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Abstract: Polarization-mode dispersion in single-mode fibers can be viewed as a special
case of modal dispersion in multimode and multicore optical fibers. Exploiting the similar-
ity between these two transmission effects, modal dispersion can be modeled in a way
analogous to that of polarization-mode dispersion by modifying the conventional Jones–
Stokes formalism. In this paper, we review the geometrical representation of modal dis-
persion in the generalized Stokes space by means of the modal dispersion vector. We
summarize and unify the fundamental equations that encapsulate the properties of the
modal dispersion vector. We prove that the modal dispersion vector can be expressed as a
linear superposition of the Stokes vectors representing the principal modes. The coefficients
of this expansion are the corresponding differential mode group delays. This concise and
elegant expression can be considered as a simplified definition of the modal dispersion
vector and can be used to facilitate analytical calculations.

Index Terms: Optical fiber communication, multimode optical fiber, multicore optical fiber,
modal dispersion, spatial division multiplexing.

1. Introduction
The available capacity of the installed fiber-optic backbone network infrastructure will be rapidly
depleted as the compound annual growth rate (CAGR) of global data crossing the Internet is
expected to exceed 20% in the years to come [1], [2]. To accommodate this traffic increase, several
variants of spatial division multiplexing (SDM) are currently considered. A fiber-thrifty SDM solution
may be implemented by using different modes of multimode optical fibers (MMFs) or different cores
of multicore optical fibers (MCFs) to increase the spectral efficiency of congested links [3], [4].
Whether this approach can lead to potential cost savings in the future compared to other alternative
SDM methods is still a subject of debate.

Linear transmission impairments in MMFs and MCFs include, among others, modal dispersion
(MD), mode-dependent loss (MDL), multipath interference, and intermodal/intercore crosstalk [5].
This paper is devoted to accurately modeling MD in MMFs and MCFs in the absence of all other
modal effects. Under these conditions, MD may be viewed as a generalization of polarization-
mode dispersion (PMD) in single-mode fibers (SMFs) [5]. The similarities between MD and PMD
led to the extension of the PMD formalism, expressed in the conventional Jones and Stokes
spaces [6]–[10], into higher dimensions [11]–[19]. In this mathematical framework, MD in N -mode
MMFs/N -core MCFs can be fully described in a generalized N -dimensional Jones space by a set
of orthogonal propagation modes called principal modes (PMs) and their corresponding differential
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Fig. 1. Poincaré sphere, input slow and fast PSPs, p̂ and −p̂ , respectively, and input PMD vector �τs in
the case of SMF (N = 2). An arbitrary launch state of polarization (SOP) is denoted by ŝ.

mode group delays (DMGDs) with respect to the average group delay [5]. Alternatively, MD can be
geometrically represented by a vector (called the MD vector) in a generalized Stokes space with
N 2 − 1 dimensions [11].

To the best of our knowledge, no explicit analytical relationship has existed among the MD vector,
the PMs, and DMGDs. In this paper, we show for the first time that the MD vector can be expressed
as a weighted sum of the Stokes vectors representing the PMs, with the corresponding DMGDs as
coefficients. This leads to a new definition of the MD vector that encapsulates both the PMs and
the DMGDs into a single mathematical expression.

The rest of the paper is organized as follows: In Section II, we review the generalized Jones
and Stokes formalism [11]–[19] for the modeling of MD in MMFs and MCFs. More specifically, we
take a brief look in the generalized Jones vectors and matrices, the expansion of the latter in terms
of the generalized Gell-Mann matrices, the transition between the generalized Jones and Stokes
spaces using the above expansion, and the properties of the vector dot products in both spaces. In
Section III, we derive a concise analytical relationship that links the MD vector with the input PMs
and the corresponding DMGDs. The details of the formalism are discussed in the Appendices.

2. Theoretical Background
2.1 Literature Survey and Motivation

The modification of the PMD formalism for the modeling of MD in long-haul SDM optical com-
munications systems began circa 2005, with Fan and Kahn [20] who showed that the concept of
principal states of polarization (PSPs) in SMFs [6] could be generalized to the PMs in MMFs/MCFs.
Subsequently, Ho and Kahn [5] used a random unitary matrix concatenation model to derive
analytical expressions for the probability density functions (pdf’s) of the DMDGs and the MDL in the
strong coupling regime. Antonelli et al. [11] extended Gordon and Kogelnik’s spinor PMD formalism
[9] to the modeling of MD in MMFs/MCFs and introduced the MD vector for the Stokes space
representation of MD. In addition, they derived analytical expressions for the pdf of the MD vector
modulus and two autocorrelation functions related to the MD vector in the case of strongly-coupled
MMFs/MCFs. Several follow-up papers, e.g., [12]–[19], elucidated various facets of this formalism.

