phase space (of a discrete dynamical system) is divided into
finitely many compact pieces labelethroughm. Each piece has associated
an index which is a pointed topological space, and the dynamics induces

! i.e.®(1,z) depends on a finite initial block af of fixed length.
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on the cohomologies of the indices an action that generates the cocycle on
{1,...,m}N. An infinite sequence of piecemdesan orbit of the map (i.e.

the orbitis selected from the sequence) provided the cocycle does not vanish:
the sequence is iXg. One may think of this as a common generalization

of the Lefschetz fixed point theorem, where there is only one piece (the

whole space), and the usual concept of a Markov partition, where there are
many pieces but the way they map is very restricted. The role of the cocyclic

subshifts is then analogous to that of subshifts of finite type in the standard

symbolic dynamics.

The primary application of the technigue is for confirming chaos in con-
crete dynamical systems, a problem that reduces to the question whether
X4 factors onto the full two-shift ([14, 15,20, 18, 3]). Our structure theory
for cocyclic subshifts resolves the issue completely: the factor map exists
iff in the spectral decomposition given by the Wedderburn-Artin theory of
the appropriate algebras, there is an aperiodic component which is not a
single point (Corollary 9.3); and this criterion admits efficient numerical
implementation — see the appendix. In fact, we prove that all of topological
entropy on a cocyclic subshift is realized by embedded horseshoes (Theo-
rem 7.2). Moreover, the cocyclic subshifts with zero entropy stand out as
those with particularly simple non-wandering dynamics concentrated on few
periodic orbits captured by a certain zeta-like generating function (Sect. 9).

As this paper is aimed at both a solution of the chaos detection problem
and an introduction to a new type of symbolic dynamics, we confined its
scope in many respects. Restriction to the algebraically closed base field or
the one-sided shifts is easy to overcome and helped to simplify presentation
of the main ideas. More notable omission is that of ergodic theory of the
intrinsic measure (including the computation of the entrapywhich is
dealt with in the forthcoming [11]. Unresolved is also left the problem of
factors of cocyclic subshifts, an uncharted class that brings out more exotic
semigroups of subspaces of matrices, yet possibly coincides with cocyclic
subshifts (see Sect. 11). Here, [16] instills some hope by picking up our new
class ofsubspace semigroupsr systematic study.

To end the introduction, we put together a quick guide to what follows.
Sections 2 and 3 contain definitions and some basic properties of cocyclic
subshifts as dynamical systems. The progression of Sects. 4, 5, and 6 de-
velops a decompaosition of a cocyclic subshift into irreducible and primitive
(irreducible and aperiodic) pieces, and shows that these are topologically
transitive and mixing, correspondingly. Thus the stage is set for the proof
that primitivity implies specification in Sect. 7, with intrinsic ergodicity of a
topologically transitive cocyclic subshift and entropy generation by horse-
shoes obtained as easy corollaries. Section 8 digresses to show that, under
a suitable non-degeneracy assumption on a cocycle, its irreducibility and
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aperiodicity follows from transitivity and mixing (correspondingly) of the
underlying cocyclic subshift. Section 9 (together with the appendix) char-
acterizes the cocyclic subshifts with zero entropy and then derives criteria
for chaos; a certain zeta-like generating function is one notable tool here.
Section 10 discusses the inclusion of sofic systems into cocyclic subshifts;
in particular, it contains a concrete example of a non-sofic cocyclic subshift
— perhaps worth inspecting just after reading Sect. 2. Section 11, in turn,
contains an exampldghe context free subshifof a subshift with specifi-
cation that is not cocyclic nor is a factor of a cocyclic subshift. Finally,
Sect. 12 introduces a useful way of presenting cocyclic subshifgsdphs

with propagationi.e. labeled (colored) graphs with matrix weights over the
edges.

Acknowledgementdt has been a pleasure to write most of this paper at the Center for
Dynamical Systems and Nonlinear Studies of Georgia Institute of Technology, a uniquely
stimulating and friendly group gathered around Jack K. Hale. In particular, the author is
grateful to K. Mischaikow, M. Mrozek, and A. Szymczak for introduction to the questions
of the discrete Conley index. Also, not to be left without praise should be the constructive
criticism of the referees that greatly influenced the final shape of this paper.

2 The definition

Let.4 be afinite alphabet ofi symbols, sayd = {1, ..., m}. Recall thathe
(full) one-sided shift (over A)is the product spacd™ with the shift map

f: AN — AN given by f : (z;)ien — (zi11)ien. Taken as a product of
discrete spaces4N is compact, and is a continuous map. The standard
metricd on X is d((x;), (y;)) = 277 wherej € N is minimal such that
z; # y;. By a subshift of AN we understand any closed C AN that is
invariant underf (i.e. f(X) C X).

Denote by En¢l/) all the linear endomorphisms of a linear space
The spacé’ is always assumed to be finite-dimensional, non-zero, and over
an algebraically closed fiel@. Moreover, we shall compose linear maps
in End V') on the right:®(¥(v)) = vW¥® for &, ¥ € End V) andv € V.
(Thereby we trealt” as a right En¢l/)-module.) The following is the central
definition of this paper.

Definition 2.1 A cocyclic subshift of & = (P4, ...,P,,) € End V)™ is the
subshiftXs c AN given by

Xp ={zcAN: &, - &, #0,VYnecN}.
A subshiftX ¢ AN is a cocyclic subshift iff X = X4 for somed.
Note thatX¢ can be empty.
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Following [5], any finite sequence € .A* will be referred to as block
(of length |o| := k). In particular, giver: € AN andk € N, we have ablock
[z]k = (x1,...,x). (We will also uselz];, = (xj,...,zi+k—1).) Each
block o determines an open sEt, := {x € AN : [z]y = 0, k = |o|} and
aproductd, := b, - - D,,. We say that occurs in X iff U, N Xg # 0,
and we say that is allowed (or @ — allowed) iff @, # 0. All blocks occurring
in Xg are allowed, but not vice versa: an allowedhay not be a sub-block
of anyx € Xg. Nevertheless, the complement &f is the union ofU,
over all disallowed’s; therefore X4 is compact. Sinc¢(Xg) C Xg, Xo
indeed is a subshift.

As indicated in the introduction, Definition 2.1 can be recast in a more
general context of cocycles. Consider: N x AN — EndV) that isa
locally constant cocycle with values in the semigroup Efd). This is to
say that there arg € N and endomorphisms;, ;€ EndV), i; € A,
j=1,...,q, such that

P(n,z) = Py, 4, P D gk re AN neN.

T2..Tgt+1 "

The minimal suchy we call the anticipation® of ®, and bythe support of
@ we understand the sét € AN : &(n,z) # 0, Vn € N}. In the case
wheng = 1, the support coincides with the cocyclic substit.

Proposition 2.1 (characterization via cocycles)he class of cocyclic sub-
shifts of AN coincides with that of the supports of locally constant cocycles
on AN (with values in the endomorphism semigroup of a finite dimensional
vector space).

Proposition 2.1 is an immediate consequence of the following lemma.

Lemma 2.1 If ¢ is a locally constant cocycle iEnd V'), then there is
a finite-dimensional linear spacgé’ and a locally constant cocyck®’ in
End(V’) with anticipationg’ < 1 such that, forr € AN,

P(n,x) =0, Vn e N < & (n,z) =0, Vn € N. (1)

Proof. It suffices to show that if the anticipation dfis ¢ > 1, then®’
satisfying (1) can be found with anticipatigh < ¢. LetJ; : V — V™
andP; : V™ — V be the canonical injections and projections, so that
vJ;Pj = &;;v forv € V andi, j € A. Set, for anyi € A?~! andz € AN,

21 'Lq 1 Z ’Lq 1 ’Ll ..Z‘qflk*]k and

P (n,z) := 95' @

Z1...Tg—1 Tn.-Tntq—2"

2 cf.[12]
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By usingJ; P; = d;;, it is easy to see the corresponding cocycle to be

m
/
@ (TL, :E) = § qu_léa}y..xqflkl Jklpxq@acg...quzjkz
K1, kn=1

o '@xn...x7,,+q_2kn Jkn

m
- g qufldsml..‘zq@mg...ztﬁl te éxn...xn_m_gkn Jkn
kn=1

The last sum contains the factdfn — 1, z) ineachterm, s@(n—1,z) = 0
for somen > 1 implies &'(n,z) = 0. Also, J,,_,9'(n,2)Py,,, , =

&(n,x) so thatd’(n,z) = 0 implies #(n,z) = 0. The equivalence (1)
follows. O

We finish this section with a couple of remarks. It may be convenient
at times to talk about possibly infinite blocks= (0;)=%, wherea, b €
Z U {—o00, 0}, a < b. Note that, even thoug#, may be undefined, one
can unambiguously define the kerket(®,, ) if a is finite, the image i@, )
if bis finite, and non-vanishing @, in any case.

Also, rather thanX, it is often more suitable to considére two-sided
cocyclic subshift consisting of all bi-infinite ¢« = b = o) allowed blocks,

Xﬁb = {(l‘i)iez : @xn o 'éﬁm 75 0, n< m, n,m e Z}

Translation betweeX s and X is standard: one view& 4 as the natural
extension ofX s by identifying eachz;);cz € X4 with the corresponding
full orbit (an)nez In Xg, ant1 = fay; the two are related via; := [a;]1,

1 € Z([9)]).

3 Preliminary properties

In order to establish cocyclic subshifts as a natural class of dynamical sys-
tems, we shall verify that cocyclicity of a subshift c AN is an intrinsic
property of its shift dynamicg : X — X and that it is preserved under the
basic set theoretic operations.