The aim of this paper is twofold: (i) To review the MD formalism and reconcile the differences in
the mathematical conventions adopted by various authors [11]–[19]; (ii) To derive a new analytical
relationship linking the MD vector to the PMs and their corresponding DMGDs.

The MD vector is a generalization of the PMD vector for N > 2, where N is the number of spatial
and polarization modes. Recall the conventional definition of the input PMD vector �τs as the product
of the slow input PSP vector p̂ in Stokes space and the differential group delay (DGD) τ between
the two PSPs (Fig. 1) [9].
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It is also possible to redefine the input PMD vector �τs as the sum of the Stokes vectors representing
the slow and fast PSPs, p̂ and −p̂ , respectively, scaled by the corresponding DGDs τ/2, −τ/2
with respect to the average group delay. This new definition yields a PMD vector identical to the
conventional one

�τs
�= τ

2
p̂ +
(
− τ

2

)
(−p̂ ) = τp̂ . (1)

The advantage of this new definition is that it can be generalized in the case of higher dimensions
N > 2, whereas the conventional definition of the PMD vector fails to scale with the number of
modes.

We will show in Section III that, in all cases (N ≥ 2), the input MD vector �τs can be written as a
weighted sum of the Stokes vectors p̂ i , representing the input PMs, with the corresponding DMGDs
(with respect to the average group delay) τi , i = 1, . . . ,N as coefficients [see expression (22) below].

2.2 Generalized Jones and Stokes Spaces

In the following, we use the methodology and the notation of [9], [10]: Dirac’s bra-ket vectors repre-
sent unit vectors in the generalized Jones space and hats represent unit vectors in the generalized
Stokes space.

The phasor of the electric field of a monochromatic optical wave at a given position r in an N -mode
waveguide can be expressed as the vector sum

E(r) =
N∑

k = 1

ckEk(r), (2)

where Ek(r) represent the electric field phasors of individual modes and the complex coefficients
ck, k = 1, . . . ,N are the mode excitations [11]. The latter satisfy the relationship

N∑
k = 1

|ck |2 = 1. (3)

We define the generalized unit Jones vectors as |s〉 �= [c1, . . . , cN ]T , where T denotes the
transpose of a matrix. Combinations of propagation modes are described by such vectors.

Linear optical devices are represented by N × N complex matrices called generalized Jones
matrices, similar to the two-dimensional case. Their action results in a simple multiplication of the
input Jones vector by the corresponding Jones matrix.

Traditionally, the Stokes space representation of polarization is useful for visualizing and solving
optics problems without resorting to complex algebraic calculations based on Jones matrix concate-
nation. For instance, we can gain considerable physical insight from the pictorial representation of
the polarization evolution during propagation though optical devices in terms of rotations in Stokes
space.

The generalized Stokes formalism allows the depiction of a combination of N modes in a (N 2 − 1)-
dimensional Stokes space as a point on the surface of a (N 2 − 2)-hypersphere (i.e., a generalized
Poincaré sphere) with unit radius [11]–[19]. The Stokes space can also be used for the represen-
tation of MD in a concise form in terms of the MD vector [11]–[19].

The above geometrical representation of MD is less intuitive than its polarization counterpart due
to the high-dimensionality of the generalized Stokes space, although it does have aesthetic appeal.
The question then arises whether there are any advantages at all in using the generalized Stokes
space instead of the generalized Jones space for N > 2.

The primary advantage of this modeling approach is that several mathematical properties of
PMD can be generalized for MD and can be expressed in a concise and elegant fashion using
equations evolving Stokes space vectors [11]–[19]. For instance, the DMGD of narrowband opti-
cal pulses during propagation in MMFs/MCFs can be written simply as the inner product of the
input MD vector and the Stokes vector corresponding to the launched combination of modes [19]

Vol. 9, No. 5, October 2017 7203715



IEEE Photonics Journal Stokes Space Representation of Modal Dispersion

[see expression (21) below]. Based on this relationship, it is possible to measure the MD of
MMFs/MCFs using the mode-dependent signal delay method [19].