Recall that a subshifX is conjugate to another subshift” (possibly
over a different finite alphabet) iff there is a homeomorphisi: Y — X
such thath o f = f o h wheref and f are the shift maps oX andY’,
respectively.

Theorem 3.1 (conjugacy invariance)A subshift conjugate to a cocyclic
subshift is a cocyclic subshift.



Cocyclic subshifts 261

Before a proof, recall that any subshift ¢ AN determines for € N a
subshiftX "l = {([z];,)ien : = € X} over the refined alphabet”, (recall
[z]ir = (@i, ..., Tigr—1)). This X["] so calledr-block presentation of X,
is conjugate taX via the mam : AN — (A"N given by (z;)ien —
([z]ir)ien (see [12]).

Lemma3.1 If X c AN is a cocyclic subshift, then so is itsblock pre-
sentationX " ¢ (A")N forr € N.

Proof. Suppose thak’ = X4 for some? € EndV')". Consider the cocycle
¥ : N x (AN — EndV) given by

W(l, ((xl,h a3 xlﬂ“)v (1’2,1, ceey x277')7 ))

)Py, 10 =201, ., 71 = T2,
0 otherwise

Roughly,¥ is ¢ on the image of&] and zero on the complement, (where
the progressive overlap conditipsee [12], is violated). The anticipation of
¥ does not exceed two by definition. It is also easy to verify ftit is the
support of#, which makesX "l a cocyclic subshift

Proof of Theorem 3.55uppose a subshift ¢ AN is conjugate to a cocyclic

subshiftX c Aviah :Y — X. Denote byBEQ] the set{[z], : = € X}
of all r-blocks occurring inX, with the analogous definition far". It is
well known that the conjugady and its inversé ! aresliding block codes

([12]), meaning that there ares € N and mapsh : Bx[f] — BE? and
1 B[ N B[ ] such that, foy € Y andz € X,

r="h(y) < [z]ir = M[ylis), Vi € N <= y; = p([z]ir), Vi € N.

The maps\ andu on the symbols induce™ : ( ) (BM)N and
pe (BEZ])N — (B@)N. Fromh~'oh = Id, ,uo)\(y - Ys) = y1 forany
(Y1y - Ys) € B@. It follows that, ;1> o A*° O'y ( ) =y foranyy € AN
such thaty]; s € B{ﬁ] forall i € N.

By Lemma 3.1, there aré and® € EndV)™" such thatX ") = X

(A")N. We shall prove that” is the support of the cocycle : N x AN —
End(V') given by

W(l,y) = {@(1’)\<[y]5)) if [y]s c B)[f]’

0 otherwise.

Assume thaty € AN is such tha(n,y) # 0 for all n € N. Then
[ylis € Bg] forall i € N, i.e.ny] (y) € (B@)N. Moreover,¥(n,y) =
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&(n,x) forz:= A o %[z] (y) € (B@)N and alln € N. From the assump-
tionz € XU, and squ™(z) € Y. Sinceu™ (z) = pu™ o A® oryfg](y) =,
we have proven thate Y.

On the other hand, giveme Y, we havely|; s € B{f] foralli € N, so
that? (n,y) = @(n,z) #0forz = A*o 'yi] (y)and alln € N. O

Out of the multitude of possible algebraic operations on cocycles, we
summon the direct sum and the tensor product to observe the following:
Fact 3.1 The sum, intersection, and Cartesian product of two cocyclic sub-
shifts are cocyclic subshifts.

Proof. Let Xg ¢ AN and Xz ¢ AN be cocyclic subshiftsp € End(V)™
and® € End V)™,

We claim thatXs U X5 = X, ; where we assume that = A and
the cocycled @ & € EndV @ V)™ is given by(v @ 9)(P @ &) (n, x) =
v®(n, z)®9P(n, ) forz € AN,n € N. The simple reasonis thatpb = 0
iff @ =0andb=0. 3

On the other hands x X5 C (A x A)N coincides withX , ; where
the cocycled ® & € EndV ® V)™™ is given on simple tensors dy ®
0)(@D)(n, (z,y)) = vd(n, 2)@0P(n,y) for (z,y) € ANx AN, n e N.
This hinges on the fact that® b = 0iff a = 00orb = 0.

Finallyif A = A, to getXs N Xz asacocyclic subshiftone can uBe P
restricted to the diagonal it™¥ x A", By abusing notation we still write for it
PP € EndV @ V)™ butnow(v®0)(PRP)(n, x) = v®(n, z)0P(n, x)
forz € AN, n e N.O

Another useful property is that cocyclic subshifts are closed under taking
powers and roots (of the shift mg)). Recall, for a subshifft ¢ AN and
l € N,the maprfi) D(@)ien = ([T (k—1)141,) keN conjugateg’ : X — X
to what is called @ower subshift X ¢ (AHN,

Proposition 3.1 (powers)Suppose thate N and X c AN is a subshift.
ThenX is cocyclic iff X ¢ (AYHN is cocyclic.

Proof. One implication is simple. IfX = X, then tautologicallyX ) =
X4 whered(®) € End(V)ml is the power cocycle, P .= &, foro e Al
For the opposite implication, lét : N x (A")N — End(V') be a cocycle
realizing XV as its support. Set := P} ®'_, Vi,; whereV; ;'s are
disjoint copies ofl’. The indexing is considered cyclic moduloFori =
0,...,0 —1,k € N,andy € AN, let¢;(k,y) € EndV) be given by

Oy i
bi(k,y) == {gp(k’wfl\ (y)) if i =0,

Id otherwise
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Consider the cocyclé’ : N x AN — End(V) that is given on simple
tensors by

-1 -1 -1 -1
PR vij | ¥ (1,y) = P Q) vit1,6ir; modn (1,)-
i=0 j=0 i=0 j=0

It is a routine calculation to verify that

-1 1-1 -1 1-1

@ ®vi7j P (n,y) = @ ®Ui+n,j¢i+j+n—1(17y)

i=0 j=0 i=0 j=0
e Bitjrn—q(L, f11Y) o 0ig (1, 7 Ny).

Thus, forn = ki, k € N, we have exactly: non-trivial ¢’s in the product
above (when + j = ¢ (mod!)) so that

-1 1-1 -1 1—-1
PR vij | ¢ kl,y) = P Q) vijdolk, FH7H M) (2)
=0 j5=0 =0 5=0

Now, if y € X then alsofit7—1 (modl)y, ¢ X' 5o that
po(k, fiHi—1modlyy - 0 for all 4, j; and consequentlyd’(kl,y) # 0.
Hence,X is contained in the support df..

On the other hand, ij ¢ X thengy(k,y) = &(k, 7!4(y)) = 0 for some
k € N. It follows that®’(kl,y) = 0, because, for eachwe have a tensor
factor ¢g (k, fi+i—1modlyy — pq(k,y) = 0 for j = 1 — i mod!. Hence,
the support off’ is contained inX. O

4 Irreducibility and topological transitivity

We start in this section our main theme of correlating the structurggof
with the algebraic properties of the cocydle

The set of all blocks can be thought of as a free semigroup with the
concatenation as multiplication. (Fer= (o1, ...,0,) @andn = (01, ..., m),
their concatenation isn = (o1, ..., 0pn, M1, .., m).) Thesemigroup of & C
End V)™ is, by definition,

Gp :={P, : oisablock

% The idea is tsuspendp by twisting the cyclic permutation (@i;}) V;,; with @ acting
on the—;" place. Also, the tensor product would be superfluous if not for the possibility

thatz ¢ X but f*z € X for somex € A™ andk € N.
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treated as a sub-semigroup of EWJ generated by the componentsdaf
The maps — @, is a homomorphism between the two semigroups.

Less structured (and more penetrablelis algebra of @, by definition
equal to the linear span 6% in End(V),

Ep = {Z a,P, : a, € C almost all zerr} .

o

The algebra&g acts onV on the right, which is a finite dimensional faithful
representation. A particularly nice situation arises if this representation is
irreducible, that isv€s = V for any non-zeraw € V. Existence of such
faithful representation (primitivity) is equivalent & being simple (no
proper bi-ideals exist anf # 0). The Wedderburn-Artin theory (p 421 in

[8] or [6]) asserts that a simple algebra is the full endomorphism algebra
over a division ring, which means thés = End(V') because the field is
algebraically closed.

Definition 4.1 A cocycled € End(V)™ is irreducible iff V' # 0 and &g =
EndV). A cocyclic subshift igreducible iff it can be represented a%¢ for
some irreducibled.

The definition differs from the one in [21] where simplicity of the semi-
group (not the algebra) is postulate@his will ultimately allow for more
complete description of the dynamics in terms of the underlying algebra.
Recall thatX s is topologically transitive iff the orbit { f"x},cn IS dense
in X4 for somex € Xg. Also, if a blocke has non-nilpotend,,, then the
infinite concatenation = o (i.e. x; := 0; mod |»|) IS @ periodic point in
Xg; the period is equal ty| iff o is not a power (i.ec = 7! impliesl = 1).

All periodic pointsin Xg arise in this way, and we will denote their union
by Pe(Xg).

Theorem 4.1 (transitivity) If @ is irreducible, thenX s is non-empty, topo-
logically transitive, and the set of periodic poirRer X ) is dense inXg.

The following frequently invoked lemma uncovers the mechanism be-
hind the theorem.

Lemma 4.1 (connecting)Suppose tha® is irreducible. If o and w are
two allowed blocks, that i$,, &, # 0, then there is a block for which
D55, # 0. Moreover, suclt exists with

18] < max{0, dim(ker(®,,)) — dim(im(®,)) + 1} < d = dim(V).