We can move to the Stokes space representation using the fact that any matrix in the N -
dimensional Jones space can be expressed as a linear combination of N 2 base matrices. Here,
without loss of generality, we use as basis the N × N identity matrix I and the N 2 − 1 generalized
Gell-Mann matrices �1, . . . ,�N 2−1 with dimensions N × N [22], [23]. The latter can be constructed
as follows: Consider an arbitrary orthonormal basis in Jones space |b1〉, . . . , |bN 〉. We first define
the following auxiliary symmetric, antisymmetric, and diagonal matrices, respectively [22], [23]:

Ujk
�= |bj〉〈bk | + |bk〉〈bj |, (4)

Vjk
�= −i

(∣∣bj
〉 〈bk | − |bk〉

〈
bj
∣∣) , (5)

Wl
�=
√

2
l(l + 1)

⎛
⎝

l∑
j = 1

∣∣bj
〉 〈

bj
∣∣− l |bl + 1〉 〈bl + 1|

⎞
⎠ , (6)

for given indices j, k, l.
Then, we define the sets [22], [23]

U � {Ujk : 1 ≤ j < k ≤ N },
V � {Vjk : 1 ≤ j < k ≤ N },
W � {Wl : 1 ≤ l ≤ N − 1}. (7)

The generalized Gell-Mann matrices �i are the elements of the union of the above sets, i.e.,
�i ∈ U ∪ V ∪ W, i = 1, . . . ,N 2 − 1 [22], [23]. The order in which the elements �i are listed is
immaterial since reordering them results in a permutation of the Stokes vector components in (12).

From their definition, we note that the generalized Gell-Mann matrices are traceless and mutually
trace-orthogonal [22], [23]

Tr (�i ) = 0,

Tr
(
�i �j

) = 2δij, (8)

where Tr(.) denotes the trace operator and δij , i , j = 1, . . . ,N 2 − 1, denotes the Kronecker delta.
To express concisely a Jones matrix as a linear combination of the identity matrix and the N 2 − 1

generalized Gell-Mann matrices, we also need to define the Gell-Mann vector �
�= [�1, . . . ,�N 2−1]T ,

in analogy to the Pauli spin vector [9].
To illustrate the expansion of a Jones matrix in terms of the identity matrix and the N 2 − 1

generalized Gell-Mann matrices, following the methodology of [9], we first define the dyadic operator
|p 〉〈q| as the outer product of two generalized Jones vectors |p 〉 = [p 1, . . . , p N ]T , |q〉 = [q1, . . . , qN ]T

�
�= |p 〉 〈q| =

⎡
⎢⎢⎢⎢⎣

p 1q1
∗ p 1q2

∗ · · · p 1qN
∗

p 2q1
∗ p 2q2

∗ · · · p 2qN
∗

...
...

. . .
...

p N q1
∗ p N q2

∗ · · · p N qN
∗

⎤
⎥⎥⎥⎥⎦
, (9)

where the asterisk denotes the complex conjugate.
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A special case of a dyadic operator is the projection operator, which represents a mode filter, i.e.,
the equivalent of a polarizer in the two-dimensional case

ρ
�= |s〉 〈s| =

⎡
⎢⎢⎢⎢⎢⎣

|c1|2 c1c2
∗ · · · c1cN

∗

c2c1
∗ |c2|2 · · · c2cN

∗

...
...

. . .
...

cN c1
∗ cN c2

∗ · · · |cN |2

⎤
⎥⎥⎥⎥⎥⎦
. (10)

By using (4)–(8), we write the projection operator as a sum of the identity matrix and the N 2 − 1
generalized Gell-Mann matrices {I,�1, . . . ,�N 2−1} [12], [17] (see Appendix A)

|s〉 〈s| = 1
N

[
I +
√

N (N − 1)
2

ŝ · �

]
, (11)

where we defined the generalized Stokes vectors as [12], [17]

ŝ �=
√

N
2(N − 1)

〈s| � |s〉 . (12)

The normalization coefficients in (11), (12) are chosen such that ‖ŝ‖ = 1 (cf. Appendix A).
It should be emphasized that Antonelli et al. [11] used different multiplication coefficients for (11),

(12) due to their different definition of the generalized Gell-Mann matrices, of the trace-orthogonality
relationship, and due to the adoption of non-unit Stokes vectors for N > 2 (see expression (9) and
the Appendix in [11]). In contrast, our choice of (4)–(8) and unit Stokes vectors (12) complies with
[12], [13], [17], and [22]. Both approaches are backwards compatible with the PMD case [9], [10]
(N = 2).

One can use the following eigenvalue equation as an inverse transform from Stokes to Jones
space [10]

(ŝ · �) |s〉 =
√

2(N − 1)
N

|s〉 . (13)

Equation (13) stems from the expansion of the projection operator (10) in terms of the identity
matrix and the N 2 − 1 Gell-Mann matrices (11). This is done by multiplying (11) with |s〉 from the
right and rearranging the terms. Expression (13) indicates that the Jones vector |s〉 corresponding
to the Stokes vector ŝ is the eigenvector of the operator (ŝ · �) corresponding to the

√
2(N − 1)/N

eigenvalue. Most points on the generalized Poincaré sphere do not satisfy (13), which means that
they do not correspond to valid combinations of modes (see Fig. 4(a)–(d) and the discussion in
Appendix B).

The dot products of two vectors in Jones and Stokes spaces are connected by the following
equation [11], [22]:

|〈q | p 〉|2 = 1
N

[1 + (N − 1) p̂ · q̂] . (14)

To obtain (14), we first write the dyadic operator (9) as a linear combination of the identity matrix
and the N 2 − 1 Gell-Mann matrices and then we multiply with |p 〉 from the right and 〈q| from the left.

Orthogonal vectors in Jones space correspond to non-orthogonal vectors in Stokes space. Setting
〈q | p 〉 = 0 in (14), we obtain [22]

p̂ · q̂ = − 1
N − 1

. (15)

The dot product property (15) is satisfied by the N vectors connecting the origin of the axes with
the N vertices of a (N − 1)-dimensional regular simplex centered at the origin and inscribed in the
unit N 2 − 2-dimensional Poincaré sphere [22]. Conversely, this indicates that the N vectors of an
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Fig. 2. Trellis diagram visualization of the simulation model of a long MMF/MCF link with N modes/cores
composed of a concatenation of K − 1 uncoupled short uniform fiber segments with K coupling stages
in between. All functionalities can be implemented using N × N unitary matrices in Jones space [5].
(Symbols: Nodes = fiber modes, τ(k−1)

i = DMGD of the i -th mode in the k-th segment, c(k)
i ,j = coupling

coefficient between the i -th and the j-th modes in the k-th segment).

orthonormal basis in Jones space are mapped into Stokes vectors which form the vertices of such
(N − 1)-dimensional regular simplex [22] (cf. Fig. 3).

In Appendix B, we illustrate the above generalized Jones-Stokes formalism for the case of a
hypothetical trimodal waveguide.

2.3 Modeling of Modal Dispersion in Long MMFs/MCFs

A long linear MMF/MCF link can be modeled as a concatenation of independent short fiber segments
[5]. The latter can be implemented using random unitary matrices for the coupling sections and
diagonal unitary matrices for the delay sections (Fig. 2).

From the directed graph shown in Fig. 2, we can write the following matrix equation that connects
the input |s〉 and output |t (ω)〉 Jones vectors [9]

|t (ω)〉 = U (ω) |s〉 , (16)

where U(ω) is the unitary transfer matrix of the fiber in Jones space.
The input PMs are the eigenstates of the operator [9]

iU(ω)†Uω(ω)|p i (ω)〉 �= τi (ω)|p i (ω)〉, (17)

where τi (ω), i = 1, . . . ,N , are the corresponding DMGDs.
In (17), the average mode group delay is assumed zero for convenience [11]

N∑
i = 1

τi (ω) = 0. (18)

The input MD vector �τs is defined as

iU(ω)†Uω(ω) �=
√

N − 1
2N

�τs(ω) · �, (19)

where the index ω denotes differentiation with respect to the angular frequency and † denotes the
adjoint matrix.

The j-th component of the input MD vector is given by

[�τs(ω)]j =
√

N
2(N − 1)

Tr
[

iU(ω)†Uω(ω)�j

]
. (20)

It is worth pointing out that Antonelli et al. [11], Hu et al. [12], and Milione et al. [19] each used a
different multiplication coefficient in the RHS of (19), which results in a different scaling of the input
MD vector. All these choices are legitimate since (19) constitutes the defining equation of �τs. The
rationale behind our convention was to use for consistency the same multiplication coefficient in
front of ŝ and �τs in (11) and (19), respectively.
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Finally, it has been shown by Millione et al. [19] that the group delay τg of an optical pulse
corresponding to a given combination of launch modes is related to the dot product of the input MD
vector �τs (ω) and the input launch state ŝ in Stokes space. We rewrite their expression in a slightly
modified form:

τg = N − 1
N

〈�τs (ω)〉 · ŝ, (21)

where angle brackets denote spectral averaging [9].
It is worth noting that (21) differs from the original expression (16) of Millione et al. [19] on several

points: there is a corrective multiplicative factor of (N − 1)/N , the input MD vector �τs is spectrally-
averaged, and the average mode group delay is set to zero according to (18). The above changes
are necessary in order to make (21) compatible with (11), (12) and with expression [5.30] in [9].

3. Modal Dispersion Vector
We will show that, in the absence of MDL, the input MD vector can be written as a weighted sum
of the Stokes vectors representing the input PMs with the corresponding DMGDs as coefficients

�τs (ω) =
N∑

i = 1

τi (ω) p̂ i (ω) . (22)

Since the input and output PMs form orthonormal bases in Jones space, according to (15), they
are mapped into Stokes vectors that form the vertices of (N − 1)-dimensional regular simplices. It is
possible to visualize these simplices in the case of bimodal fibers (N = 2) (i.e., the PSPs p̂ , −p̂ form
a straight line in Fig. 1), as well as in the case of hypothetical trimodal (N = 3) and quadrimodal
(N = 4) waveguides (Fig. 3), where the PMs form an equilateral triangle and a regular tetrahedron,
respectively. In general, the Stokes vector in the direction of the MD vector does not coincide with
a state that corresponds to a valid combination of modes in Jones space, i.e., the eigenvalue (13)
is not satisfied (cf. Appendix D).