4 The two are not equivaleri is not simple as a semigroup but has a primitive represen-
tation as multiplication irC (with £ = C simple), and the cyclic multiplicative semigroup
Z, is simple but its faithful complex representations are all diagonizable (p. 443, [1]).
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Note one easy corollary: all allowed blocks occurdn for irreducibled.

Proof of Lemma 4.1Letb be a finite set of blocks such th@kg) gc, forms
a basis offy = End V') as a linear space ov€. There isC' € End V)
such that?,C®,, # 0, and so one must have, ¢39,, # 0 for somes € b.
Note that|3| has an upper bound that is uniformdrandw — a fact that
suffices for much of what follows in this paper. The "moreover part” needs
another argument though.

Suppose thab,,, = 0, as otherwise there is nothing to prove, and set
k :=min{|n| : &,P,P, # 0, nablock, k > 1. Considem = (i, ..., 1)
with ¢,9,®,, # 0. SetV; := ker(®,,). Observe that

(1)1 Im(@U@%@Zl) ¢ ‘/1,
and, by minimality ofk, we have
(ii)l im(@Udiik...qSiZ) cV, 1<i<k,

since otherwiseb,®;, ...9; ., # 0. It follows thatV;®;, ¢ Vi, that is
Vo :={v € Vi : v®; € Vi} is properlycontained inV;. A similar
argument as fol; yields

(i)g Im(@g@zk@m) ¢ Vé,

and, by minimality ofk, we have
(ii)g Im(@o-@lk@”) cVo, 2<il<k.

Again, V3 := {v € V5 : v®;, € Va} must be strictly contained 5.

By iterating this process, we get a strictly descending sequence of linear
spaces/; D V, D ... D V4 all of which contain ini®,). It follows that
k—1<dim(V;) — dim(im(®,)), which ends the proofJ

Forxz € X, the eventual rank of x (with respect to @) is defined as
q(z) := lim rank(@(n,x)).
n—oo

Clearly, the sequence stabilizes ande AN : ¢(z) > 0} coincides with
Xp.

Proof of Theorem 4.1ITo come up with a poiny € X4 which trajectory is
dense inXg, form a sequence including all the allowed blocks; wo, ...,
@, # 0fori € N, and then use Lemma 4.1 repeatedly torgstsuch that
y = winwane... belongs taXg. (Allowed blocks exist by irreducibility, in
particularXg # (.)

For density of PgrXg), it is enough to prove that PeXy) accumu-
lates on the poing found above. Take arbitrary but large enough to have
rank®(n,y)) = q(y). Becausq f™y)men fills Xo densely, there isn
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such thatr := [y],, = [f™""y],, and SOy, +m+n = ono for somen. If
Vo :==im(®,) = V&,, then

iM(Pype) = Vobyo = VoPy®y C Vo.

In fact, the inclusion above must be equality because all the involved spaces
have dimension equal tdy). ThusV(®,, = 1, and sab,,, is not-nilpotent,
which puts(no)® andz = (on)> in Pe(Xg). Sinced(z,y) < 27", we

are done by arbitrariness af O

5 Spectral decomposition

Our next task is to represent thecurrentdynamics of a cocyclic subshift
as a union of irreducible cocyclic subshifts. This is analogous to the spectral
decomposition of a hyperbolic set ([17]) with an important caveat that the
union need not be disjoint, and the points in its complement need not be
wandering but merelyransientin the following sense.
Foramapf : X — X andk € N, we shallcallasdl/ C X k-transient
if
sup#{neN: ffeeU} <k.
zeX
Actually, we are only interested in the case whéims a compact Hausdorff
topological spacef is continuous, and’ is open (so that-transientU is
what normally is callec wandering neighborhoqd5].) By a transient U
we mearl/ that isk-transient for somé € N, andthe transient set of f is

T(f) := | J{U : U is open and transieht

While avoiding detailed discussion, we reldtéf) to the standard no-
tions of the non-wandering set 2(f) := (|J{U :U isopenand
wandering )“ and the (positively) recurrent set R(f) := cl{z € X :
x € w(z)} — wherecl stands for the closure angx) is the accumulation

set of (f"z)peN-

Proposition 5.1 (i) The wandering points2(f)¢, are dense irf'(f).
(i) The transient points are not recurrenR(f) C T'(f)°.

We remark thatR(f) = T'(f)¢ for cocyclic subshifts as will be apparent
from Theorem 5.1.

Proof. (i) Clearly, £2(f)¢ C T(f). For density, we exhibit a non-empty
wanderingW in any non-empty transieriy. As a function ofx € X,
ku(x) := #{n € N : f"z € U} is lower-semicontinuous and bounded
from above. Thus, foky := max,cy ky(x), the set

W:={zeU: ky(z)=ko}
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is open.)V is also wandering, as otherwisef™x € W for somen > 0 so
thatky (z) = ky(f™z) + 1 > ko — which is a contradiction.
(i) It suffices to verify that (withk;;(z) as in the proof of))
cl (U w(x)) = (U{U . U open andiy (z) < 400 for z € X})c.
zeX

3)

If y € w(x) for somex € X, thenky(x) = +oo for any neighborhood
U of y — the “C” inclusion follows. On the other hand, if has an open
neighborhoodV” disjoint with w(z) for all z € X, thenky(z) < +oo
for a neighborhood’ of y that is pre-compactly contained in. The “D”
inclusion follows.O

Returning to cocyclic subshifts, transient dynamics may appeaizin
in the presence of nilpotent bi-ideals §i3. If J C &g is such an ideal,
that isésJEs C J andJ! = 0 for somet € N, then any blockr with
®, € J can repeat at most— 1 times in any allowed block. Indeed,
if w=aoaz0..qq0ai11, thend,, € Sy, JPy,... Py, ., C Jt=10. We
refer to sucly asa transient block because can occur at most| - ¢ times
inanyx € Xg, sothat#{n: "z € U,} < |o|-tandU, is transient.

Assume that, for some non-zero linear spakgs.., V;., we have a ho-
momorphismR : £ — [[;_; EndV;) satisfying the following hypothesis
(H) the kernelJ of R is nilpotent and the componen®s : £ — EndV;),

i =1,...,r, are surjective.

Forz € AN the homomorphisnRk determineghe partial eventual ranks
gi(z) := lim rank R;(®(n,z)), i =1,...,r,
n—oo

which add up tay; (x) := ), ¢;(x). Note that, ifg; (x) = 0, then there is
n € N such thatt(z,n) € J(Ep), which makegz],, a transient block and
anyz € Uy, atransient point.
Theorem 5.1 (spectral decomposition)f X is a cocyclic subshift, and
R : & — [, EndV;) satisfies the hypothesis (H), then the €fs); :=
{z € AN : ¢(z) > 0} are irreducible cocyclic subshifts for irreducible
cocycles

P := (Ri(Pk))rea € EndV;)™.
The unionJ;_, (X¢); is a cocyclic subshift for

(R(®k))rea € End (@ Vi)

(2

and equalg X¢) := {z € AN : ¢, (z) > 0}, which constitutes the set
T(X4)¢ of all non-transient points oK.
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Proof. Checking that the cocycles determine the right subshifts is trivial.
The irreducibility follows immediately from the surjectivity in (H). That all
non-transient points are accounted for has already been observed.

As noted beforethe basic sets (Xg); need not be disjoint nor different,
a flaw that can be remedied by passing to an appropriate cocyclic subshift
that factors ontd X4 ) (finite-to-one). Such is the cocyclic subshift with
the alphabef{(i,k) : ¢« = 1,...,r, k = 1,...,m} and the cocycle given
by (Ri(®k))i,x), a@s it splits into disjoint transitive sets that are naturally
conjugate to th¢ X4);’s. This is reminiscent of the situation for sofic sys-
tems that lack spectral decomposition, but are factors of topological Markov
chains that have spectral decomposition ([5]). Also, that there may be non-
wandering points outsideXs), can be seen in a sofic examblgiven by
the space of sequencesliid and2’s with at most twol’s occurring in each
sequence (takeé; nilpotent with®? # 0 and®} = 0, and®, = Id). Here
(Xg)+ = {2°°}, yet every symbolic sequence with exactly one occurrence
of 1 represents a non-wandering point (which is nevertheless 2-transient).

To supply a homomorphismk satisfying hypothesis (H) for any non-
empty X, one can use the Wedderburn-Artin theory. Recall (see 1X.2 in
[8] or [6]) the Wedderburn (or Jacobson) radidéEs) of the algebray is
the union of all nilpotent two-sided idealsédla and is a nilpotent two-sided
ideal by itself. ThusJ (£5)! = 0 for some minimat = tg; and.J(Eg) # Eo
given thatXs # (. The quotientts/J(Eg) is then a semisimple algebra
and, by the Wedderburn-Artin Theorem (Th 5.7, 1X, [8]), it is isomorphic
to [[;_; EndV;) for some non-zero linear spacés i = 1,...,r = rg.
Intrinsically, 74 is the number of simple ideals & /.J(£) (c.f. Prop. 3.8,
[8]) and ), dim(V;) < dim(V) (see (5) ahead). (Irreducibility ok,
which we do not assume, translates¢o= 1.)

In order to obtain suitabl&? : & — [, EndV;), precompose the
isomorphism with the canonical projectiéa — £s/J(E4). The collection
of cocyclic subshift(Xg););2, thus provided by Theorem 1 will be called
the Wedderburn decomposition of Xg. At this point we can record the
following converse of Theorem 1 (c.f. Corollary 7.1 and Question 4 in Sect. 6
of [21]).

Corollary 5.1 (irreducibility) A topologically transitive non-empty
cocyclic subshift is irreducible.