To prove (22), we first express the group delay operator iU(ω)†Uω(ω) using its spectral decompo-
sition in terms of its eigenvalues τi (ω) and eigenvectors

∣∣p i (ω)
〉
, i = 1, . . . ,N

iU(ω)†Uω(ω) =
N∑

k=1

τk(ω)
∣∣p k(ω)

〉〈p k(ω)|. (23)

In addition, the projection operators
∣∣p k(ω)

〉〈p k(ω)| can be written according to (11) as

∣∣p k(ω)
〉〈p k(ω)| = 1

N

[
I +
√

N (N − 1)
2

p̂ k(ω) · �

]
. (24)

By substitution of (24) into (23) and taking into account that the average mode group delay
is assumed zero (18), we obtain

iU(ω)†Uω(ω) =
√

N − 1
2N

N∑
k=1

τk(ω)p̂ k(ω) · �. (25)

Comparison of the RHS of expressions (19), (25) yields the desired expression (22). Q.E.D.
The practical value of (22) is illustrated in Appendices C-D. In Appendix C, we rederive previously

known analytical expressions for the norm of the MD vector and the projections of the MD vector on
the PMs. In Appendix D, we show that the MD vector points along a unit vector n̂ in Stokes space
that is not related, in general, to any valid combination of input modes in Jones space for N > 2.
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Fig. 3. (a) For a hypothetical trimodal waveguide, the Stokes space is eight dimensional. The input PMs
in Stokes space are vectors from the origin of the axes to the vertices of an equilateral triangle. The
input MD vector is on the same plane as the input PMs. The dotted circle indicates the boundaries of
the generalized Poincaré sphere. (b) For a hypothetical quadrimodal waveguide, the Stokes space is
15-dimensional. The input PMs in Stokes space are vectors from the origin of the axes to the vertices of
a regular tetrahedron. The input MD vector lies in the same 3D subspace as the input PMs. To delineate
the edges of the regular tetrahedron, we inscribed it in a sphere of unit radius which is the intersection
of the generalized Poincaré sphere with the 3D subspace.

4. Concluding Remarks
There is currently no consensus regarding the most appropriate mathematical conventions for the
Stokes representation of MD in order to facilitate analytical calculations. We performed a brief
survey of the main articles [11]–[19] on the topic of the generalized Jones and Stokes spaces and
identified several apparent differences regarding the definitions of fundamental quantities, e.g., the
Stokes vectors and the MD vector, adopted by various authors. The initial motivation for this article
was to reconcile these differences in the generalized Stokes formalism in the exclusive presence
of MD. Therefore, we compiled the most important analytical expressions derived in the previous
literature and reformulated them using our own preferred mathematical conventions. By doing so,
we identified a fundamental property of the MD vector that has not been previously recognized,
i.e., we highlighted the fact that the MD vector can be written as a linear superposition of the PMs,
using the DMGDs as coefficients. This simple and elegant expression can be used to gain physical
insight and facilitate analytical calculations. As a first example of its practical value, in Appendix C,
we rederived previously known expressions for the length and the projections of the MD vector on
the PMs using vector properties in Stokes space, without transitioning between Jones and Stokes
spaces. Then, in Appendix D, we tackled a particularly interesting question that has not been
addressed before, namely, the conditions under which the MD vector can have a direction in Stokes
space that corresponds to a valid combination of modes in Jones space. Again, we showed that our
new definition of the MD vector in terms of the PMs and the DMGDs allows to solve this problem
in a straightforward manner. Finally, in Appendix B, we illustrated the use of our unified Stokes
formalism by studying the case of a trimodal waveguide.

Appendix
A. Projection Matrix Expansion

In this Appendix, we provide a detailed derivation of the projection matrix expansion in terms of the
identity matrix and the N 2 − 1 Gell-Mann matrices and justify the use of normalization coefficients
in (11), (12).