Proof. A union of compact invariant sets is topologically transitive only
if it coincides with one of the sets. Hence, for the Wedderburn spectral

® Think of the union of two full shifts: one ofil, 2} and another one of2, 3}; they share
2°°.
® suggested by the referee
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decomposition ofXs, we haveXs = J,(Xs); = (Xs); for somei, and
the subshiftXs coincides with one of its irreducible components.

Before leaving this section, we digress that the Wedderburn-Artin homo-
morphismgR is not the onlyR satisfying hypothesis (H), butitis tlsgmplest
suchR. Let us illuminate this point and use the opportunity to record a few
useful algebraic facts.

Consider another homomorphism that satisfies (R),: —

H LEndV;). BecauseR(J(£s)) C J(]_[r EndV;)) = 0 (see Prop.
3.1.3in [6]), we have/(Es) C ker(R) From (H), the opposite inclusion
holds so that/(£5) = ker(R). ThusR induces a monomorphism

p: H EndV;) — H EndV;)

7=1

such thatk = p o R, and in this sensg is simplerthanR.

Moreover, the structure of is very transparent: The component ho-
momorphisms;; : EndV;) — End(V;) are either zero or isomorphisms
because End’) is simple for any non-zer® (see Schur's lemma, [6]).
Additionally, if i1 # iz, thenp;,s,; : EndV;,) x EndVi,) — End(V;) has
a non-zero kernel (by counting dimensions). The kernel must be equal to
one of the two ideal® x EndV;,) or EndV;,) x 0, so thatp;, ; = 0 or
pi,j = 0. In this way, for eacly there is a unique with p;; # 0.” One
immediate corollary is that

Zdim(Vi) < Zdim(f/j). 4

Finally, although optimalR may not be best suited for practical calcu-
lations: it is more convenient to deal withderived directly from the given
representation olr’. The linear spac#’, as a right module ovefg, has a
composition series (p. 375 in [8])

0:W,:CW;,1C....CW0:V,

where the quotient®/;,_, /W), have no proper submodules. One can con-
struct a (non-canonical) splitting &f into linear space¥ = @?:1 f/j SO
thatW; = V;@...aV;. Foranymapd € &g, the component ™) : V; — V;

is defined as the composition df with the canonical injection of; and
the canonical projection ontd. The mapR; : A — AU7) is a homo-
morphism. It is either zero or it is onto Efid) becausé/ ~ Wi_1/Wj,

” This essentially proves a standard fact (see [6]) @@tf/] is isomorphic as a module
overés to @, ki Vi; herek; := #{i: ri; # 0}.
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having no proper submodules, is either zero or simple (B\J/@E@)) Since
also AU vanishes fori > j, the homomorphisnk := ], ;.2 .0y B

has a nilpotent kerneR satisfies hypothesis (H).
Moreover, becausg_ ; dim(V;) < dim(V'), inequality (4) yields

Z dim(V;) < dim(V). 5)

Also, on assumption thai;; :# 0, p;; : EndV;) — End(V;) being an
isomorphism implies rar{ki77)) = ranky, (R;(A)) forany A € £ (where

the subscripl/; indicates that the rank is computed in the representation on
V;). It follows that

Z ranky, (R;(A)) < > rank AW7)) < rank(A). (6)

J

We shall need (5) and (6) later in Sects. 7 and 8.

6 Aperiodicity and aperiodic decomposition

The Wedderburn-Artin decomposition can be refined so as to distinguish
within each transitive basic set finer aperiodic (primitive) components that
are cyclicly permuted by the dynamics. A more structured algebraghan
serves this purpose.

Recall (from Sect. 3), that for arlye N, the iteratef! : X¢ — Xg is
naturally conjugate to the power subshift"), which is the cocyclic subshift
Xp0 C (AHN supporting the cocycle

V) = (®,), . u C EndV)™

The corresponding algebra, denotecﬂé@}, is generated by ad, with |o|
divisible by!. Of particular importance ishe tail algebra of ¢ given by

=N ey

leN

Observe that?(oo) Nken S(l’“) for I, := k!, and thls is an intersection

of a descending sequence of linear spacﬁp%oé = 545 for somes € N.
We will write sg for the minimals with this property. Of special interest is

the case wherg = 1, i.e.Eg) = &g foralll € N.
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Definition 6.1 A cocycle® € End V)™ is called aperiodic iff V' # {0}

and its algebra coincides with its tail algebra, thatfig = Eq(;”). A cocycle
& is called primitive iff it is irreducible and aperiodic, that i3” # {0}

and&g = Sg’o) = EndV'). A cocyclic subshift isperiodic iff it can be
represented aX s for some aperiodi@, and it is primitive if such® exists
that is primitive.

Note that fromEgur) C Eguy for k,1 € N, it follows that

e =€) c Epy C Ep, 1EN.

As an immediate consequence we note the following.

Corollary 6.1 (i) If @ is aperiodic (primitive), then so i), [ € N.
(ii) If () is primitive for somé € N, then so isb.

Note that, from (i), if a subshift is primitive cocyclic then its power
subshift is primitive cocyclic. The opposite implication (stronger than (ii)
above) will be proven only in the next section (see Corollary 8.2).

Asin Sect. 5,todecompose anirreducible cocyclic subshiftinto aperiodic

pieces, we use the (surjective) homomorphigh Eéoo) — ]_[j EndW;)
thatinduces the isomorphism@f)/,](%oo)) and[[; End W), for some
non-zero linear spacés;, j = 1, ..., 75’ . Here we should note thd(éq(}”))
# 5§;’°> because PéXy) # 0: giveno™ € PefXg), Pyse € 84(545) =
£5)is non-nilpotent. Again7(£5°)t = 0 for somet € N, and lett?

be the minimal such. M satisfies then the analogue of hypothesis (H) in
Sect. 5,

(HH) the kernelJ of M is nilpotent and the componenis; : SQ(;’O) —
EndW;), W; # {0}, are surjective.

Givenz € AN, the appropriate partial eventual ranks are

q;° () = ILm rank(M;(®(ns,x))), s = sa,

with ¢3°(z) :== >, ¢5°(2).
Any irreducible X is made ofa cyclicly permuted aperiodic cocyclic
subshift, as described by the following result.

Theorem 6.1 (aperiodic decomposition)f & C End V)™ is irreducible,
then there existg € N, ¢ < d := dim(V), such thatXs = XoU ... U
f9=1 X, for someX, C Xg that is invariant underf?, and f¢ : Xo — X,
is naturally conjugate to a cocyclic subshift with a primitive power. In fact,
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if 5 = s, SO thate™ = £, and M : £ — [T}, EndW;) satisfies
hypothesis (HH), theX s is the union of

(Xo)" = {z e AN : () >0}, j=1,...m,

which (acted upon by#) are naturally conjugate to the primitive cocyclic
subshifts of A%)N that are given by the primitive cocycles

D) = M) = (M;(@5))oear C EndWy)™".

The setX, as well as each of its iteratesXy, ..., 91 X, can be found as
one of the(Xq>)§°°)’s; moreoverg < r < d andq dividess.

Remark 6.1As it will become clear later (Corollary 8.257 : Xg — Xj
in the theorem is in fact a primitive cocyclic subshift, even though we show
now only that it has a primitive power. To exemplify the difficulty consider

? = (1) with &, = ((1)(1)> so thatry® = s¢ = 2 andXe = {1} =

(Xo)\™ = (X)) = Xo; primitivity of &> assures only thaf? :
Xo — X is primitive, notf : Xy — Xo.

Proof of Theorem 6.1I. hat(ng)S.oo) arises frombg."o) is a tautology. We first
show thaaﬁg."o) is primitive. Sincel/; is a homomorphism, we haﬁg@o) =
J
M;(EY). But My(Ey)) = M;(ES) = EndW;), which makesp!™
irreducible. Moreover, not only (o) = Mj(Eg)), but for the same reason
J

54(_)?00) = Mj(Sq(;l)), for all [ € N. By the definition ofs, the right-hand
sides of the two last equalities coincide&qg})oo) = Eg00); consequently,
j J

5;& = 5¢(_oo> = End W) andqbgoo) is primitive.
j J

Next, we argue thakg = U;T:l(qu)goo). (Thatr < d follows from (5)
in Sect. 5.) Periodic orbits are denseXip (Theorem 1), so it suffices to
show thatr € PeX¢) andg¢$°(x) = 0 implies a contradiction. Represent

thenz asxz = o> with |o| divisible by s. Sinceq®(z) = 0, we have
M;(®,~) = 0for someN and allj. Thus®,~ € ker(M) = J(Sq(fo)) and
D ne € J(Eéoo))t =0, t = t3°, which contradicty € Xg.

To finish the argument we will show that, upon reordering of the

(X¢)§°°)’s, we haveXy = Ulgqu(qu)g.oo), where (ng)g.‘fl) modg =

f(qu);O;)odq forj =1,...,qand some < r. Note that, for anyj, there isi

such thay“(qu)goo) C (qu)l(oo); indeed, take with its orbit underf* dense
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in (Xq;.)g.‘”), fz e (X¢)§°°) determines the suitableOf all the(X¢)§.°°)’s

let (X¢)§°°>, e (Xq;)ffo) be these maximal with respect to inclusion (after

renumbering perhaps) so that sfill; = U1<j<F(X¢)§'OO)' Theser sets are
permuted byf (because fixes them) and the permutation decomposes into

cycles of the forn”(Xq;)g.fo) — (X¢)§.j°) — = (X¢)§.Z°) — (X¢)§.f°),

whereq < r, ¢ dividess, and all the maps are onto (by the maximality).
The union of the(qu)g.OO)’s along such a cycle is a compact invariant sub-
set of Xg. Being transitive,X¢ must coincide with one such union, and

Xo = (Xgp)g.fo) satisfies then the conditions of the theorém.

o)

As in Theorem 5.1, the family of primitive piecqus); may be very
redundant, with some of them intersecting or even coinciding. Partly to
blame is the fact that we do noptimize® for the given cocyclic subshift;
however, disjointness of the primitive pieces is precluded by the very nature
of the dynamics onXs — it breaks down already for sofic systém©f
course all these problems vanish if one is willing to take finite-to-one factors.

7 Specification and intrinsic ergodicity

Our goal now is to see that primitivity of a cocyclic subshift is equivalent
to its topological mixing, or to a stronger property of specification. Intrin-
sic ergodicity of topologically transitive cocyclic subshifts is one notable
corollary.

Recall that a subshitX is topologically mixing iff, given two blocks
o1 andos that occur inX, there isng so thatn > ng implies thato1nos
occurs inX for somen with |n| = n. The specification property requires
furthermore thathe gap length is uniform: X hasspecification if there
is ng such that, given two occurring blocks ando, andn > ng, o1nos
occurs inX for somen with || = n. This can be seen ([2]) as an equivalent
formulation of the following Bowen’s condition on existenspécificatiof
of periodic orbits (c.f. Def. 21.1 in [5]):

(S) forsomeny € N, given a finite sequence of occurring bloeks ..., oy
and numbers; > ng, ¢ = 1,...,k, there are connecting blocks,
|ni| = 1;, such thato1moame...0kmE ) € Pel(Xg)

We postpone the proof of the following well known fact.

Fact 7.1 For a subshiftX c AN, if its power subshiftfx () ¢ (A°)N has
specification for some € N, then X has specification.

8 Consider a graph with two vertices b and edgesb labeled 0,ab labeled 1 anda
labeled 1. The sequences starting with even number of 1's form a primitive piece which
shared * with its image undey.
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Theorem 7.1 (specification)A primitive cocyclic subshift has specifica-
tion.

Specification guarantees for a subshift good statistical properties, partic-
ularly intrinsic ergodicity : by the theorem due to Bowen (Th. 22.15 in [5]),
(S) implies existence of a unique probability meaguoé maximal entropy.

If X is not primitive but merely transitive the maximal entropy measure
still exists; it is the average of the measures on the primitive components
Xo, ..., f71 X, provided by Theorem 6.1. Thus we can note the following
important corollary.

Corollary 7.1 A transitive cocyclic subshift is intrinsically ergodic.

A construction of the maximal measure via an approptiaiesfer operator
can be found in [11].

Proof of Theorem 7.1Let X = X C AN for a primitive cocycled ¢
End(V)™. The argument is similar to that for density of periodic points in
the proof of Theorem 4.1. Let

qo := min{rank(®,) : o is an allowed block, i.eb, # 0},

and letn be a fixed block with ranl®,) = ¢o. SetVy := im(&,,). The role
of minimality of ¢¢ is embodied by the following implication: vf is a block
with &, # 0, then rank®,,,) = qo andV,®,,, = V4. By irreducibility
suchv exists (Lemma 4.1); choose one and-set v, ¢ := |v].

In view of Fact 7.1, it suffices to prove specification f&if®). List all
blocks occurring inX with length divisible by:: 01, 09, ... . Foreaclk € N,
due toirreducibility ofX 5., (from Corollary 5.1), one can use Lemma4.1to
find blocksay, and 3, such thatb,, 5, 5,4 # 0 anddc > |ag], |Bk| € cN.
As anticipated, the minimality of, assures that®,, = Vo for py, =
aoBry, as well asly®, = Vy. For any two blocksr;, ando;, and for
I =0, we havely®,, i, = Vo sO thatoy, 87! a0 occurs inX. In this
way, we can conneety, with o; with anygap lengthn exceedin@dc + c.
Hence, X (9) has specification and so do&sby Fact 7.10

Even though cocyclic subshifts are generally not uniformly hyperbolic,
let us observe thditorseshoeare still the mechanism responsible for gener-
ating all of the topological entropy (which is reminiscent of Katok’s theorem
for C1*e-diffeomorphisms of surfaces [9]). This hinges on the existence of
asynchronizingvord, as they in the proof of Theorem 7.1 above.

Theorem 7.2 (horseshoesypuppose thaiXg is a cocyclic subshift. For
anye > 0, there existV,n € N such thatN > exp(n(h(f) — €)) and
/" X¢ — X4 has an embedded ful-shift; namely{ w4, piis ... z'j €
{1,...,N}, j € N} C X4 for some pairwise different blocks:; } Y, of
Iengthn
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Proof. It suffices to argue in the primitive case since the full entropy must
be carried on one of the mixing piecex¢)§°°) provided by Theorem 6.1.
Assume then that, ¢ = ||, is a (synchronizing) block as in the beginning
of proof of Theorem 7.1. From the definition of topological entropy (via
separated sets, see [5]) conclude that, for arbitrarily lagge cIN, there
areN > exp(no(h(f)—e€/2)) different blocksr, ..., on Of lengthng with

b, #0,i=1,...,N. Setl = 2dc + c. As before we can get blocks of

the formyu; := oo 8%, d; € N, such thatp,®,, = Vo and|y;| are all
equal ton := ng + (. These blocks can be freely concatenated: & AY

is concatenated from elements of the §et};cn, thenVy®, # 0 so that

x € Xg. Sincel is independent ofiy, we haveN > exp(n(h(f) — €))
providedny is large enough]

We append the proof of Fact 7.1 for completeness.

Proof of Fact 7.1The blocks occurring itk () correspond to the blocks of
X with length divisible bye. Thus specification foX (©) means that there
islp € N such that ifo; andos with ¢ dividing |o;|, @ = 1,2 occur inX
andl > ly, thenoinoy occurs inX for somen with |n| = lc.

Suppose that > [yc andp; andus occur inX . Write n = lc + r with
[ > 0and0 < r < c. There are blocks;, €2, ando with |§| = r, such that
o1 = e pu10 andog := ugeg occur inX andc divides|o;|, i = 1,2. (To
find €1, usef(X) = X — which follows from transitivity.)

Now, o1noy = €1 u1dnuze2 oceurs inX for somen with || = ic by
specification forX (¢), Thusp,yue occurs inX, for v = én and|y| = n. O

8 Primitivity from mixing, and irreducibility from transitivity

A primitive cocyclic subshift is mixing by Theorem 7.1. We set out to show
the opposite implication, which complements the already proven fact that a
transitive cocyclic subshift is irreducible (Corollary 5.1). In fact, we shall
see that, under suitable assumptions on a cocycle, transitivity and mixing of
a cocyclic subshift force, correspondingly, irreducibility and primitivity of
the cocycle.

It is instrumental to consider together with a cocy@le End V)™ its
exterior powersp"" = (9/")™, € EndV/")™, whereV"" is the linear
space of antisymmetric tensors of degrem 1V and®/"" is the map induced
on tensors byp;, i = 1,...,m. Since, forA € EndV), rank A) > r iff
rank A"") > 1, X stratifies into

Xgnr = {x € Xg : rank Py, ) > r, forall n € N},
r=1,...,dim(V).
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In particular, ifrq is the minimal rank of @, by definition equal to
ro = minrank(®) := min{rank®,) : &, # 0},

then
X@ == X@/\ro

and the minimal rank of"\"0 equalsl.

Proposition 8.1 (rankreduction)If X isacocyclic subshift, thell = Xy
for some¥ of minimal rank 1. Moreover, ifX is irreducible, then sucly
exists that is irreducible.

Proof. The first assertion follows by passing to t}*{é exterior power, as
explained above. For the moreover part, we may already assume then that
X = Xg for @ with minimal rankl. By Theorem 4.1 X is topologically
transitive. In the Wedderburn-Artin decomposition’df given by Theorem

5.1, X is equal then to some (every) basic §éi;); (c.f. the proof of
Corollary 5.1). Since, rank(R;(A)) < rank,(A) forany A € &5 (by (6)

in Sect. 5), the minimal rank aR;(2¢) does not exceed that df — so it
equals 1, and = R;(P) is the desired cocyclé]

Here is one advantage of reducing the minimal rank to one:

Theorem 8.1 If & € End V)™ is such thats has no radical, i.e/(Eg) =
{0}, and® has minimal rank 1, then

(i) iIf Xg is transitive, ther? is irreducible;

(iN) if Xg is mixing, then? is primitive.

We should note that(€4) = {0} for any irreducibleb. In fact,J (£¢) =
{0} means thats is semisimple so thap is a direct sum of irreducible
cocycles.

Corollary 8.1 (primitivity) A non-empty mixing cocyclic subshift is prim-
itive.

Proof of Corollary 8.1.1f X is a mixing cocyclic subshift, then it is tran-
sitive and so it is irreducible by Corollary 5.1. The cocy@lerovided by

Proposition 8.1 satisfies then the hypothesis of Theorem 8.1 afdssihe
desired primitive cocycle witlkk = Xy. O

Since mixing is preserved under taking roots, Proposition 3.1 and Corol-
lary 8.1 yield the following corollary, which shows that ultimately thig
in Theorem 6.1 is primitive (c.f. Remark 6.1).

Corollary 8.2 If X is a subshift and its poweX () is a primitive cocyclic
subshift for someé € N, then X is also a primitive cocyclic subshift.
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Proof of Theorem 8.1.

(): As in the proof of Corollary 5.1 or Proposition 8. X4 coincides with
its every irreducible componenXs = (Xg)i, ¢ = 1,...,7¢. Since the
inequality (6) in Sect. 5 implies that

re
> minrank(R;(®)) < minrank®),
=1

we must haves = 1, which means thafs = £5/J(Es) = EndV;) for
1 =1=rg,i.e.®isirreducible.
(ii): First note that itX 4 is mixing then itis topologically transitive under any
power of f, which makesX4 equal toX, in the aperiodic decomposition
given by Theorem 6.1. ThuXs has a primitive power, and s&s has
specification by Theorem 7.1 and Fact 7.1.