We express the projection matrix as a linear combination of the identity matrix and the N 2 − 1
Gell-Mann matrices (11)

|s〉 〈s| = αI + βŝ · �, (26)

where α, β are unknown normalization coefficients (to be determined) and ŝ is the unit Stokes vector
corresponding to the unit Jones vector |s〉 (to be defined below).
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We will use the identities [11]

Tr [|s〉〈s|] = 〈s|s〉 = 1, (27)

Tr(I) = N . (28)

Taking the trace of (26) and substituting (27), (28) yields

α = 1/N . (29)

Multiplying (26) with �j from the right and taking the trace yields

[ŝ]j = 1
2β

〈s|�j |s〉, (30)

or, equivalently,

ŝ = 1
2β

〈s|�|s〉. (31)

To determine β, we will use the identity [11]

Tr
[
(ŝ · �)2

]
= 2
∥∥ŝ
∥∥2 = 2. (32)

Solving (26) for ŝ · � and squaring yields

(ŝ · �)2 = 1
β2

[
(1 − 2α) |s〉 〈s| + α2I

]
. (33)

Taking the trace of both hands of (33) and substituting the value of α from (29) yields

β =
√

N − 1
2N

. (34)

B. Modal Dispersion of Trimodal Waveguides
This Appendix is dedicated to the mathematical description of three-mode linear propagation

using the generalized Jones-Stokes formalism. In reality, the total number of spatial and polarization
modes of circularly-symmetric, multimode fibers is always an even number. Nevertheless, the
hypothetical trimodal waveguide can be used as an example in order to illustrate the formalism of
Section II. In addition, one can profit from extensive studies of qutrits in quantum mechanics and
the correspondence between three-dimensional Hilbert space vectors and eight-dimensional Bloch
vectors, e.g., [24]–[27].

Based on the discussion in Section II-B, we define the generalized unit Jones vectors in Cartesian
coordinates as

|s〉 = [c1, c2, c3]T = [c01eiϕ1 , c02eiϕ2 , c03eiϕ3
]T
, (35)

where c0k are the magnitudes and ϕk are the phases of ck , k = 1, . . . ,3.
We can parametrize the magnitudes c0k, k = 1, . . . ,3 using spherical coordinates c01 =

cosφ sin θ, c02 = sinφ sin θ, c03 = cos θ. We assume that the angular spherical coordinates θ, φ

take values in the interval [0, π/2) so that the magnitudes c0k, k = 1, . . . ,3 are always positive.
Any two Jones vectors differing by a complex multiplicative factor are physically equivalent, i.e.,

they represent the same physical state [22]. Therefore, we can take eiϕ3 out of the parenthesis in
(35) as a common factor, and define χ = ϕ1 − ϕ3, ψ= ϕ2 − ϕ3. The phases χ,ψ∈ [0,2π) so that the
electric fields of the three modes can take both positive and negative values. Thus, we can then
rewrite (35) in polar form

|s〉 = [eiχ cosφ sin θ, eiψsinφ sin θ, cos θ
]T
. (36)
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TABLE 1

Gell-Mann Matrices in the Standard Basis

�1 =
⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ �2 =

⎛
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎠ �3 =

⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠

�4 =
⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ �5 =

⎛
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎠ �6 =

⎛
⎝

0 0 0
0 0 1
0 1 0

⎞
⎠

�7 =
⎛
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎠ �8 = 1√

3

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠

TABLE 2

Stokes Vector Calculated From a Jones Vector Expressed in Cartesian and Polar Forms

Cartesian form Polar form

ŝ =
√

3
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1c2
∗ + c2c1

∗
i (c1c2

∗ − c2c1
∗)

|c1|2 − |c2|2
c1c3

∗ + c3c1
∗

i (c1c3
∗ − c3c1

∗)
c2c3

∗ + c3c2
∗

i (c2c3
∗ − c3c2

∗)
1√
3

(
|c1|2 + |c2|2 − 2|c3|2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ŝ =
√

3
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin2 θ sin (2φ) cos(χ−ψ)

−sin2θ sin (2φ) sin(χ−ψ)

sin2θ cos (2φ)
2 sin θ cos θ cosφ cosχ
−2 sin θ cos θ cosφ sinχ
2 sin θ cos θ sinφ cosψ
−2 sin θ cos θ sinφ sinψ

− 1
2
√

3
[3 cos(2θ) + 1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is worth noting that an arbitrary Jones vector depends on four real parameters. This means that
the corresponding Stokes vector obtained below by (38) belongs to a four-dimensional manifold in
the 8D Stokes space [17].

The expressions of the Gell-Mann matrices in the standard basis |1〉, |2〉, |3〉 are given by (4)–(6)
after reordering

�1 = |1〉 〈2| + |2〉 〈1| �5 = −i (|1〉 〈3| − |3〉 〈1|)
�2 = −i (|1〉 〈2| − |2〉 〈1|) �6 = |2〉 〈3| + |3〉 〈2|
�3 = |1〉 〈1| − |2〉 〈2| �7 = −i (|2〉 〈3| − |3〉 〈2|)
�4 = |1〉 〈3| + |3〉 〈1| �8 = 1√

3
(|1〉 〈1| + |2〉 〈2| − 2 |3〉 〈3|)

(37)

Substituting |1〉 = [1,0,0]T , |2〉 = [0,1,0]T , |3〉 = [0,0,1]T , we obtain the familiar expressions
shown in Table 1 [22].