By the already proven (i} is irreducible. We have to show thétis
primitive, i.e. thatgg) = EndV) for all [ € N, which is equivalent to

u5g> = V for any non-zer@ € V (c.f. the beginning of Sect. 4). Fix then
v € V'\ {0} and consider the subspaces

WO = lin{v®, : rank®,) = 1, I divides|o|} c vEY, 1€ N.

We note thativ (’s are invariant,W(l)Eg) c WW: and we claim that
WO =V, € N.Forl = 1, & = EndV) from irreducibility, and
W = V py the invariance becaus& ") +# {0}. Forl > 1 we show
that W = W), Fix a blocke with rank®,) = 1 and suppose that
u = vP, # 0. Specification supplies a bloeksuch thaw,,, # 0 and!
divides|ono|. Hencev®,,, = u®,, = c - u for some non-zero scalar
which proves that, € W), By arbitrariness of, W) = W) = V; and
vEW =V follows. O

9 Zeta function and the zero entropy case

Sections 5 and 6 give the following picture of a general cocyclic subshift.

Corollary 9.1 For ¢ € End V)™, the non-transient s€tXs) of the co-
cyclic subshiftXs is a union of at mosdim (V') sets, each invariant under
some positive iterate of the shift map and conjugate to a primitive cocyclic
subshift.

The proof amounts to superimposing Theorem 6.1 onto Theorem 5.1:
by recognizing the simple components of the algelyapass to a number
of irreducible cocycles, and then further split each of these into primitive
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cocycles according to the simple components of its tail algebra. The total
dimension of the representation spaces for all the cocycles involved in each
step does not exceell= dim(V) (c.f. (5) in Sect. 5) — thus the estimate.

A primitive cocyclic subshift satisfies specification (Theorem 7.1) and
S0 it has positive topological entropy unless it is just one point (Prop. 21.6
in [5]). This yields the following complement to Theorem 7.2.

Corollary 9.2 (zero entropy) A non-empty cocyclic subshikis has zero
topological entropy iff its primitive pieces are single points; that is when the
non-transient set consists of at mdsin (1) periodic points.

Sharpness of the estimate is confirmed by a trivial example.

Example. TakeV with a basigey, ..., ¢4) and rank-on&; : V' — V with
e; — e;r1 (Modd),i = 1, ...,d. Then PefXy) is readily seen to be a single

periodic orbit of periodi. (Also & = End(V'), while Sq(fo) ~ C?)

In applying the Conley index methods to proving chaos ([15, 20, 18, 3]),
the issue of recognizing wheth&l; has positive entropy becomes particu-
larly important because then a power6§ (by Theorem 7.2) factors onto
the full two-shiff, and so does the original dynamical system by the alge-
braic topology of the Conley index (see [3]). In view of our structure theory,
the problem is completely resolved through inspection of the semisimple

algebrasty/.J (£5) andeS™ /7 (E5).

Corollary 9.3 A cocyclic subshiftf : X — Xg is chaotic, i.e.f has
positive entropy ang* continuously factors for someonto the full two-
shift iff X has a primitive component that is not a point.

Proof. If all primitive components are points then we are in the situation of
Corollary 9.2 and the entropy is zero which precludes existence of the factor
map. If one of the primitive components is not a point then specification
implies positive entropy, and the factor map exists via TheoreniV.2.

With some additional work, Corollary 9.3 leads to efficient numerical
algorithms. Without slowing down to discuss the details (relegated to the
appendix), we turn to a sufficient condition for chaoXigreadily verifiable
by inspectingb. The way leads through a certaeta functionan approach
that we developed for the proof of a conjecture due to K. Mischaikow and
M. Mrozek. In our language, the conjecture reads:

° i.e. acontinuoug : X — {1,2}" exists such thatt o f* = f» o h for somek € N,

wheref, is the shift map o1, 2}
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For some power of a cocyclic subshiis to factor onto the full shift
{0,1}N, it suffices that either of the two hypotheses below is satisfied

iranl@o(@) > rank® (Zm: 4152-> ,
i=1 i=1
Em: rank*(®;) = rank® (f: qﬁi> -1,
=1 i=1

whererank™(A) := lim,,_,o rank(A™).

Based on a different approach, special cases were established by A.
Szymczak who, arguing under the first hypothesis only, requiredthat2,
rank*(®g) = 1, and rank°(®q + 1) = 0 ([20]). In a subsequent refine-
ment, M. Carbinatto allowed for raff(®,) > 1 (private communication).
Observe that, in view of Theorem 7.2, the conjecture addresses exactly the
problem of verifying positive topological entropy of.

With a periodic orbitP C Pel( X¢) associate a rational function

Cp(z) :==det(I — Zp(x)@[x]p(m))il, z € C,

wherex € P andp(x) isthe period (and recall that],, ) = (21, ..., Zp(x)))-
This is the restriction to the diagonal @ of a more naturaP function

Cp(21y ey 2m) 1= det(] — zfl(m) Ce zﬁ{”(x)ém )Y 21, 2m € C,

p(z)

wherex € P andp;(x) is the number of timesoccurs in the blockz],,
so thatp; (z) + ... + pm(z) = p(z). Note that, the definitions do not depend
onx € P becauselet(I — AB) = det(I — BA) for any matrices4, B.
Also, we include the exponentl to stress the analogy with the classical
zeta function — although working with polynomials, not their reciprocals,
is usually more convenient.

The arrangement of the periodic orbitsXig is to some extent governed
by an explicit function

Co(21y s 2m) 1= det(I — 2Py — ... — 2y ®Pp) L.
Theorem 9.1 (zeta function)For a cocyclic subshifs  {1,...,m}N,
Cq>(z1,...,zm) = H Cp(zl,...,zm) (7)
PCPel(Xg)

where the product is taken over all periodic orbffsand converges abso-
lutely for (z1, ..., z,,) in a neighborhood of the origin i€

10 reflecting the fact that the projective action of the cocycle solely determines its supporting

subshift.
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Proof of Theorem 9.1IThis is a version of the standard zeta function trick.
We carry out only the formal calculation leaving the convergence as a simple
exercise. Also, no generality is lost in assuming that 1. For anyA €
EndV),

itrace{Ak)z’“ /k = —Indet(I — zA). (8)
k=1

Hence,

i Z trac€d,, ..., ) /n = itrace{(% + ..+ D)) /n,

n=1oeA" n=1

which isIn(the left side of (7). On the other hand, the above sum can be
calculated over periodic points to give

> Ztrace(@m . )) /(kp(z))

mEPer(qu k 1

= > %itrace( b u))/’

vePe(Xa) ¥

which isIn(the right side of (7). O

Proof of the conjectur@bserve that rarik (A) is the degree afet(I —z A)

as a polynomial it forany A € End(V'). Due to Theorem 7.2, it suffices to
prove non-vanishing of topological entropy &fy. Suppose the entropy is
zero. By Corollary 9.2, P€X ) is finite and the reciprocals of both sides in
the formula(7) are polynomialsin = z; = ... = z,,. Each fixed point =

i*°, 1 = 1,...,m, contributes to the product the characteristic polynomial
det(1 — 2®;), which implies tha) _, rank*(®;) < rank*(®; + ... + &,,)

and contradicts the first hypothesis. If the inequality above is strict, this is
due to somer € Pel(X4) with the periodp(xz) > 1. The periodic orbit

P of z contributes a polynomial factaﬁr;l of degree at leasi(z). Thus

the discrepancy between the two sides must be at least two; the second
hypothesis is contradictedl

10 Sofic and non-sofic cocyclic subshifts

As indicated in the introduction, cocyclic subshifts include sofic systems.
This can be seen in at least two ways: algebraic (Theorem 10.1) and graph
theoretic (Theorem 10.2). The main purpose of this section is to point out
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that the inclusion is proper and to give a concrete example of an interesting
cocyclic subshift.

Recall that asofic system, as introduced to ergodic theory by [21], is a
subshift Xg of the full shift on AN, A = {1,...,m}, whereg is a finite
semigroup with a fixed set of generatdig, ..., g, } and(z;)°, € Xg iff
9zq----9z, 7 0 for all n € N. Sofic systems and their applications have a
considerable amount of literature devoted to them — consult [4,10,12] and
the references therein (see also Sect. 12).

Theorem 10.1 (i) Every sofic system is a cocyclic subshift.
(i) There exists a cocyclic subshift that is not sofic.

A simple sufficient condition foX¢ to be sofic is positivity of the cocycle.

Theorem 10.2 If & = (®;);c4 Whered;’s are represented by matrices with
non-negative entries, thelis is a sofic system. Any sofic system arises in
this way.

We will prove Theorem 10.1 now and Theorem 10.2 in the next section.

Proof of Theorem 10.1, part (i'his amounts to the standard task of rep-
resentingg by linear transformations. Append the unitydaf necessary
to get a semigroup with unitg. Take for the linear spadé the semigroup
algebraoy,V := @geg” C, and associate to eatl A the linear transfor-
mation®; induced onV" by the right multiplication byy;. If & = (®;);c4,
then®,, . 2, =0iff gz,...9., =0 —asaresulXy = Xg. O

For a proof of (ii) consider the following example.

Example (of a cocyclic subshift that is not sofic).
Take two copied/; andV; of R? and linear map#;; : V; — V; given by
the matrices (acting on the right)

20 1 1 10 13
P11 = <01> Do = (_1 _1) Doy = <01>‘P22= <01>-

LetV := V] @ V5. Setd; : v1 @ vy — v1P11 ® v1P12 anddy : v B vg —
vaPo1 @ vaPoo. Taked := (P1,P,y). By definition, (x1, x2,...) € Xg iff
by, ..., V. — Vis not vanishing for allh € N. Observe that this is
equivalent to®,, 4, .. 94, 1z, : Vay — Va, being nonzero for ath € N,
which is why the block representation éf and®- is so convenient, and
why we can abuse notation by writidg,, .. for @, .,.. P4, 4.

To determine the sequencesi@&and2’s forming X g, we will look then
at the projective action i;, ¢ = 1, 2. The diagram on Fig. 1 conveniently
encodes all the relevant data (c.f. Sect. 12).

Note that all thep;;'s are nondegenerate matrices with the exception of
®12, which has the linéV of slopes = 1, W := {(z,y) € R?: = =y},
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s»—>{1’ if s#1,

*, if s =1

s> s/2

(21) e

— 1
SH=S
-———-=> 9

Fig.1 Graphwith propagation of a nonsofic cocyclic subshift. A path inthe graph determines
a sequence of 1's and 2's, which isiy iff the corresponding product of matrices over the
edges is non-zero (equivalentlydoes not get mapped 9.

for both its kernel and its image. The action®f; and®,, on the slope
s := y/x is given byoi1(s) = s/2 andge2(s) = s + 3 respectively. For
Donym, itis gonym(s) = (s +3(n—1))/20"=D m, n € N. Hence, we have
Dionimg = 0, if

14+3(n—1)=2m"1 (9)

and otherwisep,on1ma(s) = 1 for all slopess. It follows that, fora =
grijmignzimz @, does not vanish iffit + 3(n; — 1) # 2™, i =

2,3, 4.... Note that no restrictions are put anandmy, as the slope did not
stabilize tos = 1 at the outset. Accounting for the sequences terminating
with 1°° or 2*° and those starting witlh leads to the following formula for
Xo:

Xp = {2m1™2"21™2 : my n; € NU{0,00}, and
m;,n; € N U{oo}, with
1+3(n; —1)#£2m ori =2,34,..}.

As aside remark, let us indicate thés is primitive. A simple calculation
with Mathematicaconfirmed that the linear span 6P, : |o| = 4} is the
whole EndV); in particular, it contains the identity so that Eft) =

gq(;*) — |dl/4—15q(54) C Sg) forall [ € 4N. Hence&y = é‘éoo) = EndV).

Proof of Theorem 10.1, (iif-or a blocks, the set ofv for which ow occurs

in somex € Xg is calledthe follower set of 0. To see thatXg (from

the example) is not a sofic system, it is enough to establish that there are
infinitely many different follower sets (see [21] or page 252 in [5]). To this
end, let(my, n) for k € N be different solutions to (9), sayy := 2k + 1
andny, := (22 + 2)/3. The block1™2> is a follower of 127 iff k # I.

Thus the follower sets af2™, 12”2, ... are different from each othen
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11 Factors of cocyclic subshifts and beyond

We turn our attention briefly to factor subshifts of cocyclic subshifts and
show that they do not exhaust the whole class of subshifts with specification.
(In particular, a subshifts with specification need not be cocyclic.)

Recall that, given a cocyclic subshifty C AN a maph : X¢ — AN
is afactor map ifitis continuous andh o f = f o h with f equal to the shift
on AN, The subshiftr := h(Xg) is referred to ashe factor of X (via
h). For example, if one identifies symbols via a surjective hapd — A,
thenh : (z;) — (A(x;)) is a factor map. Actually, as observed already by
Hedlund (see [5]), any factor maphas this form provided one is willing to
replaceX with its (conjugate)-block presentatiotXs!"! for somer € N
(see Sect. 3 for definitions).

For convenient algebraization of factors of cocyclic subshifts, we aban-
don EndV') in favor of a new larger semigroup made of all linear subspaces
in EndV).

Definition 11.1 For alinear spacé/, the semigroup of linear subspaces of
End(V), which we also calthe subspace semigroup' of End(V), is

End(V) :={W C EndV) : W is alinear subspage
with the product of# and W e End(V) defined as
W-W:=Iin{AA: AecW, Ac W}

It is easy to see thd&nd(V') is indeed a semigroup with the zero subspace
{0} serving as the zero element denoted)bifhus given) € End(V)™
we have the corresponding cocycle and the supporting subshift is

XVZ:{H?GAN: Vzl'---'v$n7é07 VnEN}CAN.

Proposition 11.1 (factor) A subshifty’ ¢ AN is a factor of a cocyclic
subshift iff there is a finite dimensional linear spa¢eandV € End(V)™
such thatt” = Xy,.

Proof. Suppose thak = X4 ¢ AN, & € End V)™, is a cocyclic subshift
andY = h(X) c AN is its factor viah. We may assume thatis given by
a symbol identification\ : A — A since we can always replagé with its
r-block presentation for some e N, which is also cocyclic by Theorem
3.1. SettingV; := lin{®; : i € A\71(j)}, j € A, easily yieldsy = Xy,

For the opposite implication, given € End(V)™, select a basis in each
Vj, sothaty; = lin{®; : i € I;} where®; € End V') andl;’s are disjoint
index sets;j = 1,... ,m. ThenX)y, is a factor of a cocyclic subshifXy
with @ = (@i)ieujlj .0

11 This name has been coined in [16].
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Proposition 11.1 reveals little. Confronted with the exditd(1), we
are left eluded by the obvious problem:

Question 1: Are factors of cocyclic subshifts cocyclic?
From an algebraic standpoint, one may rather ask a weaker question.

Question 2: Can any finitely generated sub-semigradpcC End(V') be
realized as a matrix semigroup? Precisely, is there a finite-dimensional linear
spaceV’ and a homomorphism : G — End(V’) such thatp~1(0) = 0?

Such representationdoes not exist fo& = End(V') as pointed out in
[16] — aworksparked by our inquiry about the naturesfd(17). Question
1 aside, the theory of cocyclic subshifts sheds some light on their factors.
We mention only one such easy corollary without proof.

Corollary 11.1 Suppose thaY is a factor of a cocyclic subshift.
() If Y is topologically transitive, thei” is intrinsically ergodic.
(i) If Y is mixing, then” has specification.

To exhibit examples of subshifts that are not cocyclic, one can use the
following result in the spirit othe pumping lemmaee [12].

Theorem 11.1 (pumping)lf a subshiftX is a factor of a cocyclic subshift,
then there exists; € N such that, for any finite blocks, o, and an infinite
block 3, sup{n € N : ac” € X} is either infinite or less than,.

The context free shift over the alphabet {0, 1,2} is defined by disal-
lowing the block9)1™2"0 wherem # n € N. This is a standard example
of a subshift that is not sofic but has specification (see [12]).

Corollary 11.2 (non-cocyclic specification)lhe context free shift is not a
factor of a cocyclic subshift.

Proof of Corollary 11.2.0therwise takeny as in Theorem 11.1 and fix
m > ng. The sequenc@1™2™0> is disallowed for alln > m so, by
Theorem 11.1, it is disallowed for all > no and thus forn = m — a
contradictionD

Theorem 11.1 depends on the following fact.
Fact 11.1 Suppose tha? € End(V). If n > ng := dim(V)?, theny™ C
lin{V*: k > ny} for anyn; € N.
Proof.In End V') we have a descending sequence of linear spAdgs=
lin U{V*¥: k >n} € End(V), n € N. There is them, < dim(End(V))
= dim(V)? such thatM,,, = M,,, 1. SinceM,, .1 = M, -V, n € N,
we haveM,,,  r = M, V¥ = M,,, forallk € N, and the fact follows:

Proof of Theorem 11.1By Proposition 11.1.X = X, for someV €
End(V)™. Considerthe kernel of V3, that isKz := {A € EndV) :
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AVig, = 0, In € N}, (WhereAVig, = {AW : W € Vg, }). Clearly,
ac™B ¢ X ifand only if V, V' C Kg. If the supremum in the theorem is
finite and equal ta; then the inclusion holds for al > n;, and Fact 11.1
(with V = V,)) guarantees the inclusion for all> ng := dim(V)2. Thus
ny < ng.d

We see fromthe proofthat, X is presented iiknd(V), then one can take
no = dim(V)? in Theorem 11.1. IfX is cocyclic, alreadyry = dim(V)
suffices by the following remark.

Remark 11.1In the cocyclic case, i.e. W = lin(L) for someL € End V),
the assertion of Fact 11.1 holds fe§ = dim(V), i.e. L™ € lin{L* : k >
ni} forn > ng and anyn; € N.

Proof. It suffices to considen; > n > dim(V). SetV := im™®(L) :=
Nken IM(LF). From the Jordan theorem, far > dim(V), rank L") =
rank® (L) := limy_,o, rank( L*), andL := L‘im""(L) is a self isomorphism

of V. In order thatL” € lin{L* : k > n,}, itis enough thal,” € W :=
lin{L¥ : k >mn;} c EndV) because all mapE* for k > ng agree with
L™ precomposed with the projection alohkgr™(L) := Upen ker(LF)
ontoV'. CIearIy,WL C W (mind that the endomorphisms act on the right).
However, sincel is an |somorph|smWL W, andW = WL~!. Thus
Ln LnLn1 nL (n1—n) EW O

12 Graphs with propagation

Another way to cast cocyclic subshifts and their factors is by generalizing
the graph theoretic description of sofic systems. We value this approach as
it makes working with concrete examples so much more pleasurable.