From the definition of the generalized Stokes vectors (12), we have

ŝ �=
√

3
2

〈s| � |s〉 (38)

By substituting (35), (36) into (38), we can derive the explicit form of the Stokes vector ŝ corre-
sponding to the Jones vector |s〉 in Cartesian and polar coordinates (Table 2).
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Fig. 4. Projections of the valid states on the Poincaré 7-sphere on four different planes defined by
pairs of Stokes axes {x i , x j} (a) {x1, x2}. (b) {x3, x8}. (c) {x3, x4}. (d) {x7, x8}. The red circles indicate the
boundaries of the generalized Poincaré sphere.

Notice the similarity of the eight-dimensional Stokes vector in the left column of Table 2 with the
conventional 3D Stokes vector [9]

ŝ = [|c1|2 − |c2|2, c1c2
∗ + c2c1

∗, i (c1c2
∗ − c2c1

∗)
]T
. (39)

The first three elements are identical apart from a multiplication factor and a cyclic permu-
tation of the components. Actually, all the information of the eight-dimensional Stokes vector
can be recast into three conventional 3D Stokes vectors corresponding to the combinations
{c1, c2} , {c1, c3} , {c2, c3} of the Jones vector components. This suggests a possible visual repre-
sentation by three interdependent points on three interrelated 3D Poincaré spheres. A similar
approach was proposed in quantum mechanics for the multi-Bloch vector representation of the
qutrit [24].

From (13), we obtain the following relationship as the inverse transform between Stokes and
Jones vectors

(ŝ · �) |s〉 = 2√
3

|s〉 (40)

By substituting the polar form of the Stokes vector from the right column of Table 2 into (40), we
find that the eigenvalues of the operator

√
3

2 (ŝ · �) are 1, −1/2, −1/2 independent of the values of
the four angles θ, φ, χ, ψ. This can be used as a test in order to verify whether a given Stokes vector
corresponds to a valid combination of propagation modes or not.

The vast majority of points on the Poincaré 7-sphere do not satisfy (40), which means that they
do not correspond to valid combinations of propagation modes. This can be illustrated by plotting
the projection of the valid states on the surface of the Poincaré 7-sphere onto various planes
defined by different pairs of Stokes axes {x i , x j} (Fig. 4(a)–(d)). The blue areas in the region plots in
Fig. 4(a)–(d) are calculated by using the corresponding components of the Stokes vector on the
right column of Table 2. If the valid states covered the entire Poincaré sphere, their projections
onto any plane would completely fill the unit circle (in red). As we can see in the Fig. 4(a)–(d), this
is never the case. We conclude that there are unutilized areas on the surface of the generalized
Poincaré sphere (see also several papers in quantum mechanics [25]–[27] that studied the shape
of the boundaries of the regions on the Bloch sphere that contain valid states).

C. Norm and Projections of the MD Vector on the PMs
In this Appendix, we will use our definition of the input MD vector (22) to prove the MD vector

properties given by the relationships (41) and (42) below. These expressions were initially derived
by Antonelli et al. [11] using a different method. Here, they differ slightly from their original form in
[11] due to our choice of multiplication coefficients in (11), (12), and (19).
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More specifically, we will show that:
1) The norm of the input MD vector �τs(ω) is given by

∥∥�τs(ω)
∥∥ =
√√√√ N

N − 1

N∑
k = 1

τ2
k (ω). (41)

2) The input MD vector �τs(ω) is not aligned to any particular input PM p̂ s,i . Its projection on the
input PMs is given by

�τs(ω) · p̂ i (ω) = N
N − 1

τi (ω), (42)

where i = 1, . . . ,N .
We will first prove relationship (41). Squaring both sides of (22) yields

‖�τs (ω)‖2 =
N∑

i = 1

N∑
j = 1

τi (ω) τj (ω) p̂ i (ω) · p̂ j (ω)

=
N∑

i = 1

τ2
i (ω) + 2

N∑
i = 1

N∑
j=i+1

τi (ω) τj (ω) p̂ i (ω) · p̂ j (ω).

On substituting (15) we obtain

‖�τs (ω)‖2 =
N∑

i = 1

τ2
i (ω) − 2

N − 1

N∑
i = 1

N∑
j=i+1

τi (ω) τj (ω). (43)

By squaring (18), the result is

2
N∑

i = 1

N∑
j=i+1

τi (ω) τj (ω) = −
N∑

i = 1

τ2
i (ω). (44)

By substituting (44) into (43), we obtain

‖�τs (ω)‖2 = N
N − 1

N∑
i = 1

τ2
i (ω),

and thus (41) is proved by taking the positive square root of both sides.
Q.E.D.

Next, we will use our definition of the input MD vector (22) to prove relationship (42). First, we
multiply both sides of (22) with p̂ i

�τs (ω) · p̂ i (ω) =
N∑

j = 1

τj (ω) p̂ j (ω) · p̂ i (ω). (45)

By substituting (15) into (45), we get

�τs (ω) · p̂ i (ω) = τi (ω) − 1
N − 1

N∑
j 
=i

τj (ω). (46)

Rearranging the terms in (18) yields

N∑
j 
=i

τj (ω) = −τi (ω) . (47)

By substituting (47) into (46), we obtain the desired expression (42).
Q.E.D.
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D. Additional MD Vector Properties
In this Appendix, we discuss the conditions under which the direction of the input MD vector

corresponds to a valid combination of input modes in Jones space for N > 2.
As a starting point, we write the unit vector n̂ along the direction of the input MD vector in Stokes

space as n̂ = �τs/τ, where τ denotes the norm ‖�τs‖ of the MD vector as given by (41). From the
definition of the input MD vector (19), we obtain:

(n̂ · �) = 1
τ

√
2N

N − 1
iU† (ω) Uω (ω) . (48)

From (17), the eigenvectors and eigenvalues of the group delay operator iU† (ω) Uω (ω) are
|p i 〉 , τi , i = 1, . . . ,N . Assume that one of the above eigenvectors, say |p j〉, satisfies the inverse
Jones-Stokes transform (13)

(n̂ · �)
∣∣p j
〉 =
√

2 (N − 1)
N

∣∣p j
〉
. (49)

Then, the remaining N − 1 eigenvectors of the group delay operator satisfy the eigenvalue equa-
tion [11]

(n̂ · �) |p i 〉 = −
√

2
N (N − 1)

|p i 〉 , i = 1, . . . ,N , i 
= j. (50)

Combining (48)–(50), we conclude that the DMGDs must assume the following values

τj = N
N − 1

τ, (51)

τi = − 1
N
τ, i = 1, . . . ,N , i 
= j. (52)

Alternatively, it is straightforward to obtain the above result using our definition of the MD vector
(22) and the Stokes vector properties (15), (42). Since |p j〉 satisfies (49), then �τs = τp̂ j . Conse-
quently, we can write the inner products �τs · p̂ j , �τs · p̂ i in terms of the length of the MD vector τ as
�τs · p̂ j = τ, �τs · p̂ i = τp̂ j · p̂ i = −τ/(N − 1), the latter expression obtained by using (15). In addition,
independent of the orientation of the input MD vector, the inner product �τs · p̂ i is always related to
the individual DMGDs based on (42). Combining these results, we obtain immediately (51), (52).

Conversely, using a counterexample, we will show that when (51), (52) are not satisfied, i.e., when
the input MD vector is not aligned with an eigenvector p̂ i , i = 1, . . . ,N , of the group delay operator
its direction is not related to any valid combination of input modes in Jones space for N > 2.

For simplicity, consider the diagonal fiber transfer matrix for N = 3

U(ω) =
⎡
⎣

e−iωτ1 0 0
0 e−iωτ2 0
0 0 e−iωτ3

⎤
⎦ . (53)

Solving the 3 × 3 system of equations (19) using (20) yields

�τs =
√

3
2

(τ1 − τ2) x̂3 + 3
2

(τ1 + τ2) x̂8, (54)

where x̂ i , i = 1, ...,8 are the unit Stokes vectors along the Stokes axes.
Next, without loss of generality, assume that τ1 = −τ2 = T . In this specific case, the unit vector

n̂ in Stokes space along the direction of the MD vector is n̂ = �τs/‖�τs‖ = x̂3. For the unit vector n̂ in
Stokes space to correspond to a valid combination of input modes in Jones space, (40) must be
satisfied. Since n̂ · � = �3, we have to check whether �3 has an eigenvalue equal to 2/

√
3. The

eigenvectors of �3 are |1〉, |2〉, |3〉 with eigenvalues 1,−1,0, respectively. Therefore, we conclude
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that the direction of n̂ does not correspond to a valid combination of input modes. The same
conclusion can be drawn by inspection of Fig. 4(b).

A final observation is that the matrix U(ω) does not represent a rotation around an axis along the
direction of the MD vector for N > 2.

For instance, for the above special case, we obtain

U(ω) = 1
3

(1 + 2 cosωT )I − i sinωT �3 + 1√
3

(cosωT − 1)�8. (55)

which is obviously unrelated to �τs = √
3T x̂3.
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