Think of the elements of the alphabét= {1, ..., m} as encoding colors.
Supposda is a directed graph with colored edgdéis the set of vertices,

E is the set of edges, and the colors are assigned to the edge&by: A.

A sequence of edgdsg;) is a path inG iff e = e; .1, Wheree™ ande™
stand for the head and the tail of the edgeespectively. Each finite path

a = (e, ..., e,) determines a block = (I(e1), ...,l(e,)); we say that is

the coloring of a. The sofic system of the labeled directed grap@ is the
subshift defined by allowing only the blocks that are colorings of some path,
thatisXq := {(I(e;))ien : (ei)ien apathinG} c AN, All sofic systems
arise in this way and this characterization was introduced in [7].

For an analogous description of cocyclic subshifts, one needs multi-
plicative matrix weights along the edges@f More precisely, by @olored
graph G with propagation I' we understand a colored directed gragh
(as above) that has each veriex V equipped with a linear spadg and
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each edge <€ E equipped with a linear transformatidny : V,- — V_+;
I' = (I;)cck- Denote the paitG, I') by P. For a pathu = (eq, ..., e,),
write [, := I%,...I, and say that propagatesiff I, # 0. By definition, a
finite block of colorss = (07, ..., 0y,) is allowed iff it is a coloring of some
propagating path; an infinite block is allowed if its every finite sub-block
is allowed.

We claim that the set of all infinite allowed blocksp := {(I(e;))ien :
(e;)ien allowed path inP}, is a factor of a cocyclic subshift. To see that,
setV = @,y Vo. Let P, : V — V, andJ, : V, — V be the canonical
projection and injection, respectively; and plgt .= P,-I..J,.+ for each
edgee (where as usual we compose linear maps on the right). The cocyclic
subshiftXy c EN for ¥ := (¥,).cg factors ontoXp under the symbol
identification given by the coloringof G. In fact, every factor of a cocyclic
subshift can be obtained &% for someP.

It is an open problem (see Question 1 in Sect. 11) wkignis actually
cocyclic. We mention only a simple sufficient condition. A colored graph
G is right (left) resolving, if no two edges with tails (heads) at the same
vertex have the same color, i.ecif = é~ andi(e) = [(€) thene = é for
anye,é € E(G). A colored graph with propagatioR = (G, I') is right
(left) resolving iff G is right (left) resolving. The right and left resolving are
dual notions, where the duBf* of P is obtained by inverting all edges and
replacingl.’s with their adjointsl’s. (Note that reading an allowed block
of P* in the reverse order gives an allowed blockRyfand vice versa.)

Proposition 12.1 If P = (G, I') is right (left) resolving, thenXp is a
cocyclic subshift.

Proof. SetV := @,y Vo. To define a cocycle € End V)™, setzd; =

Y ecE: e-—p tle forv € V andz € V, (naturally embedded i), i =
1,...,m. In the right resolving caseXp = Xg follows from the fact
thatz®; = xI, wheree is the (only) vertex colored with e~ = v, or

x®; = 0 if such an edge does not exist. In the left resolving case, that
Xp = Xg is best seen via duality: the adjoint operatokitpis given by

TP =) g oty 2} foranyz* € V. By left resolving, the sum has

at most one non-zero term, and one can argue as in the right resolving case.
a

We should stress that any cocyclic subsiifs ¢ AN arises trivially
from a graph with only one vertex and a loop for eah: € A. Never-
theless, by choosing a more complicated graph one can gain better insight
into the structure of the subshift. The diagram in Sect. 10 may serve as an
example. Also, note that the sofic systéfiz; may be cast as a cocyclic
subshift by associating with each vertex@fa copy of R and with ev-
ery edge the identitiR. — R. However, even for an irreducible aperiodic
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topological Markov chain, the resulting cocyclic subshift may fail to be ir-
reducible. As an example one can take the Markov chain associated with
the edge graph of the full graph over two vertices — the edges, all with
different colors, are(1,1), (1,2), (2,3), (2,4), (3,3), (3,4), (4,1), (4,2).
The subshift is conjugate to the full two-shift, b€ # EndV). In fact,
a straightforward calculation (with the aid of Mathematica) confirmed that
Ep is of co-dimension 8 in End’).

Finally, we turn to the proof of Theorem 10.2.

Proof of Theorem 10.Eirst we show thaX s is a sofic system for positive
by producing a colored gragh for which X¢ = X . Let®; be represented

bya matrix(agl))g’l:1 with non-negative entries. TaKe, ..., d} for vertices.

For eacrpositivea,(ﬁ?, k,l=1,...,d,i € A, span an edge of colarfrom

k to [ with the weightA; = ag} over it. The positivity of weights over
all edges guarantees thatifis a coloring of a path thes is allowed and

&, # 0. Since the opposite implication always holds, it follows that indeed
X = Xg.

For the second assertion of the theorem, invert the above construction
to obtain from a colored graph (with weights defaultedljoa suitable
positive cocycle. For a fixed colaythe corresponding matrig; is just the
incidence matrix of the graph obtained fraghby removing all the edges
of color different than. O

A Implementing chaos detection

Section 9 spells out sharp criteria for chaosXp but ignores the issues
of numerical implementation. Short of writing the actual code, we sketch
here possible algorithms based on the dichotoRyis either chaotic with
positive entropy and has the full two-shift as a factor (of some power), or
Xg has a zero entropy with all non-transient dynamics limited to at most
d := dim(V") periodic orbits. The proposed algorithms can be integrated
with Szymczak’s Conley index methods for efficient chaos detection in the
spirit of [3].

To start with the simplest case of irreducildlec End(V)™, whether
Xg is chaotic can be decided simply by testingXi§ is a single periodic
orbit of periodp < d := dim(V"). Roughly, one can do the following:
Recursively construct set$, := {o : o allowed ando| = k} starting
with k = 1. If #B;, > d for somek, then Xy is chaotic — stop; otherwise,
continue to geB3;. Now, seb := #B, (the potential period), and see if all
initial p-segments of blocks i, coincide up to a cyclic permutation. If it
is not so, thenX is chaotic; otherwiseXs has zero entropy (and we have
found the only periodic orbit that constitutéss).
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The case of a gener@l € End V)™, in principle, reduces to irreducible
cases via the spectral decomposition. Yet this involves solving for eigenvec-
tors ofd x d matrices, which seldom can be done exactly — so we follow
a more direct path.

To fix notation, for a blockr, let us callp € N aperiod of o iff, for some
blocka with |a| = p, o is aninitial sub-block 0&*°, i.ec = (a5°, ..., afg").

For the minimal such period we writgo). Clearly,p(c) < |o|; and note
the usual uniqueness property yffr) : if o = o! with |a| = p(o) and
o = (%, thens = o™ for somem.

Theorem A.1 (chaos detectionfor & € End V)™, d := dim(V), X¢
has zero entropy iff any non-transient allowed bleckf lengthd? + 1 has
minimal periodp(c) < d. Moreover, then there are at massuch blocks.

Recall from Sect. 5 that is called non-transient ii®, ¢ J whereJ
is the Jacobson radical of Efid). This, in fact, can be decided without
determining/ and at a modest cost af multiplications in the subspace
semigroupend(V') (c.f. Definition 11.1):

Fact A.1 Ablocke is non-transientifive = 0forW := &,E¢ € End(V).
Before we give proofs, let us note that Theorem A.1 (coupled with Fact A.1)
can be implemented as a finite calculation:

Compute recursively := {o : o allowed and non-transientg| = k}
starting withk = 1; weed out transient blocks at each stage via Fact A.1.
If #B, > d for somek, then Xy is chaotic — stop; otherwise, continue to
getB,2, . Finally, check whethep(o) < d for eacho € B2, . If yes, Xg

has zero entropy; if notXs is chaotic.

The algorithm would require a polynomial @ number of matrix multi-
plications; however, exact arithmetic of evaluatihgmay bare exponential
cost even for integer cocycles. That the algorithm is correct we again leave
to the reader.

Proof of Fact A.1If ¢ is transient, i.e®, € J, thenW C J& C J SO
that\w? c J¢ = 0. On the other hand, i is non-transient the@, has a
non-zero irreducible componef;(®,) in the Wedderburn-Artin spectral
decomposition (Theorem 5.1) amdcan be extended to € (Xg); via
Lemma 4.1, so that = [z], for n := |o|. By approximatingz with a
periodic point (Theorem 5.1), we géta)>® € X4 for somea. Hence,
(BsPo)?* # 0, and SOV # 0. O

Lemma A.1 Ford € N andz € AN, if every sub-block of z with length
lo| = d?+1 hasits periog(o) < d, thenz is periodic (with periog < d).

Proof of Lemma A.1Seto,, := (xy, ..., T, 42) @ndp,, := p(oy). Letay,,
law,| = p(oy), be such that,, is the initial segment afio°. It suffices to see
that, forn € N, p,+1 = p, and thatw,, 1 = &,, wherea,, is the cyclic
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shift of «,, by one place to the left. The blogk:= (Zy41, s Tntpupnsi)

is a sub-block of bothr,, ando,,+1 becausep,,p,+1 < d. Thuspy =
QpPrtt = aﬁ’fH, and the uniqueness property of the minimal period implies
thatp,,+1 = p, and thatw,,.1 = @,,. O

Proof of Theorem A.1f X4 has zero entropy, then by Corollary 9.2 the
non-transient setXg); of Xg consists of at most periodic points. The
assertion on non-transient blocks follows as they can occur as sub-blocks of
non-transient points.

In the other direction, if every non-transient blogkof lengthd? + 1
hasp(c) < d, then every non-transient point must be periodic of period
not exceeding by Lemma A.1. Hencg,X ) is finite and thus carries no
entropy.O
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